
BioFluids Lecture 16: Steady flows for various Dean numbers

We have just derived the steady Dean equations for fully-developed flow down a
slightly curved pipe, locally in the y-direction:

K(u ∙ ∇v) ≡ K(ψzvx − ψxvz) = 1 +∇
2v

K(u ∙ ∇Ω) ≡ K(ψzΩx − ψxΩz) = ∇
2Ω− 2Kvvz

}

(16.1)

where Ω = −∇2ψ. For a pipe of circular cross-section in the (x, z) plane it is natural to use
polar coordinates (R, θ) with x = R sin θ and z = R cos θ. In terms of a streamfunction,
ψ, the velocity u = (0, v(R, θ), 0) +∇∧ (0, ψ(R, θ), 0) giving

K

R
(ψθvR − ψRvθ) = 1 +∇

2v

K

R
(ψθΩR − ψRΩθ) = ∇

2Ω− 2Kv

(

vR sin θ +
vθ cos θ

R

)





(16.2)

where

−Ω = ∇2ψ = ψRR +
ψR

R
+
ψθθ

R2

is the downpipe vorticity. The no-slip boundary conditions on R = 1 require

ψ = 0, ψR = 0 v = 0 on the pipe boundary. (16.3)

The Dean number,K, is a Reynolds number modified by the pipe curvature. We investigate
solutions to these equations for low, high and intermediate values of K.

Low Dean number: When K = 0, the solution is just the Poiseuille flow,

v = v0(R) ≡ 1
4 (1−R

2). (16.4)

Substituting into (16.3), we see this drives at O(K) a cross-flow given by

−∇2(∇2ψ) ≡ ∇2Ω = 2K sin θv0(R)v
′
0(R)

with solution for a known constant A

ψ = ψ1(R, θ) ≡ AR(1−R
2)2(4−R2) sin θ. (16.5)

This drives an O(K2) correction to the downpipe flow ∇2v2 = v′0(R)ψ1θ/R

v = v0(R) +K
2v2(R, θ) where v2 ≡ B cos θR(1−R

2)(19− 21R2 + 9R4 −R6)

This process can be repeated to derive the series expansion

v =
∞∑

n=0

K2nvn(R, θ), ψ =
∞∑

n=0

K2n+1ψn(R, θ) (16.6)
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In principle, all these functions could be found analytically. They take the form

vn =
n∑

j=0

cos(jθ)Pnj(R) where Pnj(R) =
∑

i

CnijR
i (16.7)

is a polynomial in R, and a similar expression for ψn. The first two terms in these expan-
sions illustrate the leading order effects of curvature. The shape of ψ1 is famous: it gives
rise to two counter-rotating “Dean vortices.” The first correction O(K2) to the downpipe
flow moves the maximum of v towards the outside of the bend. See figures.

Van Dyke (1978) calculated 24 terms in the series (16.6) and used series extension
techniques to increase the domain of convergence. Recently Tettamanti (2009) has calcu-
lated 60 terms, extending and correcting Van Dyke’s conclusions.

Moderate Dean numbers: numerical solutions

For higher Dean numbers, the equations should be solved numerically. See Collins &
Dennis (1975), Dennis & Ng (1982), Siggers & Waters (2005). A useful review of Dean
flows can be found in Berger et al (1983). Broadly speaking, ψ1 and v1 predict well
the behaviour of the flow as K increases. The position of maximum v migrates towards
the outside, while the contours of v become less z-dependent, except near the wall. The
closed ψ regions lose their left/right symmetry, and their contours become closer near the
wall, despite the double zero enforced by the no-slip condition. As K increases further it
becomes clearer that a boundary layer structure emerges. It has some similarity with the
‘Ekman layers’ associated with rapidly rotating flows. The wall shear stress is minimum
on the inside of the bend.

The high Dean number limit:

As K → ∞ a solution with an inviscid core and a thin boundary layer structure is
discernible. We can estimate the asymptotic scalings as follows. Let v and ψ have scales V0
and Ψ0. Then if the boundary layer has thickness δ the secondary velocity in the layer is
of order Ψ0/δ whereas in the core it is of order Ψ0/1. In the layer the vorticity Ω ∼ Ψ0/δ4.
In the inviscid core, the leading order terms in (16.2) are

Ku ∙ ∇v = 1, 0 = vvz (16.8)

giving the scalings and structure

KΨ0V0 = 1 v = vc(r), ψ = z/Kv′c(r) (16.9)

Note that the z dependence fits with the pattern of the numerical solutions. In the layers,
since u is larger we have to balance Ku ∙ ∇ with ∇2 and the driving term vvz, giving the
scales

K
Ψ0
δ
=
1

δ2
=
KV 20
δ

(16.10)

Combining (16.10) and (16.9) we find

δ = K−1/3, V0 = K
−1/3 Ψ0 = K

−2/3 (16.11)
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Note this doesn’t mean that the flow is asymptotically small. When we nondimensionalised
we scaled v with Ga2/μ; we are predicting now that it should scale with μ−2/3 as μ→ 0.
If we introduce a scaled normal coordinate n = (1−R)/δ equations (16.2) become in the
layer

ψnvθ − ψθvn = vnn, (16.12)

ψnψnnθ − ψθψnnn = ψnnnn + vvn sin θ, (16.13)

which integrates to
ψnψnθ − ψθψnn = ψnnn + 12 sin θ

[
v2 − v2c

]
(16.14)

The boundary conditions are

ψ = ψn = v = 0 on n = 0, ψn → 0, v → vc as n→∞ (16.15)

A slightly unusual boundary layer problem emerges, with the core flow determined by a
regularity condition on the layer.
The boundary layer starts at θ = 0, at the outer bend, then grows inwards along the

top and bottom of the pipe towards the inner bend. It is found that only some matching
conditions with vc are compatible with the boundary layer remaining attached. Physically,
one can think of an initial value problem, with zero inital core vorticity (v ∼ 1/r) as the
flow develops, the boundary layers separate off advecting vorticity into the core. Only
when a suitable core vorticity distribution is set up does equilibration occur. Numerical
solution shows that the equilibrium vc(r) is more or less linear in r, increasing outwards.
Numerical results also agree well with the boundary layer scalings.
However, the precise details of the asymptotics are still unknown. A suitable vc(r)

can regularise the boundary layers until very close to the inner wall Dennis & Riley (1991),
but no consistent picture at the inner wall has been found.

Nonuniqueness: the four-gyre solution.

Numerically, it is found that for moderately high K, more than one solution of (5.1)
is possible. A four-vortex flow was found by Dennis & Ng, as in the figure. This solution is
unstable to perturbations which break top-down symmetry Daskopoulos & Lenhoff (1989).
The high Dean number solution can also undergo Hopf bifurcation to a time-dependent
oscillation.

Effects of curvature

The Dean equations are mathematically appealing because the Reynolds number and
curvature combine to form a single determining parameter. Curvature terms can be re-
tained in the model, even if they are regarded as small.
A double expansion in the Dean number and curvature was performed by (Topakoglu

1967) and by Siggers & Waters (2005). The latter also solved the flow numerically, and
demonstrated that even small curvature can have noticeable influence on the flow charac-
teristics.
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