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Classification of 2nd order PDEs in two variables

Most physical systems are governed by second order partial differential equations, or PDEs.
Such equations fall into three basic types. Consider the equation for u(x, y)

auxx + buxy + cuyy = f , (1)

where the functions a, b, c and f do not depend on uxx, uxy or uyy. They may, however,
depend on x, y, u, ux and uy. The Characteristic Equation of (1) is

dy

dx
=
b±
√
b2 − 4ac
2a

. (2)

Equation (1) is classified as hyperbolic, parabolic or elliptic according to:

If






b2 − 4ac > 0 2 real roots, (1) is hyperbolic

b2 − 4ac = 0 1 real root, (1) is parabolic

b2 − 4ac < 0 0 real roots, (1) is elliptic.





. (3)

For hyperbolic equations, (2) is an ODE for y(x) which can be integrated to define two
sets of curves (one for the + sign, one for the −), called the characteristics of (1).
Characteristics are curves along which information travels at a finite speed. They
are associated with “time-like” behaviour, and a characteristic speed. In contrast elliptic
problems have no “time-like” variable; x and y behave like space coordinates.

Hyperbolic Equations: A typical example is the one-dimensional wave equation
for u(x, t),

utt = c
2uxx where c is the constant wave speed. (4)

Hyperbolic equations should be solved with two initial conditions (at t = 0, say).

Elliptic Equations: These have no characteristics; no lines along which information
travels. A typical elliptic equation is Laplace’s equation for u(x, y)

∇2u ≡ uxx + uyy = 0 in D, (5)

where D is some region of (x, y)-space. This equation requires one boundary condition
(say u = f) on the boundary of D.

Parabolic Equations: A typical example is the diffusion equation for u(x, t)

ut = Kuxx where K > 0 is the constant diffusivity. (6)

Parabolic equations require one initial condition and it is vital that we move “forwards in
time.” Physically, parabolic equations describe the smoothing out of an initial configuration
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towards an equilibrium. Many different initial conditions give rise to almost the same final
state. This is why running the process backwards in time is an ill-posed problem. You
can’t un-stir a cup of tea!

Summary

Equation type Appropriate B.C. Method of solution

Hyperbolic 2 Initial Step in either direction from initial line
Parabolic 1 Initial Step in one direction only from initial line
Elliptic 1 Boundary Must solve everywhere simultaneously

Exact Solutions by “Separation of Variables”

Consider the example problem of the flow of heat in a bar,

ut = uxx in 0 < x < 1, t > 0

with u(0, t) = u(1, t) = 0, u(x, 0) = u0(x)

}

(7)

We look for separable solutions of the PDE of the form u(x, t) = X(x)T (t), so that

XT ′ = X ′′T or
T ′

T
=
X ′′

X
= −ω2, say. (8)

As T ′/T is a function of t only, while X ′′/X is a function of x only, both functions must
be a constant, which we take to be negative. Then the functions X(x) and T (t) take the
forms

X = A cosωx+B sinωx, and T = Ce−ω
2t . (9)

If we require X to obey the boundary conditions in (7), namely X(0) = X(1) = 0, we
obtain non-zero solutions only if A = 0 and ω = mπ, for some integer m, so that

u = Bm sin(mπx) e
−m2π2t,

for some constant Bm. As (7) is a linear problem, we may combine solutions to obtain a
more general solution in the form

u(x, t) =
∞∑

m=1

Bm sin(mπx) e
−m2π2t . (10)

The initial condition will be satisfied if

u(x, 0) =
∞∑

m=1

Bm sin(mπx) = u0(x) . (11)

Thus all we need do to obtain the solution of (7) is to expand the initial condition u = u0(x)
in a Fourier series, and substitute the appropriate values of the constants Bm into (10).
Using the orthogonality relations, we find

Bn = 2

∫ 1

0

u0(x) sin(nπx)dx .
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