M1A1: Solutions to Problem Sheet 3, 1-D Motion

Taking account of the sign of the velocity v(z), the equation of motion is
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Initially x = 0 and v = v > 0. Integrating until x = when v =0,
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Subsequently, v < 0 as the particle comes down. Its velocity v(z) from then on is given by
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Eliminating h (the maximum height reached) from these equations, we have
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Thus when z = 0, we have v? = gu?/(g + pu?) as required. The terminal velocity is
attained as z — —o0, so that v2 — g/u, as expected from the ODE.

For an equilibrium, we require V'(z) = 0, or —2a*/2® 4+ a/2? = 0 so that 2 = 2a. Now
V" (z) = Vo/2?(6a®/2* — 2a/z), so that V"(2a) = V5/(8a%) > 0, so the equilibirum is
stable. From lectures, the frequency w of small oscillations about = = 2a is given by
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At x = 2a, the potential takes the value V(2a) = —iVo. Asz — o0, V — 0. To escape
to infinity the particle thereore needs a kinetic energy %mv2 = ng so that the escape

velocity is v = 4/ Vo /(2m).

The given function V() is continuous at = 0, but V'(z) is discontinuous there. Clearly
V"(0) is not finite. For > 0, the equation of motion is & = —f, or
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using the given boundary conditions. Thus, z =0 at t = 0 and t = 2u/f. When ¢t = 2u/f,
the particle has returned to * = 0 with speed © = —u. For z < 0, the equation of motion
2z, which we recognise as SHM. The solution is
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The particle returns to = 0 after a time 7/w, when its speed is u, again. The total time
for an oscillation is therefore T' = 7 /w + 2u/ f.

4. The harness is a horizontal distance hsin¢ from the vertical cliff. Using Pythagoras’

H=1/L? —h?sin* ¢

below the top of the cliff. A suitable potential energy function is therefore V.= —mgH,
as required. Equilibria occur when dV/d¢ = 0 which requires sin¢cos¢ = 0. Possible
equilibria are ¢ = 0 (feet below harness, adjacent to cliff), ¢ = = (feet above harness,
adjacent to cliff) and ¢ = %77 (body perpendicular to cliff). For ¢ = 0,7, we find that
V"(¢) > 0, so that these equilibria are stable, whereas for ¢ = %ﬂ', V"(¢) < 0 and the
abseiler’s intended position is unstable. Some friction with the cliff is necessary!
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5. Ify = f(x) then y = f/(2) and §j = f'(x)7 + f"(z)2?.

Resolving forces vertically at the top of the hill at * = a, we have N — mg = my. As
f'(a) = 0 and f"”(a) = —¢ < 0 (maximum height), this means N = m(g — c2?) at this
point.

Energy conservation requires that mgy + %m(:ﬂz + ¢%) = constant. At * = a, we know
y = 0 (provided he remains on the curve y = f(z)), so that at that point

mgh + %m:i:2 = mgH, or N =mg[l —2¢(H — h)]

as required. Clearly, if ¢ is large enough, this expression will go negative, given that H > h.
As normal reactions between surfaces only act in the direction to separate the two surfaces,
this is inconsistent, and one of our assumptions is incorrect. A little thought reveals that
our assumption that the skiier remains on the ground is incorrect, and in fact he will take
off into the air (this is how ski-jumps work). Let’s hope he lands safely.



