M1M1: Progress Test 1: October 25th 2004

Write your name clearly on your answer book.

No calculators. No books/lecture notes.

50 minutes. Attempt all four questions.

1. The function f(x) is defined as

$$f(x) = \frac{\cos x}{1 - \sin x}.$$

- (a) Is f(x) a periodic function? If so, what is its period?
- (b) f(x) can be written as the sum of an even function $f_e(x)$ and an odd function $f_o(x)$ so that

$$f(x) = f_e(x) + f_o(x).$$

Find $f_e(x)$ and $f_o(x)$.

(c) Show that

$$\frac{f_o(x)}{f_e(x)} = \sin x.$$

2. Put the following three rational functions in partial fraction form:

(a)
$$\frac{x^2}{x^2+1}$$
; (b) $\frac{x^2}{x^2-1}$; (c) $\frac{1}{x^3+1}$.

3. Define

$$f(x) = e^x + 2e^{2x} \quad \text{for all } x.$$

- (a) What is the range of f(x)?
- (b) Find all real solutions θ of the equation $f(\log \theta) = 1$.
- (c) Find the inverse function $f^{-1}(x)$.
- **4.** In lectures, the functions $\sinh x$ and $\cosh x$ were defined as the odd and even parts of the function $\exp(x)$. We then also defined

$$\tanh x \equiv \frac{\sinh x}{\cosh x}$$
 and $\operatorname{sech} x \equiv \frac{1}{\cosh x}$.

(a) Using the definitions, derive the identity

$$\cosh^2 x - \sinh^2 x = 1.$$

(b) Using the result of part (a), or otherwise, derive an identity relating $\tanh x$ and sech x.

THE END