
Solutions to 2009 January Test

1.(a) f = x exp(−x2) so f ′(x) = (1− 2x2) exp(−x2) and f ′′(x) = (−6x+4x3) exp(−x2).
Stationary points at x = ±1/

√
2, f ′′(1/

√
2) < 0 giving a maximum at (1/

√
2, e−1/2/

√
2).

As f(x) is odd there is a minimum at (−1/
√
2, −e−1/2/

√
2). Inflection points where f ′′ = 0

i.e. when x = 0, ±
√
3/2. So inflection at (0, 0), (±

√
3/2, ±

√
3/2e−3/2). [2 marks]

(b) See below [2 marks]

(c) As graph has a maximum, there are two positive values of x giving the same y value
for 0 < y < e−1/2/

√
2. As y → 0 these two values tend to x = 0 and x → ∞. Thus the

difference between the two values tends to zero as y → e−1/2 and tends to infinity as y → 0.
Hence by continuity the difference will be 2π somewhere, in fact for x ' 2π exp(−4π2) (not
required). [2 marks]

(d) f(a + ib) = (a + ib) exp(−a2 + b2 − 2abi) = exp(b2 − a2)(a + ib)(cos 2ab − i sin 2ab)
Hence the real part is

<e[f(a+ ib)] = exp[b2 − a2](a cos 2ab+ b sin 2ab) [3 marks]

(e) We have that for some ξ such that −1 < ξ < x,

f(x) = f(−1) + f ′(−1)(x+ 1) + 12f
′′(ξ)(x+ 1)2.

From part (a) f(−1) = −1/e, f ′(−1) = −1/e and f ′′(ξ) = (4ξ3 − 6ξ) exp(−ξ2). Hence

f(x) =
−1
e
−
1

e
(x+ 1) + (2ξ3 − 3ξ) exp(−ξ2)(x+ 1)2. [3 marks]

(f) The integrand is finite everywhere and tends to zero exponentially as x→∞, so integral
exists. Substituting u = x2, du = 2xdx

∫ ∞

0

x3e−x
2

dx =

∫ ∞

0

1
2ue

−u du =
[
− 12ue

−u
]∞
0
+ 12

∫ ∞

0

e−u du = 1
2 . [2 marks]

(g) ODE is linear. The integrating factor is exp
(
−
∫
2x dx

)
= exp(−x2). So

(
ye−x

2
)′
= xe−x

2

=⇒ ye−x
2

=

∫
xe−x

2

= − 12e
−x2+C =⇒ y = − 12+Ce

x2 [3 marks]

(h) Using Leibniz’ formula, and noting that (exp(−x2))′ = −2f(x) we have

(
xe−x

2
)(n)

= x
(
e−x

2
)(n)
+ n

(
e−x

2
)(n−1)

= −2xf (n−1) − 2nf (n−2). [2 marks]

Thus f (n)(0) = −2nf (n−2)(0). Using the ratio test, we find the Maclaurin series converges
for all x

lim
n→∞

∣
∣
∣
∣

f (n)(0)xn/n!

f (n−2)(0)xn−2/(n− 2)!

∣
∣
∣
∣ = limn→∞

∣
∣
∣
∣
x2(−2n)
n(n− 1)

∣
∣
∣
∣ = 0 < 1. [1 marks]



2.(i) Using the Mean Value Theorem for the function f(x) = − log(1− x) on (0, x)

− log(1− x) + log 1
x− 0

= f ′(ξ) =
1

1− ξ
for some ξ in 0 < ξ < x < 1.

Now 1/(1− ξ) is an increasing function and so 1 < (1− ξ)−1 < (1− x)−1. Thus

1 < −
log(1− x)
x

<
1

1− x
=⇒ x < − log(1− x) <

x

1− x
[6 marks]

as required. Now if we assume the series expansions

log(1− x) = −x− 12x
2 − 13x

3 − . . . and
x

1− x
= x(1 + x+ x2 + x3 + . . .)

we see that
x < x+ 12x

2 + 13x
3 + . . . < x+ x2 + x3 + . . .

which is obviously true as all terms are positive. [3 marks]

(ii) Taking the logarithm, we have

lim
n→∞

log[η(n)] = lim
n→∞

n log

(

1−
1

n

)

= lim
n→∞

(
n(−1/n+O(1/n2))

)
= −1

Thus η∞ = e
−1. [4 marks]

Now writing x = 1
60 in part (i) we have

1

60
< − log(1−

1

60
) <

1
60

1− 1
60

=⇒ 1 < − log[η(60)] <
60

59

Thus

e−1 > η(60) > e−60/59 =⇒ 1 >
η(60)

η∞
> e−1/59 [5 marks]

Also from part (i) we have

e−x > 1− x =⇒ e−1/59 >
58

59
[2 marks]

and the result follows.

3. We have
dr

dt
=
dr

dθ

dθ

dt
=
1

r2
dr

dθ
= −

d

dθ

(
1

r

)

. [2 marks]

Differentiating again,

−
d2

dθ2

(
1

r

)

=
d2r

dt2
dt

dθ
= r2

d2r

dt2
= r2

(

−
1

r2
+
r

r4

)



or writing u = 1/r,
d2u

dθ2
+ u = 1. [5 marks]

Substituting u = 1 + e sin(θ − α) we get −e sin(θ − α) + 1 + e sin(θ − α) = 1 so this is a
solution. As it has two arbitrary constants, it is the general solution of a 2nd order ODE.
[3 marks]
As θ varies, the sine oscillates between ±1. Thus r will oscillate between 1/(1 − e)

and 1/(1+ e) provided |e| < 1, and the curve will close on itself as r is 2π-periodic in θ. If
|e| > 1, then r heads off to infinity when sin(θ−α) = −1/e. When r < 0 there is no curve.
We see there are two types of possible solutions, bounded and unbounded. [3 marks]

When e =
√
2 and α = 0, we have r → ∞ when sin θ = 1/

√
2, or when θ = 1

4π and
θ = 3

4π. r is positive for
1
4π < θ <

3
4π.

Translating to Cartesians, we have

1 = r + er sin θ =
√
x2 + y2 + y

√
2.

Thus
1 + 2y2 − 2

√
2y = x2 + y2 =⇒ (y −

√
2)2 − x2 = 1

which is a rectangular hyperbola. Only one branch appears in the polar curve – squaring
has introduced a spurious solution. See below.
When e = 1/

√
2, we have

1− y
√
2 + 12y

2 = x2 + y2 =⇒ x2 + 12 (y +
√
2)2 = 1

which is an ellipse. From the polar form of the equation it is easy to see that the maximum
values of r occurs when θ = − 12π and the minimum at θ =

1
2π.


