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So either v = 0 everywhere, or v satisfies a linear equation.
The integrating factor is exp(— [z~ 'dz) = z=!. Thus

w2

v=uzlogx + cz (or v =0) [3](+[1])

Integrating,

(c) If v =1 when x =1 we can’t have the v = 0 solution and must have ¢ = 1. So

dt

dx—:c(lo z+1) == t—/d—m
N 8 ) z(logz +1)

Substituting u = log z (or spotting that this is a logarithmic derivative) we find
t =log(logz + 1) +d = log(logz + 1)

imposing x = 0 at £ = 0. Thus, as required,

r = exp(e’ — 1) = f(t). 3]

(d) Ast takes all values, e! takes all positive values. Thus z takes all values with z > e™!
The inverse function is t = log(1+logz) = f~!(z). This is defined provided both logs have
positive arguments, which requires logz > —1 or = > e~ 1. [2]

(e) The curve x = f(t) has stationary points where f’(t) = 0, and inflection points where
() = 0. Now f'(t) = e’ exp(e® — 1). This is never zero as real exponentials never are.
Similarly f”(t) = (e!+e?!) exp(ef—1) > 0 always. The curve has no stationary points or in-
flection points. [2]

(f) We know z(0) = 1, 2/(0) = 1 and from the original equation z”(0)
[2/(0)]?/x(0) = 2 So the Maclaurin series is

z(t)=1+t+ 32 +0E) =1+t +t>+ O().
(g) Ast— 0, we know x — 1. Thus (or by other methods)

x—1

1




(h) When t = 2i, we have z = exp(e* — 1). Now
exp(e?* — 1) = exp((cos2 — 1 4 isin2)) = exp(cos 2 — 1)(cos(sin 2) + i sin(sin 2))

So the real part is
Re(z) = €527 (cos(sin 2)). 3]

Total : [20]

2. (a) The Mean Value Theorem states that if f(z) is continuous in an interval [a, b]
and differentiable in (a, b) then there exists a £ in a < £ < b such that

2]

b—a

Soif f(a) =0 = g(a) then f(x) = (x—a)f'(§) and g(z) = (x—a)g'(n) for some & and n
with a < £ < z and a < n < z. (Note £ and 7 are different, in general.) [2]
Now as x — a it is clear that £ — a and also n — a. Thus

1 (o] = 2 o = &

since the derivatives are continuous and the denominator non-zero.

(b)(i) Both numerator and denominator are zero. Assuming both limits exist,
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Once more this is of form “0/0”. Using de 'Hopital’s rule again, assuming the limits exist

= —=T. 2]

lim 5 5

—rmsinmx 1
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Since this latter limit exists, so does the intermediate one, and hence so does the original
limit. We deduce
lim log(sin 7x) _ _7r_2. 2]
z—1/2 | (22 —1)2 8
f/

(ii) Once more f(0) =0 = g(0). Now ¢'(z) = sinx and
So f'(0) =0 = ¢’(0). However

t [ 53] = i (1) o (3] [

and this does not tend to a limit, because of the cos(1/z) term. We cannot use de I’'Hopital’s
rule here. [4]

() = 322 sin(1/z) — z cos(1/x).




However, going back to the original limit, since |sin(1/z)| < 1, it is clear that f(x) =
O(a®) as x — 0. As g(z) =1 — cos(z) = 32% + O(a*), it follows that

iy | 253] o,
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3.(a) If f(z) =log(x + a), then f'(z) = (z +a)~!, f'(z) = —(z +a)~? and

£ () = (—12”“(” —1)!

for n > 1.
T+ a)”

oo

5 ) e £ )

The Radius of Convergence follows from the ratio test: we need

‘f lim {M

n

]<1 = |z| < a,

al n—oo

so radius of convergence is a.
(b) If the series holds when a = i, then

o0 . n
log(x + i) = logi — Z (i) .
n=1 n
Now log(re®®) = logr + i0(+2kmi). So logi = +mi. Writing z + i = r(cosd + isinf) we
have x = rcosf and 1 = rsinf so that r = \/1+m2 and sinf = 1/r (with cosf > 0).
Taking the imaginary part we have
0+2knr=1ir—[z—t+Li5+. ] =1ir+ Z

m=1

m2m1

2m—1

As we want 0 < 0 < %7?, choose k = 0. Combining things, we have
1
-1 1 1,3 1,5
sin | = 3T T+ 3T T + ...
<v 1+ x2) 2 b
(c) We know that - (sm Yu) = (1 —u?)~12 So
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assuming x > 0. Now
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