M1M1 Progress Test 3: December 8th 2006. Write your name **clearly** on your answer book.

No calculators, books or lecture notes.

50 minutes. Attempt all four questions.

1. (a) Sketch the curve $y = x^2 e^{-x}$. You should determine any stationary points precisely but you need not find any inflection points.

(b) The function $f(x) = (x^2 + 8x + 20)e^{-x}$ is approximated by its Maclaurin series up to and including terms proportional to x^3 :

$$f(x) = 20 - 12x + 3x^2 - \frac{1}{3}x^3 + E_4.$$

Use Taylor's theorem to estimate the maximum possible value of the error E_4 if 3 > x > 0.

2. Find all complex solutions of the equation $\sin z = 4$.

3. Plot the following curves in the complex *z*-plane, if the argument of complex numbers is defined to lie between 0 and 2π .

(a) $\operatorname{Im}(z) = \frac{1}{2}\pi$ (b) $|z| = \frac{1}{2}\pi$ (c) $\arg(z) = \frac{1}{2}\pi$ (d) $|z| \arg(z) = \frac{1}{2}\pi$

4. Calculate the *n*'th derivative of the function

$$f(z) = \frac{1}{z - 1}$$

evaluated at the point z = 3. Hence write down the Taylor series of f(z) about z = 3 and give its radius of convergence.

Sketch the region in the complex z-plane for which this Taylor series converges to f(z). [You need not worry about the behaviour on the edge of this region.]