Solutions to 2009 January Test

1.(a) f=wzexp(—2?)so f'(z) = (1 —22?) exp(—z?) and f"(z) = (—6x + 423) exp(—z?).
Stationary points at = +1/v/2, f(1/+/2) < 0 giving a maximum at (1/v/2, e"*/2/1/2).
As f(z) is odd there is a minimum at (—1/v/2, —e~1/2/4/2). Inflection points where f” = 0
i.e. when z = 0, £4/3/2. So inflection at (0, 0), (£+/3/2, £1/3/2e73/?). [2 marks]

(b) See below [2 marks]

(c) As graph has a maximum, there are two positive values of = giving the same y value
for 0 <y < e /2/4/2. As y — 0 these two values tend to = 0 and # — oo. Thus the
difference between the two values tends to zero as y — e~ /2 and tends to infinity as y — 0.
Hence by continuity the difference will be 2 somewhere, in fact for z ~ 27 exp(—472) (not
required). [2 marks]
(d) f(a+ib) = (a + ib) exp(—a? + b — 2abi) = exp(b?> — a?)(a + ib)(cos 2ab — isin 2ab)
Hence the real part is

Re[f(a + ib)] = exp[b? — a?](a cos 2ab + bsin 2ab) [3 marks|

(e) We have that for some £ such that —1 < § < z,
f@) = (=D + (=)@ +1) + 3/ (E)(z +1)*

From part (a) f(—1) = —1/e, f/(=1) = —1/e and f"(§) = (4€3 — 6£) exp(—&?). Hence

Fla)= == Lot 1) + (268 3 exp(~€)(w + 1) 3 marks]

e

(f) The integrand is finite everywhere and tends to zero exponentially as x — 0o, so integral
exists. Substituting u = z2, du = 2zdx

/000 2de™ dy = /000 Tue " du = [—%ue‘“]go +1 /000 e “du=1. [2 marks]
(g) ODE is linear. The integrating factor is exp (— [ 2x dx) = exp(—2?). So
(ye‘mQ), = ze® = ye_g‘72 = /xe_mz = —%e_m2+C’ == y= —%—FCGJCQ [3 marks]
(h) Using Leibniz’ formula, and noting that (exp(—z?))’ = —2f(x) we have

(xe_mz)(n) =z (e_wz)(n) +n (e_m2)(n_l) = 2z f(mD _opf(n=2), [2 marks|

Thus f(™(0) = —2nf(™=2)(0). Using the ratio test, we find the Maclaurin series converges
for all x

2(—2n)

L @
n(n —1)

n—>oo‘f(” 0)z"=2/(n — 2)! = Jim

=0<1. [1 marks]



2.(i) Using the Mean Value Theorem for the function f(z) = —log(l — z) on (0, x)

—log(1 — log1 1
og(w_xz)Jr og :f/(g):l—_§ forsome {in0<é<x <.

Now 1/(1 — £) is an increasing function and so 1 < (1 —¢)~! < (1 — z)~!. Thus

log(1 — 1
_ log( x)< - r<—log(l—x)< °

1<
T 1—=z 1—=x

[6 marks]

as required. Now if we assume the series expansions

2 13 and

log(l—z)=—2—ix =z(l+z+2?+2°+..)

2 3 1—2

we see that
x<x+%m2+%x3+...<x+m2+x3+...

which is obviously true as all terms are positive. [3 marks]|

(ii) Taking the logarithm, we have

n—oo

nh_)ngo log[n(n)] = nli_)n';onlog (1 — %) = lim (n(—1/n+0(1/n%)) = -1

Thus 7 = e~ 1. [4 marks]
Now writing # = 5 in part (i) we have
1< log(1 1)< & = 1< -1 [(60)]<60
60 = BV T60) S1-ZL o8t 59
Thus 60
e~ > n(60) > ¢80/ = 1> 1(60) > e~ 1/%9 [5 marks]
Mo

Also from part (i) we have
e >1—-x = e~/ > o8 [2 marks]

and the result follows.

3. We have

dr_drdd _ldr_ _d (1
dt  dodt r2df  db '

[2 marks|

Differentiating again,

dez \r ) dt2do  dt2 r2 = pd



or writing u = 1/r,

d*u B

¥77) +u=1. [5 marks|
Substituting u = 1 + esin(f — a) we get —esin(f — a) + 1+ esin(f — a) = 1 so this is a
solution. As it has two arbitrary constants, it is the general solution of a 2nd order ODE.
[3 marks]

As 0 varies, the sine oscillates between +1. Thus r will oscillate between 1/(1 — e)
and 1/(1+e) provided |e| < 1, and the curve will close on itself as r is 27-periodic in 6. If
le|] > 1, then r heads off to infinity when sin(# —a) = —1/e. When r < 0 there is no curve.
We see there are two types of possible solutions, bounded and unbounded. [3 marks]

When e = v/2 and a = 0, we have r — oo when sinf = 1/\/5, or when 6 = %w and
0= %7?. r is positive for %77 <f< %7‘(’.

Translating to Cartesians, we have

l=r+ersingd =2+ y2+yv2.

Thus
142y — 2v2y = 2% + o2 = (y—V2)?2-z?=1

which is a rectangular hyperbola. Only one branch appears in the polar curve — squaring
has introduced a spurious solution. See below.
When e = 1/\/5, we have

1—y\/§+%y2:w2—|—y2 = w2—|—%(y—|—\/§)2:1

which is an ellipse. From the polar form of the equation it is easy to see that the maximum

values of r occurs when 0 = —%ﬂ' and the minimum at 6§ = %7‘(‘.



