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Sound is a collection of vibrations, or pressure waves. A fluctuation p(x, t) to the ambient
pressure obeys the wave equation,

c2∇2p = ptt in some region D, for t > 0, (1)

where c is the speed of sound, which we assume to be constant. If we look for separable
solutions to (1) of the form p(x, t) = u(x)T (t) then we find

∇2u+ k2u = 0 , T ′′ + ω2T = 0 where ω = ck .

The equation for u is known as the Helmholtz equation. It can be shown that the
eigenvalues k2 are positive (k is called the wave-number. The time dependence is
therefore oscillatory (wave-like) with T = A cosωt + B sinωt. The possible frequencies ω
are determined by the eigenvalues k2.

The eigenvalues k2 depend on the domainD and the boundary conditions to be applied
on the boundary. The general solution to (1) consists of a superposition of all the possible
waves with all the possible frequencies. Whether or not the sound that is preduced is
‘musical’ or not depends on how these frequencies relate to each other.
The above is true in any number of dimensions, but most musical instruments are

essentially one-dimensional, depending on the vibration of a string or a thin column of air.
We therefore consider the vibration of a string of length L. Let u(x, t) obey

utt = c
2uxx in 0 < x < L, t > 0 (2)

with the boundary conditions

u(0, t) = 0 and u(L, t) = 0 , (3)

and the initial conditions

u(x, 0) = f(x) and ut(x, 0) = g(x) . (4)

Here u is the normal displacement of the string, which is held fixed at x = 0 and x = L.
The initial configuration of the string is u = f , while its initial normal velocity is ut = g(x).

Looking for separable solutions of (2) of the form u(x, t) = X(x)T (t), we find

T ′′

T
=
c2X ′′

X
= C, which must be constant,

as the LHS is a function only of t while the RHS is formally a function of x. The function
X(x) is therefore either exponential or trigonometric. As we want to impose X = 0 at
both x = 0, L, in the usual way we must have 0 > C = −k2. Then

X(x) = α cos kx+ β sin kx and X(0) = 0 =⇒ α = 0 .



Then imposing X(L) = 0 gives β sin kL = 0, and for non-trivial solutions we must have
k = nπ/L for n = 1, 2, . . . The equation for T (t) is similar. When we use the linearity to
sum over all possible sperable solutions we therefore have

u(x, t) =
∞∑

n=1

[

An cos

(
nπct

L

)

+Bn sin

(
nπct

L

)]

sin
(nπx
L

)
, (5)

where An and Bn are constants to be found. Applying the initial conditions (4), we have

f(x) =
∞∑

n=1

An sin
(nπx
L

)
and g(x) =

∞∑

n=1

Bn

(nπc
L

)
sin
(nπx
L

)
,

so that An and Bn are essentially the Fourier coefficients of f and g. If we are interested
in the motion resulting from a particular f and g, we calculate An and Bn in the usual
way, when (5) gives the solution.
From a musical point of view, An and Bn give the amplitudes of a particular note

(or frequency). The important feature is that no matter how the string is struck, or
released from rest, the resulting sound is a mixture of notes whose frequencies are integer
multiples (nc/L) of some lowest frequency, c/L, called the fundamental. Note that the
boundary conditions (3) were vital in this regard. The same frequencies result if ux = 0 at
x = 0, L, (flute/recorder) but u = 0 at x = 0 and ux = 0 at x = L gives a different sound
(oboe/clarinet).

The musical scale

I assume most of you are familiar with the concept of an octave. A note an octave
above another note has twice the frequency. Middle C has a frequency of roughly 256Hz
(cycles per second) so that all the Cs are roughly powers of 2. The equitempered musical
scale is divided into twelve semitones, each of whose frequencies is a constant multiple,
r, of the note a semitone lower. For twelve semitones to be equivalent to an octave, this
requires r12 = 2, or r = 21/12.

Consider now the vibrating string, and suppose that its lowest frequency is C, for
example. The next note generated when the string is plucked has twice the frequency, and
is therefore another C, an octave higher. Likewise the fourth and eighth harmonics are Cs,
but octaves higher. The notes corresponding to n = 3 and n = 6 are not C, but one is an
octave higher than the other. Likewise n = 5 is a different note. If the vibrating string is
to sound musical, it is important that the notes corresponding to n = 3 and n = 5 should
‘harmonise’ with the fundamental n = 1.

It is a curious fact that 219 ' 312. As a result, a note of 3 times the frequency is
almost exactly 19 semitones higher. If the fundamental is a C, the third harmonic n = 3
is a G, an octave higher. Also 5 ' 228/12. Thus the harmonic n = 5 is close to two octaves
and 4 semitones higher than n = 1. This corresponds to an E. Thus the first 6 harmonics
when a string vibrates correspond to C, E and G in various permutations. This you may
recognise as the notes of C-major, the chord based on the fundamental. One-dimensional
vibrations therefore sound well together.
In contrast, the note produced by a drum (a two-dimensional instrument) is much less

pure, and not so easily pleasing to the ear.


