M1A1l: Mechanics Potentials in Three Dimensions March 2003

We have seen how useful potentials are for understanding motion where energy is conserved,
that is, when the forces acting are conservative. We have dealt with 1-D potentials
U(z), and spherically symmetric potentials, U(r). This last, is really a three-dimensional
potential, which happens to be spherically symmetric; more generally, we could think
about a potential U(z, y, z).

Suppose at each point in 3-D space, we can assign a potential energy Ul(z, y, z).
Energy conservation for a particle of mass m with velocity v = (2, y, ) then implies

%m(:i;2 +9* +2%) + U(z, y, 2) = E, a constant.

We now differentiate this equation with respect to time. We recall the chain rule for partial
derivatives from M1M2, to give
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or in terms of vectors,
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Comparing with Newton’s second law F = mr, we see this strongly suggests the relation
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We have thus defined a very important symbol, V. pronounced “del” or “grad” It operates
on a scalar function of position, and gives a vector of partial derivatives.
Note: (1) The function U(z, y, z) is often called a scalar field. This just means it is
defined throughout a region of 3-D space. Correspondingly, F is called a vector field.
Next year’s course M2M1 is all about vector fields.

(2) Not every force field F can be written in the form (5.5). But then, not every force
field is conservative. In general, a force F is conservative if and only if it can be
written in the form
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(3) For a particle to be in equilibrium at (zg, yo, z0) it is necessary for F = 0 or

VU = 0 there. This is a stable equilibrium if and only if U has a minimum there.
Think of U as representing a reservoir of available energy. At a minimum no energy can
be extracted from the potential field to be converted into kinetic energy, and the particle
is trapped, just as in one-dimension.

(4) Potentials can be added: if two forces Fy = —VU; and F; = —VU, act, then the
net force Fy + Fy, = —V(U; + Us), so that the total potential U = Uy + Us.

This allows us to calculate the gravitational potential of any mass distribution, as follows:



Gravitational Potential for Arbitrary Mass Distributions:

The potential for a mass m at position r due to a mass mg at the origin is —Gmmg/r.
Thus the potential due to masses mq and ms at positions r; and rs is

- Gmmy  Gmmy (5.6)
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This can easily be generalised to N particles. More usefully, we can define the mass den-
sity p(z, y, z), which we also write as p(r). This is a scalar field, defined so that the mass
within any small volume 6D surrounding the point ro = (2o, Yo, 20) is p(zo, Yo, 20)0D.
The potential at point r due to this small volume is thus U = —Gmp(ro)dD/|r — ro.
Combining the potentials from these small volumes we obtain the total potential due to
all mass (in the universe!)
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Consider a mass distribution with a spherically symmetric density, p(r) [This is a special

case of p(r)]. In terms of spherical polar coordinates (rg, 6y, ¢g), with the axis pointing
along r, |r — ro|?> = r? + rZ — 2rrqg cos 6, so that the expression in (5.7) can be written
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The 6p-integration can be done giving
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Substituting the limits the square roots disappear. However we must be careful, as
(r—rg)? =r —rgifr > rg, but o —r if r < rg. Splitting the integral into two
parts, we find
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For example, consider the potential outside a uniform sphere of radius a, so that p(rg) = po
for ro < @ and p = 0 for rog > a. In the second integral, as ro > r > a, p is zero and we

find
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where Mj is the total mass of the sphere. The gravitational field outside the sphere is the
same as if all the mass were concentrated at the centre of the sphere.
If we differentiate (5.8), we can find the radial gravitational force,
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where M(r) is the total mass inside the sphere of radius r. Interestingly, all mass a distance
greater than r from the centre of spherical symmetry does not contribute to the force, while
all mass nearer the centre behaves as a point particle at the centre.

Don’t miss next year’s instalment, M2M1 Vector Fields!



