
BioFluids Lecture 15: Steady flow in sightly curved pipes: the Dean equations

Consider flow down a slowly curving pipe. In terms of cylindrical polar coordinates
(r, φ, z) we shall model this as a portion of a torus, (r − b)2 + z2 = a2 where b � a, and
seek solutions independent of φ, driven by a pressure gradient in the φ-direction.

The velocity u = (ur, uφ, uz) satisfies the axisymmetric Navier-Stokes equations
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where the material derivative D/Dt = ∂/∂t + ur∂/∂r + uz∂/∂z. Here G = −1/r ∂p/∂φ
is the downpipe pressure gradient. As we want ∇p to be independent of φ, we must have
G = Ĝ(t)/r only. We write Ĝ = bG0(1+f(t)). Let us first see if there is a unidirectional
solution, as for the straight pipe. If we substitute ur = 0 = uz, we find
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So such a solution is only possible if uφ is constant on cylinders. Such a flow would be
consistent with a no-slip condition only for flows between concentric cylinders. Any curved
pipe-flow cannot be unidirectional.

However, if the pipe is almost straight, we might expect the flow to be almost unidi-
rectional. As r and z vary over the scale a, we assume
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We scale z = az∗ and let U0 be a typical scale of uφ. Then we expect a suitable scale for
the pressure to be p ∼ ρU20 a/b and if we scale

ur
∂ur

∂r
∼ uz

∂ur

∂z
∼
u2φ

r
=⇒ ur ∼ uz ∼ U0

(a
b

)1
2
. (15.4)

Since b� a we have, as expected, uφ � ur, uz. We therefore write
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and neglecting terms of order (a/b), equations (4.1) become
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We choose U0 to scale with the steady component of pressure gradient and define a pa-
rameter K such that
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Dropping the ∗ from all the dimensionless variables we obtain the Dean equations:
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These equations are essentially the two-dimensional Navier-Stokes equations with a body
force u2φ acting towards the inside of the bend.
Steady Flow: If we set f(t) ≡ 0 and write u = (u, v, w) in Cartesian coordinates

(x, y, z), and introduce a stream function, ψ(x, z) where u ≡ ux = ∂ψ/∂z and w ≡ uz =
−∂ψ/∂x, and v(x, z) ≡ uφ, then (15.8) reduce to
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where Ω = −∇2ψ is the downpipe vorticity and a suffix now denotes a partial derivative.
These equations are to be solved for v(x, z) and ψ(x, z) subject to the no-slip conditions

∇ψ = 0, v = 0 on the pipe boundary. (15.10)

There is one parameter in the problem, K, which is known as the Dean number and defined
in (15.7). It is a Reynolds number modified by the pipe curvature, (a/b).
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