\square
CID:
Personal tutor:
Question 4. Calculate the three limits as $x \rightarrow \infty$ of
(a) $\frac{\log (1+x)}{x}$
(b) $x\left(\sqrt{2+x^{2}}-\sqrt{1+x^{2}}\right)$
(c) $(\tanh x)^{\cosh (2 x)}$.

Answer.

(a) As $x \rightarrow \infty$, exponentials dominate powers which dominate logarithms. Now $\log (1+x) / x=\log x / x+O\left(1 / x^{2}\right)$, and $\lim \log x / x=0$. [Or write $(1+x)=e^{t}$ and quote that $\lim _{t \rightarrow \infty} t /\left(e^{t}-1\right)=0$.] (Stating "powers beat logs" is enough.) (2 marks) (b) We first manipulate the expressions so that we can expand in $1 / x$, not x :

$$
\begin{aligned}
& x\left(\sqrt{2+x^{2}}-\sqrt{1+x^{2}}\right)=x^{2}\left[\left(\frac{2}{x^{2}}+1\right)^{1 / 2}-\left(\frac{1}{x^{2}}+1\right)^{1 / 2}\right] \\
&=x^{2}\left[1+\frac{2}{2 x^{2}}-1-\frac{1}{2 x^{2}}+O\left(x^{-4}\right)\right]=\frac{1}{2}+O\left(x^{-2}\right) \quad \text { so limit is } \frac{1}{2} . \quad(3 \text { marks })
\end{aligned}
$$

(c) As $x \rightarrow \infty, \tanh x \rightarrow 1$, and $\cosh 2 x \rightarrow \infty$. More precisely, $\cosh 2 x \simeq \frac{1}{2} e^{2 x}$ and

$$
\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\left(1-e^{-2 x}\right)\left(1+e^{-2 x}\right)^{-1}=1-2 e^{-2 x}+O\left(e^{-4 x}\right)
$$

Taking logarithms, we have

$$
\log \left[\tanh x^{\cosh 2 x}\right]=\cosh 2 x \log (\tanh x) \simeq \frac{1}{2} e^{2 x}\left(-2 e^{-2 x}\right)=-1
$$

Thus exponentiating, we have

$$
\lim _{x \rightarrow \infty}\left[\tanh x^{\cosh 2 x}\right]=e^{-1}
$$

To markers: As ever, you may award partial credit for sensible partial answers. You do not have to give full credit for the correct answers if badly argued or explained. However, rigorous justification is not required - we want them to develop a feel for how functions behave.

