Name (IN CAPITAL LETTERS!):	
CID:	

Question 3. The function f is given by $f(x) = \log(1 + \sin x)$.

- (a) For which values of x is this NOT a valid definition?
- (b) If f(x) = g(x) + h(x) where g(x) is even and h(x) is odd, then express g(x) in the simplest form you can.
- (c) For which values of x is g(x) defined?
- (d) Prove that f(1) > g(1).

You are reminded that the function sin takes radians – real mathematicians do not use degrees.

Answer.

- (a) f(x) is defined unless the argument of the logarithm is zero. This happens if $\sin x = -1$, or $x = (2n 1/2)\pi$, where n is any integer. (2 marks)
- (b) $g(x) = \frac{1}{2}(\log(1+\sin(x)) + \log(1+\sin(-x))) = \frac{1}{2}\log(1-\sin^2 x) = \log(|\cos x|)$ (3 marks). Deduct 1 for missing out the modulus, deduct 1 or 2 for insufficient simplification.
- (c) g(x) is defined unless $\cos x = 0$ i.e. for $x \neq (n + \frac{1}{2})\pi$ (2 marks)
- (d) As $0 < 1 < \pi$, $\sin(1) > 0$, $1 + \sin 1 > 1$ and so $\log(1 + \sin(1)) > 0$. As $|\cos(1)| < 1$, $\log|\cos(1)| < 0$. Therefore f(1) > 0 > g(1). (3 marks)