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1. Following the arguments in lectures, we look for a solution to the PDE of the form
u(x, t) = X(x)T (t), for some functions X and T . Then

ut = uxx =⇒ X(x)T ′(t) = X ′′(x)T (t) =⇒
T ′

T
=
X ′′

X
= −p2 ,

as the last equation states a function of t is equal to a function of x, and hence both
functions must be constant. We choose a negative constant to enable us to satisfy the
boundary conditions at x = 0, L. Solving the above equations, we have

T = C exp(−p2t) and X = A cos px+B sin px ,

where A, B and C are constants. If we insist that X ′(0) = X ′(L) = 0, then since
X ′ = −Ap sin px+Bp cos px, we have

B = 0 and Ap sin pL = 0 =⇒ p = nπ/L where n = 0, 1, 2, 3 . . .

The separable solutions are therefore u = An cos(nπx/L) exp(−n2π2t/L2). An arbitrary
linear sum of these separable solutions will still satisfy both the PDE and the boundary
conditions at x = 0, L, so that we can write

u = 1
2a0 +

∞∑

n=1

an cos
(nπx
L

)
e−n

2π2t/L2 .

We now consider the initial condition u(x, 0) = f(x), which requires that

f(x) = 1
2a0 +

∞∑

n=1

an cos
(nπx
L

)
.

Multiplying both sides of the equation by cos
(
mπx
L

)
and integrating between 0 and L,

using the orthogonality relation
∫ L
0
cos(nπx/L) cos(mπx/L)dx = 0 if m 6= n, we have

∫ L

0

f(x) cos
(mπx
L

)
dx =

∫ L

0

am cos
2
(mπx
L

)
dx = 1

2Lam ,

which determines the constants an. With the given f(x), we have

a0 =
2

L

∫ L/2

0

1 dx = 1 while if n 6= 0 an =
2

L

∫ L/2

0

cos
(nπx
L

)
dx =

2

nπ
sin 12nπ .



Now if n = 2m+ 1, then sin( 12nπ) = (−1)
m, while it is zero if n is even. Thus

u(x, t) = 1
2 +
2

π

∞∑

m=0

(−1)m

2m+ 1
cos

(
(2m+ 1)πx

L

)

exp

[

−(2m+ 1)2
π2t

L2

]

.

As t→∞, the transients die away and u→ 1
2 , which is the average amount of heat in the

system at t = 0. No heat can escape because of the insulating boundary conditions.

2. Let u(x, y) = X(x)Y (y). Then X ′′/X = −Y ′′/Y = constant. There are two homo-
geneous boundary conditions in the y-direction, (i.e. there are two values of y at which
u = 0), suggesting that we use sines in the y-direction and exponentials in the x-direction.
The solutions for Y (y) which are zero at y = 0, π are Y = B sinny, where n is an integer.
Then X ′′ = n2X, and the solutions to that which are zero at x = 0 are X(x) = C sinhnx.
Taking an arbitrary sum of these gives

u(x, y) =
∞∑

n=1

Bn sinhnx sinny so that u(π, y) =
∞∑

n=1

Bn sinhnπ sinny .

Comparing with the given data, u(π, y) = 3
4 sin y −

1
4 sin 3y, we see that

u(x, y) = 3
4

sinhx

sinhπ
sin y − 14

sinh 3x

sinh 3π
sin 3y .

3. Once more, seek solutions u(x, t) = X(x)T (t). The equation gives

XT ′ = rXT + kX ′′T or
T ′

T
= r + k

X ′′

X
= constant,

by the usual argument. Therefore X ′′/X must be constant, and the boundary conditions
require that X = B sin(nπx/L), as before. Therefore

T ′

T
= r −

kn2π2

L2
= λn so that T = Ceλnt .

Taking a general linear sum of the separable solutions gives

u(x, t) =
∞∑

n=1

bn exp(λnt) sin
(nπx
L

)
(†)

and the initial condition u(x, 0) = U(x) requires, as previously, that

bn =
2

L

∫ L

0

U(x) sin
(nπx
L

)
dx .

Looking at (†), it is clear that the behaviour for large time depends on the signs of λn.
If all of these values are negative, then u → 0 as t → ∞, and the reaction is stable. If



however λn > 0 for at least one value of n, then the temperature will increase without
limit, and we will have a catastrophic meltdown, or explosion. From the form of λn, we
see that λ1 > λ2 > λ3 . . ., so that this will occur if and only if λ1 > 0, i.e. if r > π

2k/L2.

4. The standard separation of variables technique gives u = f(x)g(t) where, for some
value of k, f = A cos kx+B sin kx and g = C cos kct+D sin kct. Imposing u = 0 at x = 0
we have C = 0. Imposing ux = 0 at x = L gives

0 = f ′(L) = kB cos(kL) =⇒ kL = 1
2π + nπ for n = 0, 1, 2 . . .

Thus the general solution is obtained by an arbitrary sum of thre separable solutions,

u =
∞∑

n=0

sin
(
(n+ 12 )

πx

L

)(

An cos

(

(n+ 12 )
πct

L

)

+Bn sin

(

(n+ 12 )
πct

L

)]

.

The vibration frequencies are therefore ω = (n+ 12 )πc/L for n = 0, 1 . . . Clearly the smallest
is πc/(2L) and the second smallest is 3πc/(2L), which is three times the smallest. So the
harmonics on a clarinet are different from those on say a violin.

5. Comparing with auxx + buxy + cuyy = f , we have a = 2, b = −1,c = −1. Thus
b2 − 4ac = 9 > 0 and the PDE is hyperbolic, as required.

Writing ξ = x + βy and η = x + δy, we have ux = uξ + uη and uy = βuξ + δuη.
Therefore

uxy = βuξξ+ δuηη+(β+ δ)uξη, uxx = uξξ+uηη+2uξη, uyy = β
2uξξ+ δ

2uηη+2βδuξη.

Substituting into the pde, we get

(2− β − β2)uξξ + (2− δ − δ
2)uηη + (4− 2βδ − β − δ)uξη = 0.

Let β, δ be the roots of 2− x− x2 = 0 =⇒ (x+2)(x− 1) = 0 =⇒ β = −2, δ = 1.
Then the new variables are ξ = x− 2y, η = x+ y and the transformed pde is 9uξη = 0.
Integrating partially with respect to ξ, we have for arbitrary functions F and G,

∂u

∂η
= F ′(η) =⇒ u = F (η) +G(ξ) = F (x+ y) +G(x− 2y).

Applying the boundary condition u = 0 on y = 0 gives 0 = F (x) + G(x). Thus G = −F
and u = F (x+ y)− F (x− 2y). Then

∂u

∂y
= F ′(x+ y) + 2F ′(x− 2y).

So on y = 0, uy = 3F
′(x) = 2x exp(−x2) using the other boundary condition. Integrating,

we have F (x) = 2
3

∫
xe−x

2

dx = − 13e
−x2 + C. So finally, the solution is

u = 1
3

(
exp[−(x− 2y)2]− exp[−(x+ y)2]

)
.


