
1. (a) Using any method, find the derivative of the inverse hyperbolic tangent,

d

dx

[

tanh−1(x)
]

.

(b) A maths lecturer falls from an aeroplane under gravity with air resistance. His/her

speed V varies with time according to the equations

dV

dt
+ kV 2 = g, V (0) = 0,

where g and k are positive constants. Find V (t). [You may find part (a) useful.]

(c) If V = dx/dt and x(0) = 0, show that

x(t) =
1

k
log

[

cosh
(

t
√

kg
)]

(d) Find the limit of x(t) as k → 0.

(e) As t → ∞ in part (c) with k fixed, find the constants A and B such that

x ≃ At+ B.

(f) Find all complex numbers z such that cosh z = 0.

(g) If we write x(t) as a power series
∑

ant
n, what do you expect the Radius of

Convergence of this series, R, to be?
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2. (a) Suppose f and g are continuous functions on an interval [a, b], and λ is an

arbitrary parameter. By writing the (positive) integral

∫ b

a

[f(x) + λg(x)]2 dx as a quadratic in λ,

prove that
[
∫ b

a

fg dx

]2

6

(
∫ b

a

f 2 dx

)(
∫ b

a

g2 dx

)

.

Deduce that
∫ 1

0

ex

x+ 1
6

1
2

√
e2 − 1.

(b) If y = sin−1 x + (sin−1 x)2, show that (1 − x2)y′′ − xy′ is a constant. Hence find

a relation between the n’th, (n + 1)’th and (n + 2)’th derivative, and give an

expression for y(n)(0) if n is odd.

(c) Write the function y(x) from part (b) as the sum of an even part, ye(x) and an odd

part yo(x). Sketch ye and yo between x = ±1 on the same diagram, identifying

any turning points, intersections and behaviour at singularities.
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Solutions

1. (a) If y = tanh−1 x then x = tanh y and dx/dy = sech2y = 1− tanh2 y = 1−x2. Thus

d

dx

[

tanh−1(x)
]

=
1

1− x2
. [2 marks]

(b) Separating, and substituting V = (g/k)1/2u we have

∫

dV

g − kV 2
=

∫

dt =⇒ t =
(g

k

)1/2
∫

du

g(1− u2)
=

1√
gk

tanh−1 u+ C

Now when t = 0, V = 0 = u so that C = 0 and we have [1 mark]

V =
(g

k

)1/2

tanh
(

√

kgt
)

. [3 marks]

[Anyone who uses a log rather than tanh−1 may still earn full marks, provided

they simplify a reasonable amount.]

(c) Integrating again, we have

x =
(g

k

)1/2 1

(gk)1/2
log[cosh

(

√

kgt
)

+ A

and since x = 0 when t = 0, we have A = 0. [1 mark]

Thus

x(t) =
1

k
log

[

cosh
(

t
√

kg
)]

. [3 marks]

(d) As z → 0, we have cosh z = 1 + 1
2
z2 + O(z4) and so log(cosh z) = 1

2
z2 + O(z4).

Therefore

x =
1

k
[1
2
kgt2 +O(k2g2t4)] = 1

2
gt2 [3 marks].

[As expected if we did A-level mechanics. . . ]

(e) As z → ∞, cosh z ≃ 1
2
ez and so log(cosh z) ≃ z − log 2. Thus

x ≃ 1

k
(t
√

kg − log 2) = t

√

g

k
− 1

k
log 2. [3 marks]

(f) If cosh z = 0 then ez+e−z = 0 or e2z = −1 = eiπ. Taking logs, we have for integer

n,

2z = iπ + 2nπi =⇒ z = iπ(n+ 1
2
) [2 marks].

(g) We expect the power series to converge in as large a circle as it can until it hits

a singularity in the complex plane. Now log(cosh z) is infinite when cosh z = 0.

The closest singularity to the origin is at z = ±1
2
πi. Thus we expect the series

for x(t) to converge for

|
√

gkt| < 1
2
π =⇒ |t| < π

2
√
gk

= R. [2 marks]



2. (a) The integral in question is positive or zero for every λ. Further, it can be written

as a quadratic P (λ) ≡ Aλ2 + Bλ+ C where

A =

∫

g2 dx, B = 2

∫

fg dx, C =

∫

f 2 dx.

Now since P (λ) > 0 for all λ, we must have A > 0 and B2 6 4AC. The first is

clearly true as A is the integral of a square, while the second requires
[
∫ b

a

fg dx

]2

6

(
∫ b

a

f 2 dx

)(
∫ b

a

g2 dx

)

. [4 marks]

Now let f(x) = ex and g(x) = 1/(x + 1). Then A = 1
2
(e2 − 1) while

C = [− (x+ 1)−1]10 =
1
2
. Thus

(
∫ 1

0

ex

x+ 1
dx

)2

6
1
4
(e2 − 1), [2 marks]

and the result follows.

(b) We have

y′ = (1 + 2 sin−1 x)
1√

1− x2
=⇒

√
1− x2y′ = 1 + 2 sin−1 x.

Differentiating again,

√
1− x2y′′ − xy′√

1− x2
=

2√
1− x2

=⇒ (1− x2)y′′ − xy′ = 2. [3 marks]

Differentiating n times by Leibniz, we have

(1− x2)y(n+2) − 2xny(n+1) − 2n(n− 1)/2y(n) − xy(n+1) − ny(n) = 0

or

(1− x2)y(n+2) − (2n+ 1)xy(n+1) − n2y(n) = 0. [3 marks]

Putting x = 0, we have

y(n+2)(0) = n2y(n)(0).

Now y′(0) = 1. Thus if n is odd,

y(n)(0) = (n− 2)2(n− 4)2 . . . 32y′(0) = (n− 2)2(n− 4)2 . . . 32. [2 marks]

[This can also be written in terms of factorials. If n is even (not asked) a similar

result holds - no extra credit.]]

(c) Since sin−1 x is odd, we see by inspection that ye = (sin−1 x)2 and yo = sin−1 x.

y = yo(x) is the reflection of the curve y = sin x in the line y = x. It passes

through the origin and (1, 1
2
π). It is an increasing function. Near the origin,

yo ≃ x.

Similarly, ye is increasing from (0, 0) to (1, 1
4
π2). Near the origin ye ≃ x2. It

follows that the two curves intersect at (sin 1, 1). At x = 1, both have infinite

gradient.

The behaviour for x < 0 follows from the parity. [6 marks]


