In one-dimensional motion, a particle of mass m with position vector $\mathbf{r} = (x(t), 0, 0)$ under the influence of a force $\mathbf{F} = (F, 0, 0)$ where F = F(x, t, v), obeys the equation

$$F = m\ddot{x} \equiv \dot{v}$$
 where $v = \dot{x}$.

If F only depends on t then this equation may be integrated twice to find x(t) in terms of the initial values x(0) and $\dot{x}(0)$. Likewise, if F depends only on v, the equation is separable in v and can in principle be integrated once to find v(t) and again to find x(t). A third important case is if F depends only on x, so that we write F = F(x). Such forces are **conservative**, in that we can define a **potential energy** or **potential** U(x) by

$$F = -\frac{dU}{dx}$$
 or $U(x) = -\int F(x) dx \equiv -\int F(x)v dt$. (2.4)

In the resulting motion, the sum of the kinetic and potential energy, E, is constant. For

$$E = \frac{1}{2}mv^2 + U(x) \implies \frac{dE}{dt} = mv\frac{dv}{dt} + \frac{dU}{dx}\frac{dx}{dt} = v\left(m\frac{dv}{dt} - F\right) = 0.$$
 (2.5)

This is the principle of Conservation of Energy. For example, under constant gravity, F = -mq if the x-axis is directed upwards, so that U = mqx.

Another example: When an elastic string or spring is extended from its natural length a to a + x then it exerts a force F = -kx. Thus when a particle is attached to a fixed point by such a spring, the associated potential energy (or **elastic energy**) is

$$U(x) = \int kx \, dx = \frac{1}{2}kx^2$$
 so that $\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = E$ (constant) (2.6)

in the resulting motion.

We can in principle integrate the energy equation (2.5), so that

$$\frac{dx}{dt} = \frac{2}{m}\sqrt{E - U(x)}$$
 or $\frac{2t}{m} = \int \frac{dx}{[E - U(x)]^{1/2}}.$ (2.7)

However, this integral is frequently difficult to evaluate, and we can learn a tremendous result about the ensuing motion just by looking at U(x).

Firstly, we note that the initial conditions fix the constant energy E. Then after, as the kinetic energy $K = \frac{1}{2}mv^2 \geqslant 0$, the speed |v| can only increase if the potential U decreases. In particular, values of x for which U(x) > E can **never be attained.** The particle can therefore be trapped by the potential in a suitable x-interval. For an **equilibrium** to occur at some value of x, it is necessary both for the force to vanish, so that F = -U'(x) = 0, and also for the particle speed v = 0 there. For example, consider the particle attached to the spring as in (2.5). We sketch the curves $y = U(x) = \frac{1}{2}kx^2$ and the horizontal line y = E. Only points where E > U are accessible, so that the particle is trapped between $x = \pm \sqrt{2E/k}$. Its speed is only zero at these end points and as it cannot pass them it

must change sign when it reaches them. As U'=0 only at x=0, there is no equilibrium unless E=0. We conclude that the particle oscillates endlessly between $x=\sqrt{2E/k}$ and $x=-\sqrt{2E/k}$. We learn this from general arguments rather than by solving the equation. However, for this simple probem, we can verify our conclusions by finding x(t) directly. Newton's second law states

 $m\ddot{x} + kx = 0$ which we recognise from M1M2 as having the solution

$$x = A\cos\omega t + B\sin\omega t \equiv C\cos(\omega t + \phi)$$
 where $\omega^2 = k/m$. (2.8)

Here A and B or equivalently C and ϕ are arbitrary constants to be determined from the initial conditions. Clearly, x oscillates between $\pm C$. We can verify the equivalence of this solutions and the energy equation by noting $v = \dot{x} = -C\omega\sin(\omega t + \phi)$ so that

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}mC^2\omega^2\sin^2(\omega t + \phi) + \frac{1}{2}kC^2\cos^2(\omega t + \phi) = \frac{1}{2}kC^2.$$

This agrees with our earlier conclusions when we identify $E = \frac{1}{2}kC^2$. Usually, it is harder to solve the ODE, but the potential still tells us everything we need to know.

Example: A particle of mass m moves along the x-axis subject to the force $F(x) = -m\omega^2 x + \frac{3}{2}m\omega^2 x^2/a$ where ω and a are constants. Discuss the possible motion.

Stability of Equilibria: Frequency of Small Oscillations:

The conditions for x = a to be an **equilibrium** are that

$$U'(a) = 0$$
 [No force] and $U(a) = E$ [No velocity]

However, in practice it is vital to know whether the equilibrium is **stable**. The question is: if the particle is disturbed slightly from its equilibrium position, does it remain close to the equilibrium position, or does it wander a long way away as time increases? From consideration of the potential curve, it is easy to see that if U(x) has a minimum at x = a, then if E is increased slightly from the value U(a), the particle will be trapped between two values of x close to a. Correspondingly, if U(a) is a local maximum, there will be no nearby values of x at which U(x) = E so that the particle velocity can change sign. As a result, such equilibria are **unstable**. We now analyse the motion.

Suppose the particle is disturbed from x = a to $x = a + \varepsilon \eta(t)$ where $0 < \varepsilon \ll 1$. Then assuming η remains small, we may expand U(x) as a Taylor series:

$$\begin{split} U(x) &= U(a + \varepsilon \eta) = U(a) + \varepsilon \eta U'(a) + \frac{1}{2} \varepsilon^2 \eta^2 U''(a) + O(\varepsilon^3) \\ &= U(a) + \frac{1}{2} \varepsilon^2 \eta^2 U''(a) + O(\varepsilon^3) \end{split}$$

as U'(a) = 0 since x = a is an equilibrium point. Thus the energy equation (2.4) becomes

$$\frac{1}{2}m\varepsilon^2\dot{\eta}^2 + \frac{1}{2}\varepsilon^2U''(a)\eta^2 \simeq \text{constant}, \quad \text{or differentiating},$$

$$m \dot{\eta} \ddot{\eta} + U^{\prime\prime}(a) \eta \dot{\eta} = 0 \quad \Longrightarrow \quad \ddot{\eta} + (U^{\prime\prime}(a)/m) \eta = 0 \ . \label{eq:eta}$$

Comparison with the equation (2.5) shows that provided U''(a) > 0, the article will oscillate with frequency ω given by

$$\omega^2 = U''(a)/m . (2.9)$$

If however U''(a) < 0, so that x = a is a **maximum** of potential, then instead of oscillating the ODE has exponentially growing solutions. In this case the equilibrium is **unstable.**