
BioFluidDynamics: Lecture 13: Pulse propagation in arteries.

See the course Webpage: http://www.ma.ic.ac.uk/∼ajm8/BioFluids

When the heart pressure reaches a certain level the aortic valve opens and about 80cc
of blood is injected into the aorta. Artery walls are distensible and an elastic wave is
transmitted down the arterial tree. The full problem involves interaction between the 3-D
fluid dynamics of the blood and the solid mechanics of wall.
Fortunately, it proves possible to simplify the fluid mechanics when deducing the

pressure gradient. Thenafter, elasticity may be neglected in finding the flow details.

1-D model: Assume a straight artery in the x-direction, with cross-sectional area A(x, t)
and a mean fluid flow u(x, t). Then with a constant density ρ0, mass conservation requires

At + (Au)x = 0. (13.1)

The momentum balance (Euler equation, averaged over A)

ρ0(ut + uux) = −px = −
dp

dA
Ax assuming p = p(A). (13.2)

To complete the model we need a “Tube-Law,” p = p(A), describing the extent to which
the artery dilates in response to the excess pressure. We define

c2 =
A

ρ0

dp

dA
> 0 for physical sense. (13.3)

Then combining the above, we have
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= 0. (13.4)

For a circular annular artery r0 < r < r0+h, assuming the wall is a thin, uniform Hookean
solid with Young’s modulus E, we expect

E
δr

r0
=
r0δp

h
, (13.5)

giving a constant value

c20 =
A

ρ0

dp

dA
=
r0

2ρ0

dp

dr
=
Eh

2ρ0r0
. (13.6)

This gives a value c0 ' 5m/s in the ascending aorta of a young adult human, (arteries
stiffen with age). This result agrees well with measurements. Now the observed blood
velocity u ' 1m/s. So u/c ' 0.2. Furthermore, arterial pressure varies between about
80-120 mm Hg over a heartbeat, so that δp/p ' 0.2 also. If we regard 0.2 � 1, we can
linearise (13.1) and (13.2), to obtain

At +A0ux = 0 ut +
c20
A0
Ax = 0, (13.7)

1



giving a simple wave equation c20Att = Axx, with speed c0. The linear theory predicts that
the pulse wave travels down the arterial system without change of shape, but with reflec-
tions from bifurcations etc. In fact measurements show the pulse steepens and smoothens.

Nonlinear effects: (13.4) gives the characteristic directions (eigenvalues of the matrix)

dx

dt
= u± c. (13.8)

Adding ± c/A times (13.2) to (13.1), we obtain

[
∂

∂t
+ (u± c)

∂

∂x

]

R± = 0, (13.9)

where

R± = u±
∫ A

A0

c(A′)dA′

A′
= u±

∫
dp

ρc
. (13.10)

The quantities R± are Riemann invariants, constant on the appropriate characteristics.
Ignoring reflections, this predicts that a simple wave in the positive x-direction, will steepen
until a shock forms – like a hydraulic jump. Except for people with an ailment such as a
leaky valve, for which u/c is relatively large, the aorta is too short for a shock to form.
But steepening of profile well-predicted by inviscid 1-D theory.

Wave intensity: If we denote small changes along neighbouring characteristics by δR±,
then we have

δR± = δu±
δp

ρc
=⇒ δp = 1

2ρc(δR+ − δR−), δu = 1
2 (δR+ + δR−). (13.11)

We then define a quantity I which we call the wave intensity, by

δI = δp δu = 1
4ρc(δR

2
+ − δR

2
−). (13.12)

In this form, forward travelling waves always give a positive contribution to the intensity
I, backward ones negative.

Each heart-beat, a forward-travelling wave travels away from the heart until it reaches
an arterial bifurcation, where it is partially reflected. “Perfectly matched” branches min-
imise the reflections, but at a general position and time we expect a mixture of forward
and backwards travelling waves. Now R− is constant on backward characteristics, and it
follows that the difference δR− = 0 for forward travelling waves. Thus p and u are linearly
related near the heart at the start of the cardiac cycle where the wave is almost entirely
forward, as illustrated in the figure.
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