BioFluids Lecture 15: Steady flow in sightly curved pipes: the Dean equations

Consider flow down a slowly curving pipe. In terms of cylindrical polar coordinates
(r, ¢, z) we shall model this as a portion of a torus, (r — b)2 + 22 = a? where b > a, and
seek solutions independent of ¢, driven by a pressure gradient in the ¢-direction.

The velocity u = (u,, ug, u,) satisfies the axisymmetric Navier-Stokes equations
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where the material derivative D/Dt = 0/0t + u,.0/0r + u,0/0z. Here G = —1/r 0p/0¢
is the downpipe pressure gradient. As we want Vp to be independent of ¢, we must have
G= G( )/7 only. We write G= bGo(1+ f(t)). Let us first see if there is a unidirectional
solution, as for the straight pipe. If we substitute u,, = 0 = u,, we find
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So such a solution is only possible if u, is constant on cylinders. Such a flow would be
consistent with a no-slip condition only for flows between concentric cylinders. Any curved
pipe-flow cannot be unidirectional.

However, if the pipe is almost straight, we might expect the flow to be almost unidi-
rectional. As r and z vary over the scale a, we assume
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We scale z = az* and let Uy be a typical scale of u,s. Then we expect a suitable scale for
the pressure to be p ~ pUZa/b and if we scale
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Since b > a we have, as expected, ug > u,, u,. We therefore write
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and neglecting terms of order (a/b), equations (4.1) become
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We choose Uy to scale with the steady component of pressure gradient and define a pa-
rameter K such that
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Dropping the * from all the dimensionless variables we obtain the Dean equations:
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These equations are essentially the two-dimensional Navier-Stokes equations with a body
force ui acting towards the inside of the bend.

Steady Flow: If we set f(t) = 0 and write u = (u, v, w) in Cartesian coordinates
(z, y, z), and introduce a stream function, ¥ (z, z) where u = u, = 0¢¥/0z and w = u,
—0¢/0z, and v(z, z) = uy, then (15.8) reduce to

where 0 = —V?1 is the downpipe vorticity and a suffix now denotes a partial derivative.
These equations are to be solved for v(z, z) and ¥(x, z) subject to the no-slip conditions
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Vo =0, v=20 on the pipe boundary. (15.10)

There is one parameter in the problem, K, which is known as the Dean number and defined
in (15.7). It is a Reynolds number modified by the pipe curvature, (a/b).
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