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Pulsatile flow in a long straight artery
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Steady & Unsteady Reynolds numbers

From now on in the course we regard the pressure wave merely as determining the
pressure gradient, G(t). We analyse in detail the flow it drives in arteries of a given
geometry. We treat the artery walls as rigid.

If the heartbeat is exactly periodic with frequency ω, we can write

G(t) = <e

[
∞∑

n=0

Gne
inωt

]

where <e denotes the real part. (If not exactly periodic, take Fourier Transform.)

Measurement in the aorta shows that the steady component is considerably smaller than
the unsteady part G0 � Gn for the first few n values. Nevertheless, it is found to drive a
flow with comparable steady and unsteady parts.

We can define a steady Reynolds number based on the mean flow rate, and an unsteady
Reynolds number based on the peak flow rate. Both these Reynolds numbers are much
greater than one in the larger arteries and typically the latter is about 5 times the former.
In the human aorta, the peak velocity is about 1m/s, the radius is about 1.5cm and the
kinematic viscosity of blood is about 4 times that of water, ν = 4× 10−6m2/s giving

Peak aortic Reynolds number ' 3750, Mean Reynolds number ' 750
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Straight cylindrical model

Today we consider a simple model – assume the artery is a long circular cylinder, r = a

in terms of cylindrical polars (r, θ, z). Assume axisymmetric flow.

If the cylinder is long enough for entrance effects to be neglected [BIG IF] flow is then
one-dimensional and z-independent u = (0, 0, u(r, t)) and governed by the
Navier-Stokes equations

ρ
∂u

∂t
= G(t) + µ∇2u

with no slip on the cylinder wall

u = 0 on r = a

Very Important simplification: the geometry is such that u · ∇u ≡ 0 so that the problem
is linear even at highish Reynolds numbers. Can solve exactly, but danger of unrealistic
results.

For a given initial state (u known at t = 0) we can find the flow explicitly. Alternatively,
and more naturally, we can find the periodic flow which ensues when all initial transients
decay.
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Decomposition of velocity field

If we similarly decompose

u(r, t) = <e

[
∞∑

n=0

un(r)einωt

]

then we can equate harmonics

ρinωun = Gn + µ∇2un

We assume no slip on the rigid artery walls

un = 0 on r = a

and a regularity condition on the cylinder axis (ur = 0 on r = 0).

The steady component (n = 0) is simply Poiseuille flow:

u0 =
G0a

2

4µ

(
1− r̂2

)
where r̂ = r/a

TCC, Bio-Fluid Mechanics March 2009 – p.4/11



Decomposition of velocity field

If we similarly decompose

u(r, t) = <e

[
∞∑

n=0

un(r)einωt

]

then we can equate harmonics

ρinωun = Gn + µ∇2un

We assume no slip on the rigid artery walls

un = 0 on r = a

and a regularity condition on the cylinder axis (ur = 0 on r = 0).

The steady component (n = 0) is simply Poiseuille flow:

u0 =
G0a

2

4µ

(
1− r̂2

)
where r̂ = r/a

TCC, Bio-Fluid Mechanics March 2009 – p.4/11



The Womersley number

The unsteady (n > 0) parts un(r) obey a Bessel-like equation

d2un

dr̂2
+

1

r̂

dun

dr̂
− inα2un = −

Gna2

µ

where the frequency parameter α is given by

α2 =
ρωa2

µ
.

In a physiological context, α is known as the Womersley number, but similar parameters
are well known in other contexts by other names.

In the aorta, with a = 0.015, 2π/ω = 1 and ν = µ/ρ = 4× 10−6 we have

α = 18.8 in aorta, but smaller in smaller arteries.

From now on we will drop the hat on r̂ and regard r as a dimensionless variable.
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Unsteady solution

The ODE has a particular solution of a constant. The full solution with the boundary
condition can be written

un =
Gna2

inµα2

[
1−

J0(xr̂)

J0(x)

]
where x = i3/2

√
nα

where J0 is the Bessel function of order zero.
Near z = 0, approximately J0(z) ' 1− z2/4 whereas as z →∞ J0(iz) ' ez/(2πz)1/2

(in a suitable sector of the complex plane).

What does this solution mean? Consider the low and high frequency limits.

Low frequency limit:
As α→ 0, the asymptotics give

un =
Gna2

4µ
(1− r̂2)

the same form as for the steady part. This is the quasistatic limit. The ut term in the
PDE is negligible. As un is real, all of the time harmonics are in phase.
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High Frequency Limit

High frequency limit
In the aorta the Womersley number α ' 15 to 20 and so the limit α→∞ is more
appropriate there. Then we have

un =
Gna2

inµα2

(
1− exp

[
√
nα

(1 + i)
√

2
(r̂ − 1)

])

This is highly reminiscent of the Stokes layer on an oscillating flat plate, or the skin-depth
penetration of an alternating magnetic field into an electrical conductor.

On the surface r̂ = 1 we have un = 0, but the exponential term becomes negligible once
(1− r̂)α becomes large. Thus in the main body of the flow, we have un is constant, and
is independent of the viscosity. The flow simply oscillates in time according to the
pressure gradient, and the balance in the PDE is simply

ρ
∂u

∂t
= G(t).

However, close to the walls, in a layer of thickness O(α−1), the velocity adjusts rapidly to
zero. Furthermore, the phase of the time oscillation varies quickly with position across
the layer. The exponential decay of the higher frequencies is faster.
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Time-dependence of Flux

Comparison of the steady and unsteady solutions indicates that

u1

u0
∼
G1

G0

4

α2

Thus clearly, when α� 1, a relatively small steady component of the pressure gradient
gives rise to a steady velocity which is relatively much larger.

Integrating the Bessel function analytically, we can calculate the mean velocity

u =
1

πa2

∫ a

0
2πru dr =

a2

µ

[
G0

8
+ <e

∞∑

n=1

GnH(i3/2
√
nα)eniωt

]

where the function

H(x) =
1

x2
−

2J ′0(x)

x3J0(x)
.

The following diagram, from McDonald (1974), demonstrates that viscous effects can be
important even for the time behaviour of the mean flow rate. McDvisc.jpg
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Stress

We can also calculate the wall shear stress,

τ(t) = −µ
∂u

∂r
∣
∣
∣r=a

=
G0a

2
−<e

[
∞∑

n=1

aGn
J ′0(x)

xJ0(x)
eniωt

]

(writing x = i3/2
√
nα again.)

When α is large this is

τ '
G0a

2
−<e

∞∑

n=1

aGn

α

(1 + i)
√

2n
eniωt

If the steady and peak velocities are of the same order then G0 ∼ Gn/α2. The
unsteady part of the stress can therefore be expected to dominate near the wall for large
α, if the steady and unsteady velocities are comparable. This also means that the
velocity near the wall can reverse.

Here are some animations for different values of α and G0:

wom1.gif wom2.gif wom3.gif wom4.gif
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Limitations of the model

Assumes unidirectional flow

Assumes fully-developed flow

No interaction between harmonics

Predicts spatially uniform wall shear stress

It does however, give an exact solution, which affords
some insight. However, many features are misleading.

Can be applied also to respiration; periodic flow
without a mean component. Indeed, much of what we
say about blood flow in arteries also applies to air flow
in lungs.

TCC, Bio-Fluid Mechanics March 2009 – p.10/11



Limitations of the model

Assumes unidirectional flow

Assumes fully-developed flow

No interaction between harmonics

Predicts spatially uniform wall shear stress

It does however, give an exact solution, which affords
some insight. However, many features are misleading.

Can be applied also to respiration; periodic flow
without a mean component. Indeed, much of what we
say about blood flow in arteries also applies to air flow
in lungs.

TCC, Bio-Fluid Mechanics March 2009 – p.10/11



Limitations of the model

Assumes unidirectional flow

Assumes fully-developed flow

No interaction between harmonics

Predicts spatially uniform wall shear stress

It does however, give an exact solution, which affords
some insight. However, many features are misleading.

Can be applied also to respiration; periodic flow
without a mean component. Indeed, much of what we
say about blood flow in arteries also applies to air flow
in lungs.

TCC, Bio-Fluid Mechanics March 2009 – p.10/11



Limitations of the model

Assumes unidirectional flow

Assumes fully-developed flow

No interaction between harmonics

Predicts spatially uniform wall shear stress

It does however, give an exact solution, which affords
some insight. However, many features are misleading.

Can be applied also to respiration; periodic flow
without a mean component. Indeed, much of what we
say about blood flow in arteries also applies to air flow
in lungs.

TCC, Bio-Fluid Mechanics March 2009 – p.10/11



Limitations of the model

Assumes unidirectional flow

Assumes fully-developed flow

No interaction between harmonics

Predicts spatially uniform wall shear stress

It does however, give an exact solution, which affords
some insight. However, many features are misleading.

Can be applied also to respiration; periodic flow
without a mean component. Indeed, much of what we
say about blood flow in arteries also applies to air flow
in lungs.

TCC, Bio-Fluid Mechanics March 2009 – p.10/11



Limitations of the model

Assumes unidirectional flow

Assumes fully-developed flow

No interaction between harmonics

Predicts spatially uniform wall shear stress

It does however, give an exact solution, which affords
some insight. However, many features are misleading.
Can be applied also to respiration; periodic flow
without a mean component. Indeed, much of what we
say about blood flow in arteries also applies to air flow
in lungs.

TCC, Bio-Fluid Mechanics March 2009 – p.10/11



More general high frequency solution.

The crucial simplification in the Womersley solution was the neglect of the nonlinear
inertial term u · ∇u. In the limit of very high frequency it maybe justifiable to assume

∂u

∂t
� u · ∇u

even for more general geometry. Away from the Stokes layers on the walls we can
neglect the viscous terms also, giving the problem

∇ · u = 0, ρ
∂u

∂t
= −∇p,

together with no normal flow on the boundary u · n̂ = 0. This implies that the pressure p
is harmonic (∇2p = 0) and the flow is potential, oscillating in time out of phase with the
pressure gradient. Near the walls, we have oscillating Stokes layers, similar to those of
the Womersley solution. Predicts wall shear stress with spatial variation given by the slip
velocity of the potential flow solution.

This improved solution still neglects important nonlinear interactions and underplays the
effects of arterial curvature. We’ll begin to look at these next lecture.
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