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1. Following the arguments in lectures, we look for a solution to the PDE of the form
u(zx, t) = X (x)T(t), for some functions X and T. Then
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as the last equation states a function of ¢ is equal to a function of x, and hence both
functions must be constant. We choose a negative constant to enable us to satisfy the
boundary conditions at z = 0, L. Solving the above equations, we have

T = Cexp(—p*t) and X = Acospzr + Bsinpzx ,

where A, B and C are constants. If we insist that X'(0) = X'(L) = 0, then since
X' = —Apsinpx + Bpcos px, we have

B=0 and ApsinpL=0 — p=nn/L where n=0,1,2,3...

The separable solutions are therefore u = A,, cos(nwz/L) exp(—n?7?t/L?). An arbitrary
linear sum of these separable solutions will still satisfy both the PDE and the boundary
conditions at x = 0, L, so that we can write

oo
u = %ao + Z ap, COS (n_zx) e~/ LY
n=1
We now consider the initial condition u(x, 0) = f(x), which requires that
o0
f(@) =%ao+ nz_:lan cos (%) .

mmx

Multiplying both sides of the equation by cos( T ) and integrating between 0 and L,

using the orthogonality relation fOL cos(nmx /L) cos(mmx/L)dz = 0 if m # n, we have

L L
/0 f(x) cos (?) dx :/0 Ay, COS> (m;rm) dz = $Lay,

which determines the constants a,,. With the given f(x), we have

o [L/2 9 [L/2 2
ao:f/o ldr =1 while if n # 0 an:Z/o COS(?) dw:Esin%mr.



Now if n = 2m + 1, then sin(3n7) = (—1)™, while it is zero if n is even. Thus

u(z, t) = %+%§:02( (M)exp[ (2m—|—1)27;22t} .

As t — oo, the transients die away and u — %, which is the average amount of heat in the
system at ¢ = 0. No heat can escape because of the insulating boundary conditions.

2. Let u(z,y) = X(2)Y(y). Then X”"/X = —Y"” /Y = constant. There are two homo-
geneous boundary conditions in the y-direction, (i.e. there are two values of y at which
u = 0), suggesting that we use sines in the y-direction and exponentials in the z-direction.
The solutions for Y (y) which are zero at y = 0, m are Y = Bsinny, where n is an integer.
Then X” = n?X, and the solutions to that which are zero at z = 0 are X (x) = C'sinh nz.
Taking an arbitrary sum of these gives

oo oo
u(x, y) = Z B,, sinh nx sin ny so that wu(m, y) = Z B,, sinhnwsinny .

n=1 n=1
Comparing with the given data, u(m, y) = 2 siny — 1 sin 3y, we see that
3 smha; ) 1 sinh 3z .
— = 3y .
(@, y) = s1nh7r ny 4sinh 3 Sy

3. Once more, seek solutions u(z, t) = X (z)7T'(t). The equation gives

T/ X//
XT' =rXT +kX"T or T = r+ ky = constant,

by the usual argument. Therefore X’/ X must be constant, and the boundary conditions
require that X = Bsin(nwz/L), as before. Therefore
T’ kn?m?

?:r— I =\, so that T = Ce’? .

Taking a general linear sum of the separable solutions gives

f: by, exp(A,t) sin (nz:t) (1

n=1

~—

and the initial condition u(z, 0) = U(x) requires, as previously, that

2 L
b, = Z/o U(z) sin (mlim) dx .

Looking at (), it is clear that the behaviour for large time depends on the signs of \,,.
If all of these values are negative, then u — 0 as ¢ — oo, and the reaction is stable. If



however \,, > 0 for at least one value of n, then the temperature will increase without
limit, and we will have a catastrophic meltdown, or explosion. From the form of \,, we
see that Ay > Ao > A3..., so that this will occur if and only if \; > 0, i.e. if r > 7r2k/L2.

4. The standard separation of variables technique gives u = f(x)g(t) where, for some
value of k, f = Acoskx + Bsinkz and g = C coskct + D sin kct. Imposing u =0 at x =0
we have C' = 0. Imposing u, =0 at z = L gives

0= f'(L) = kB cos(kL) = kL=im+nr for n=0,1,2...

Thus the general solution is obtained by an arbitrary sum of thre separable solutions,
o= S 0) (55 05|

The vibration frequencies are therefore w = (n+3)wc/L for n = 0,1... Clearly the smallest
is me/(2L) and the second smallest is 3we/(2L), which is three times the smallest. So the
harmonics on a clarinet are different from those on say a violin.

5. Comparing with aug, + bugy + cuyy, = f, we have a = 2,b = —1,c = —1. Thus
b?> — 4ac = 9 > 0 and the PDE is hyperbolic, as required.

Writing £ = z + By and n = = + dy, we have u, = u¢ + u, and u, = Bug + du,,.
Therefore

Uy = BUge + OUpy + (B+0)Uep,  Upz = Uge +Upy +2Uen,  Uyy = BUge + 07Uy +2B0Ugy.
Substituting into the pde, we get
(2—B—Buge + (2 -6 — ) uy, + (4 — 2685 — B — 6)ug, = 0.

Let 3, be therootsof 2—x—22=0 = (z+2)(z—-1)=0 = [B=-2,6=1.
Then the new variables are { =z — 2y, n = x + y and the transformed pde is 9ug, = 0.
Integrating partially with respect to &, we have for arbitrary functions F' and G,

ou
an =F'(n) = u=F@n)+GE)=F(r+y) +G(=-2y).
Applying the boundary condition © = 0 on y = 0 gives 0 = F(z) + G(z). Thus G = —F
and v = F(z +y) — F(xz — 2y). Then
ou

bl OF (2 — 20)).
dy (z+y) +2F (z — 2y)

So on y = 0, uy, = 3F'(z) = 2z exp(—x?) using the other boundary condition. Integrating,

we have F(x) = %fme*ﬁdx = —%e*‘”z + C. So finally, the solution is

u= 3 (exp[~(x - 29)%) - expl—(z +)?)).



