M1A1: Problem Sheet 1

Kinematics and Vectors

1. A particle has a time-dependent position vector

$$\mathbf{r} = (b\cos\Omega t, \, b\sin\Omega t, \, 0) \,\,,$$

where b and Ω are constants. What must be the physical dimensions of these constants? Find the velocity, \mathbf{v} , and acceleration, \mathbf{a} of the particle, and evaluate $\mathbf{r} \cdot \mathbf{r}$, $\mathbf{r} \cdot \mathbf{v}$ and $\mathbf{r} \cdot \mathbf{a}$.

2. A wide river occupies 0 < y < d in the (x, y)-plane. It flows faster in the middle, so that its velocity is $(V_0y(d-y)/d^2, 0, 0)$. A woman starts swimming from the origin at time t = 0 with a constant velocity $(0, u_0, 0)$ relative to the water.

Calculate how far she has been swept downstream by the time she reaches the other bank.

3. Two particles with position vectors \mathbf{r}_1 and \mathbf{r}_2 have the same acceleration,

$$\ddot{\mathbf{r}}_i = \mathbf{g}$$
 for $i = 1, 2$,

where **g** is a constant vector. At t = 0, the first particle is at the origin with velocity \mathbf{u}_1 , while the second is at rest at position $\mathbf{r} = \mathbf{r}_0$. Find \mathbf{r}_1 and \mathbf{r}_2 for all time.

As time varies, show that the minimum distance between the particles is given by

$$|\mathbf{r}_1 - \mathbf{r}_2| = |\mathbf{r}_0| \sin \theta ,$$

where θ is the angle between \mathbf{r}_0 and \mathbf{u}_0 .

4. A wheel occupies the region $R^2 > x^2 + z^2$ in the (x, z)-plane. It travels in the x-direction with speed v, and simultaneously rotates about its centre with angular velocity $(0, \omega, 0)$. Find the velocity at a general point (x, 0, z) in the wheel.

The wheel rolls along the ground, z = -R. For no slipping to occur it is necessary for the velocity to be zero at the point of contact. Deduce a relation between R, v and ω .

Why can one sometimes see the spokes on the lower half of a moving bicycle wheel but not those on the top half?

5. Two particles of masses m_1 and m_2 with position vectors \mathbf{r}_1 and \mathbf{r}_2 exert a force on each other. No other forces act on the particles. Assuming this interaction force is parallel to the displacement vector $(\mathbf{r}_1 - \mathbf{r}_2)$, use Newton's laws to prove that

$$\mathbf{H} = \text{constant}$$
 where $\mathbf{H} = m_1 \mathbf{r}_1 \wedge \dot{\mathbf{r}}_1 + m_2 \mathbf{r}_2 \wedge \dot{\mathbf{r}}_2$.

[Hint: Consider $d\mathbf{H}/dt$]