
M1M1 Summer 2010: Solutions

The paper is entirely unseen.

1 (a) If y = cothx = (e2x + 1)/(e2x − 1), then e2x = (y + 1)/(y − 1). Thus

x = coth−1(y) = 1
2 log

[
y + 1

y − 1

]

so coth−1(x) = 1
2 log

[
x+ 1

x− 1

]

. [3marks]

(b) See sketch [3 marks]

(c) Differentiating y′ = sinhx/ sinhx − cosh2 x/ sinh2 x = 1 − y2. Differentiating once
more, y′′ = −2yy′ = −2y(1− y2) = 2y3 − 2y. [2 marks]

(d) We have

cothx = coth a+ coth′(a)(x− a) + 12 coth
′′(a)(x− a)2 + 16 coth

′′′(a)(x− a)3 + . . .

We know coth a = 2, and by part (c) coth′(a) = 1 − 4 = −3, coth′′(a) = 2(8 − 2) = 12.
Hence

cothx = 2− 3(x− a) + 6(x− a)2 +O(x− a)3. [3marks]

(e) We know cosh(iθ) = cos(θ) and sinh(iθ) = i sin θ. So cosh(iθ) = 0 ⇐⇒ cos θ = 0 ⇐⇒
θ = (n + 1

2 )π for integers n. (And note sin θ 6= 0 when cos θ = 0). So coth x = 0 when
x = (n+ 12 )πi. [2 marks]

(f) As x→∞,

cothx =
ex + e−x

ex − e−x
= (1 + e−2x)(1− e−2x)−1 = 1 + 2e−2x +O(e−4x).

Thus log
√
cothx ' 1

2 log(1 + 2e
−2x) ' e−2x. Furthermore, writing t = 1/x, as t→ 0,

coth t =
2 +O(t2)

1 + t− (1− t) +O(t2)
=
1

t
+O(t).

So

lim
x→∞




log
(
log
√
cothx

)

coth (1/x)



 = lim
x→∞

[
log(e−2x)

1/(1/x)

]

= −2. [4marks]

(g) The integrand is continuous except possibly where coth x or coth(coth x) is infinite,
i.e. at x = 0 and as x→∞. Near x = 0, coth x ' 1/x from (f) and coth(coth x) ' 1. So
there is no singularity at x = 0. As x→∞, we know from (f) that coth x ' 1 + 2e−2x, so
that coth(coth x) − coth 1 → 0 exponentially fast. So there is no problem at infinity. As
the integrand is continuous and tends to zero faster than 1/x as x→∞, we conclude that
the integral exists. [Allow the flawed argument that the integrand goes to zero at infinity,
without worrying about the rate.] [3 marks]

[Total 20]



2. By inspection of the first few values of n (could prove by induction, but not required)

dn

dxn

(
1

x+ c

)

=
(−1)nn!
(x+ c)n+1

. [2marks]

x2 − 2x cosα+ 1 = (x− cosα)2 + sin2 α so the roots are x = cosα± i sinα Thus

2 sinα

x2 − 2x cosα+ 1
=

2 sinα

(x− cosα− i sinα)(x− cosα+ i sinα)

=
−i

x− cosα− i sinα
+

i

(x− cosα+ i sinα)

[3marks]

Therefore

f (n)(x) = (−1)nn!

[
−i

(x− cosα− i sinα)n+1
+

i

(x− cosα+ i sinα)n+1

]

.

So

f (n)(0)

n!
= (−1)n

[
−i(−eiα)−(n+1) + i(−e−iα)−(n+1)

]
= (−1)2i

[
e−(n+1)iα − e(n+1)iα

]

= i(−2i sin[(n+ 1)α]) = 2 sin[(n+ 1)α.
[5marks]

So from the Maclaurin series,

f(x) =
∞∑

n=0

f (n)(0)xn

n!
=

∞∑

n=0

2 sin[(n+ 1)α]xn as required. [2marks]

Substituting x = cosα, we have f(cosα) = 2 sinα/(1− cos2 α) = 2/ sinα. Thus

1

sinα
=

∞∑

n=0

(cosα)n sin[(n+ 1)α]. [3marks]

Substituting α = 1
3π, so cosα = 1/2, sinα =

√
3/2, while sin[(n + 1)π/3] cycles between√

3/2,
√
3/2, 0, −

√
3/2, −

√
3/2 and 0 for n = 0, 1, 2, 3, 4, 5 and then repeats. Thus

∞∑

n=0

(cos 13π)
n sin[(n+ 1) 13π] =

√
3

2

[
1− ( 12 )

3 + ( 12 )
6 + . . .

]
+

√
3

2

[
1
2 − (

1
2 )
4 + ( 12 )

7 + . . .
]

=

√
3

2

[
1

1− (− 18 )
+

1/2

1− (− 18 )

]

=

√
3

2

3

2

8

9
=
2
√
3
=

1

sin 13π
[5 marks]

[Total 20]



3. (a) The MVT states that if f(x) is continuous in [a, b] and differentiable in (a, b), then
there exists a value ξ such that a < ξ < b and

f(b)− f(a) = (b− a)f ′(ξ). [2marks]

If f ′(x) = 0 for all x in (a, b), let c and d be any two values such that a 6 c < d 6 b.
Then f ′(x) = 0 for all x in (c, d). And the MVT therefore implies that f(d) − f(c) = 0,
i.e. f(d) = f(c). Thus f(x) is constant for all x in [a, b]. [3 marks]

(b) Differentiating, we obtain a separable ODE:

f ′ = f2 + 1 =⇒
∫

df

f2 + 1
=

∫
dx =⇒ tan−1 f = x+ C [5marks]

where C is a constant. Therefore f(x) = tan(x + C). However, the original equation
requires f(a) = 0 + a = a. Thus tan(a+ C) = a or C = −a+ tan−1(a). We conclude

f(x) = tan(x− a+ tan−1(a)) =
a+ tan(x− a)
1− a tan(x− a)

. [4marks]

Alternatively, substituting in the original equation we have

tan(x+ C) =

∫ x

a

[
sec2(t+ C)− 1

]
dt+ x =⇒ 0 = − tan(a+ C) + a etc.

(For forgetting C award a total of 4 marks.)

(c) Equation is linear, with integrating factor

I = exp

[∫
tanx dx

]

= exp[− log cosx] = secx. [2marks]

Thus equation becomes

d

dx
(y secx) = sec2 x =⇒ y secx = tanx+ C =⇒ y = sinx+ C cosx.

[4marks]
[Total 20]



4. (a) Integrating by parts,

∫ ∞

0

u4e−u du =
[
− u4e−u

]∞

0
+ 4

∫ ∞

0

u3e−u du = 4

∫ ∞

0

u3e−u du

as we know une−u → 0 as u→∞. Continuing similarly,
∫ ∞

0

u4e−u du = (4)(3)(2)

∫ ∞

0

e−u du = 24. [3marks]

(b) We note d/dx[− log(x)]b = −b/x[− log(x)]b−1. Integrating by parts, we have

∫ 1

0

xa [− log x]b dx =

[
xa+1

a+ 1
[− log x]b

]1

0

−
∫ 1

0

xa+1

a+ 1

(
−b
x

)

[− log x]b−1 dx.

The first term vanishes provided b > 0. Thus, as required,

I(a, b) =

(
b

a+ 1

)

I(a, b− 1) if b > 0. [5marks]

It follows that I(a, n) = n!/(a+ 1)n+1 and in particular

I(5, 4) =
4

6
I(5, 3) =

4

6

3

6

2

6

1

6

∫ 1

0

x5 dx =
24

65
=
4

64
=
1

324
. [2marks]

(c) Substituting x = yt where t > 0, so that the limits are unchanged, we have

I(a, b) =

∫ 1

0

yta(−t log y)btyt−1 dy = tb+1
∫ 1

0

yta+t−1(− log y)b dy = tb+1I(ta+ t− 1, b).

So choosing t = 1/(1 + a),

I(a, b) =
I(0, b)

(a+ 1)b+1
. [5marks]

(d) Substituting in part (a) t = − log x, so that dt/dx = −1/x = −et, while x = 0
corresponds to t =∞ and x = 1 to t = 0,

∫ ∞

0

t4e−t dt =

∫ 0

1

[− log x]4 (−dx) =
∫ 1

0

[− log x]4 (dx) = I(0, 4). [3marks]

Thus part (a) states that I(0, 4) = 24, while from part (c)

I(5, 4) =
I(0, 4)

65
=
24

65
=
1

324
[2marks]

in agreement with part (b).
[Total 20]


