M1A1l: Mechanics Potentials in One Dimension February 2003

In one-dimensional motion, a particle of mass m with position vector r = (z(t), 0, 0) under
the influence of a force F = (F, 0, 0) where F' = F(z, t, v), obeys the equation

F=mi=v where v =2 .

If F only depends on ¢ then this equation may be integrated twice to find z(t) in terms of
the initial values (0) and 2(0). Likewise, if F' depends only on v, the equation is separable
in v and can in principle be integrated once to find v(¢) and again to find z(¢). A third
important case is if F' depends only on z, so that we write F' = F(z). Such forces are
conservative, in that we can define a potential energy or potential U(z) by

F:—Ccl{—g or U(:L‘):—/F(:L’)dl’E—/F(l’)vdt. (2.4)

In the resulting motion, the sum of the kinetic and potential energy, F, is constant. For

dE dv dUd d
o U—x—v< ~ ):0. (2.5)

E:%mv2—|—U($) - E:mva—l—%dt—
This is the principle of Conservation of Energy. For example, under constant gravity,
F = —mg if the z-axis is directed upwards, so that U = mgz.

Another example: When an elastic string or spring is extended from its natural length
a to a + x then it exerts a force F' = —kx. Thus when a particle is attached to a fixed
point by such a spring, the associated potential energy (or elastic energy) is

U(z) = /k?: dr = %k‘xz so that Lmov? + %k‘xz = FE (constant) (2.6)
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in the resulting motion.
We can in principle integrate the energy equation (2.5), so that

dz 2 2t dz

However, this integral is frequently difficult to evaluate, and we can learn a tremendous
result about the ensuing motion just by looking at U(z).

Firstly, we note that the initial conditions fix the constant energy E. Thenafter, as the
kinetic energy K = %va > 0, the speed |v] can only increase if the potential U decreases.
In particular, values of z for which U(z) > E can never be attained. The particle can
therefore be trapped by the potential in a suitable z-interval. For an equilibrium to occur
at some value of z, it is necessary both for the force to vanish, so that F = —U'(z) = 0,
and also for the particle speed v = 0 there. For example, consider the particle attached
to the spring as in (2.5). We sketch the curves y = U(z) = %ka and the horizontal line
y = E. Only points where E > U are accessible, so that the particle is trapped between
r = £4/2E/k. Its speed is only zero at these end points and as it cannot pass them it



must change sign when it reaches them. As U’ = 0 only at x = 0, there is no equilibrium
unless £ = 0. We conclude that the particle oscillates endlessly between = = 1/2E/k and
r = —4/2E/k. We learn this from general arguments rather than by solving the equation.
However, for this simple probem, we can verify our conclusions by finding x(¢) directly.
Newton’s second law states

mz 4+ kx =0 which we recognise from M1M?2 as having the solution
r = Acoswt 4+ Bsinwt = C cos(wt + ¢) where w? = k/m . (2.8)

Here A and B or equivalently C' and ¢ are arbitrary constants to be determined from the
initial conditions. Clearly, = oscillates between +C'. We can verify the equivalence of this
solutions and the energy equation by noting v = # = —Cwsin(wt + ¢) so that

%va + %k‘xZ = %mCawz Sil’l2(u)t +¢) + %kC’z cos2(wt +¢) = %kC’z )
This agrees with our earlier conclusions when we identify E = %k(ﬂ. Usually, 1t is harder
to solve the ODE, but the potential still tells us everything we need to know.

Example: A particle of mass m moves along the z-axis subject to the force
F(z) = —mw?z + %me:z:Z/a where w and a are constants. Discuss the possible motion.

Stability of Equilibria: Frequency of Small Oscillations:
The conditions for z = a to be an equilibrium are that
U'(a) =0 [No force] and U(a) =F [No velocity]

However, in practice it is vital to know whether the equilibrium is stable. The question
is: 1if the particle is disturbed slightly from its equilibrium position, does it remain close
to the equilibrium position, or does it wander a long way away as time increases? From
consideration of the potential curve, it is easy to see that if U(z) has a minimum at = = a,
then if E is increased slightly from the value U(a), the particle will be trapped between
two values of z close to a. Correspondingly, if U(a) is a local maximum, there will be no
nearby values of z at which U(z) = E so that the particle velocity can change sign. As a
result, such equilibria are unstable. We now analyse the motion.

Suppose the particle is disturbed from = = a to @ = a 4 en(t) where 0 < ¢ < 1. Then
assuming 1 remains small, we may expand U(xz) as a Taylor series:

U(z) = Ula+en) = U(a) +enl'(a) + 3" n’TU" (a) + O(e?)
=U(a) + 2°n*U" (a) + O(e?)
as U'(a) = 0 since = a is an equilibrium point. Thus the enrgy equation (2.4) becomes
%mgzﬁz i %62(]”(&)7]2
miij +U"(a)ny =0 = dj+ (U"(a)/m)n=0.
Comparison with the equation (2.5) shows that provided U" (a) > 0, the article will oscillate
with frequency w given by

~ constant, or differentiating,

w? = U'(a)/m . (2.9)

If however U"(a) < 0, so that z = a is a maximum of potential, then instead of oscillating
the ODE has exponentially growing solutions. In this case the equilibrium is unstable.



