M1A1: Solutions to Problem Sheet 3, 1-D Motion

1. Taking account of the sign of the velocity v(x), the equation of motion is

$$\frac{dv}{dt} \equiv \frac{dv}{dx}\frac{dx}{dt} \equiv v\frac{dv}{dx} = \begin{cases} -g - \mu v^2 & \text{for } v > 0\\ -g + \mu v^2 & \text{for } v < 0 \end{cases}.$$

Initially x = 0 and v = u > 0. Integrating until x = h when v = 0,

$$\int_{u}^{0} \frac{v dv}{g + \mu v^{2}} = -\int_{0}^{h} dx \quad \text{or} \quad \left[\frac{1}{2\mu} \ln(g + \mu v^{2}) \right]_{u}^{0} = -h .$$

Subsequently, v < 0 as the particle comes down. Its velocity v(x) from then on is given by

$$\int_0^v \frac{-v dv}{g - \mu v^2} = \int_h^x dx \qquad \text{or} \quad \left[\frac{1}{2\mu} \ln(g - \mu v^2) \right]_0^v = (x - h) .$$

Eliminating h (the maximum height reached) from these equations, we have

$$\left(1 - \frac{\mu v^2}{g}\right) \left(1 + \frac{\mu u^2}{g}\right) = e^{2\mu x} .$$

Thus when x=0, we have $v^2=gu^2/(g+\mu u^2)$ as required. The terminal velocity is attained as $x\to -\infty$, so that $v^2\to g/\mu$, as expected from the ODE.

2. For an equilibrium, we require V'(x) = 0, or $-2a^2/x^3 + a/x^2 = 0$ so that x = 2a. Now $V''(x) = V_0/x^2(6a^2/x^2 - 2a/x)$, so that $V''(2a) = V_0/(8a^2) > 0$, so the equilibrium is stable. From lectures, the frequency ω of small oscillations about x = 2a is given by

$$\omega^2 = \frac{V''(2a)}{m} = \frac{V_0}{(8ma^2)}.$$

At x=2a, the potential takes the value $V(2a)=-\frac{1}{4}V_0$. As $x\to\infty$, $V\to0$. To escape to infinity the particle thereore needs a kinetic energy $\frac{1}{2}mv^2=\frac{1}{4}V_0$ so that the escape velocity is $v=\sqrt{V_0/(2m)}$.

3. The given function V(x) is continuous at x = 0, but V'(x) is discontinuous there. Clearly V''(0) is not finite. For x > 0, the equation of motion is $\ddot{x} = -f$, or

$$x = -\frac{1}{2}ft^2 + ut$$
 for $0 < t < 2u/f$

using the given boundary conditions. Thus, x = 0 at t = 0 and t = 2u/f. When t = 2u/f, the particle has returned to x = 0 with speed $\dot{x} = -u$. For x < 0, the equation of motion is $\ddot{x} = -\omega^2 x$, which we recognise as SHM. The solution is

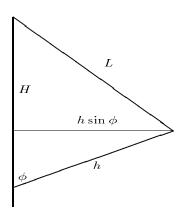
$$x = -\frac{u}{\omega} \sin\left[\omega\left(t - \frac{2u}{f}\right)\right]$$
 for $\frac{2u}{f} < t < \frac{2u}{f} + \frac{\pi}{\omega}$.

The particle returns to x=0 after a time π/ω , when its speed is u, again. The total time for an oscillation is therefore $T=\pi/\omega+2u/f$.

4. The harness is a horizontal distance $h \sin \phi$ from the vertical cliff. Using Pythagoras' theorem, this is a vertical height

$$H = \sqrt{L^2 - h^2 \sin^2 \phi}$$

below the top of the cliff. A suitable potential energy function is therefore V = -mgH, as required. Equilibria occur when $dV/d\phi = 0$ which requires $\sin\phi\cos\phi = 0$. Possible equilibria are $\phi = 0$ (feet below harness, adjacent to cliff), $\phi = \pi$ (feet above harness, adjacent to cliff) and $\phi = \frac{1}{2}\pi$ (body perpendicular to cliff). For $\phi = 0, \pi$, we find that $V''(\phi) > 0$, so that these equilibria are stable, whereas for $\phi = \frac{1}{2}\pi$, $V''(\phi) < 0$ and the abseiler's intended position is unstable. Some friction with the cliff is necessary!



5. If y = f(x) then $\dot{y} = f'(x)\dot{x}$ and $\ddot{y} = f'(x)\ddot{x} + f''(x)\dot{x}^2$.

Resolving forces vertically at the top of the hill at x = a, we have $N - mg = m\ddot{y}$. As f'(a) = 0 and f''(a) = -c < 0 (maximum height), this means $N = m(g - c\dot{x}^2)$ at this point.

Energy conservation requires that $mgy + \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) = \text{constant}$. At x = a, we know $\dot{y} = 0$ (provided he remains on the curve y = f(x)), so that at that point

$$mgh + \frac{1}{2}m\dot{x}^2 = mgH$$
, or $N = mg[1 - 2c(H - h)]$

as required. Clearly, if c is large enough, this expression will go negative, given that H > h. As normal reactions between surfaces only act in the direction to separate the two surfaces, this is **inconsistent**, and one of our assumptions is incorrect. A little thought reveals that our assumption that the skiier remains on the ground is incorrect, and in fact he will take off into the air (this is how ski-jumps work). Let's hope he lands safely.