BioFluids Lecture 4%: Ciliar swimming — the envelope model.

See the course Webpage: http://www.ma.ic.ac.uk/~ajm8/BioFluids

Many organisms employ large numbers of flagella (which we now call cilia) to generate
forward motion. The essence of ciliar swimming is that rather than have each flagellum
perform a travelling wave, a wave may be generated by suitable time lapses between cilia
undergoing a simple, identical motion. We will assume each cilium moves periodically.
Typically, this motion consists of a wide sweep at some distance from the boundary, which
we call the swimming stroke, followed by a recovery stroke with the cilium close to the
boundary. This may be likened to the technique of a child on a swing, although the
mechanical processes are very different. If the swimming stroke is in the same direction as
the travelling wave the motion is called simplectic, whereas if it is in the opposite direction
it is called antiplectic.

Each cilium might swim by itself if its motion is irreversible (remember the scallop
theorem.) However, the essence of ciliar swimming is that a large number of these motions
are superposed in a travelling wave-like manner. This kind of ciliar motion is also used
inside the body to transport mucus linings, for example in the lungs; there the fluid may
well be non-Newtonian, however.

We consider an organism with a planar surface y = 0 which is coated with an array of
cilia. We shall assume the cilia undergo a z-independent, sinusoidal travelling wave motion
in the z-direction. Thus as they wave around, the tip of the cilium tethered at (z, 0) is
at (s, ys) where

Ts = xg + acos(§ — @), Ys = Yo + bsin& where & = kxg — wt. (4.1)

Here z is a variable essentially labelling the cilia, whereas y is an average extension which
we will take to be the same for each cilium. We could easily extend the theory to include
z-dependence, but that would increase the algebra.

We will assume k£ > 0 and w > 0, so that the wave travels to the right with phase speed
k/w. We have included a phase factor ¢ to allow for various swimming modes. When the
cilium is fully extended (£ = 37) the -component of its tip velocity is dzs/0t = aw cos ¢,
so that the motion is simplectic for |¢| < 3.

Eliminating ¢ from(4.1), we find that the orbit of the cilium at position z is

[b(xs — xg) — asin ¢(ys — yoﬂ2 + a? cos® ¢(ys — yo)* = a*b? cos® ¢ (4.2)

so that the tip of each cilium (zs, ys) describes an ellipse.

Now the fluid is constrained to have the cilium velocity at each point (zs, ys). So if
the density of cilia is high enough we expect it will be reasonable to model the array of
cilia as a rigid sheet with shape (z, ys). This sheet is in some sense the envelope of the
ciliar motion. At each time instant ¢, the sheet shape is given parametrically in terms of
xo. Note that the sheet so defined will not in general be inextensible as we ensured for the
single flagellum. However, there is no reason why it should be, as it models a discrete set
of cilia.




We therefore consider the Stokes flow above the boundary given by (4.1). On this
boundary, the velocity must be given by

u= (8$S Oys 0) = (awsin(§ — ¢), —bw cos &, 0) on T ==Is, Yy =7Ys. (4.3)

ot’ ot’
Note that x appears implicitly in this equation through &. Combining (4.1) and (4.3) will

generate terms like sin n€ for all integers n.

We seek the solution to the Stokes equations in y > y, satisfying (4.3). As we have a
two-dimensional geometry, we can use a streamfunction v with

u=VA(0,0,%) = (b, —tb, 0) (4.4)
so that the Stokes equations reduce to the biharmonic equation for 1
Vp=pViu = V3V%)=0. (4.5)

We shall assume the amplitudes a and b of the wave motion are small (and of similar
order) compared to the wavelength, and seek a power series solution in ka, kb. We will
also need a boundary condition as y — oo. As we are using a frame fixed in the body, if
the organism swims the fluid at infinity will appear to move in the opposite direction, so

we expect
o Y
ay — U, 9 0 as y — 00, (4.6)

where positive U indicates the organism swims in the negative z-direction.

If we Fourier analyse in the z-direction, an appropriate set of separable solutions to
the biharmonic equation V4 = 0 are

Y= Z Vi, = Z [(Ay, + Bpn)sinné + (Cp, + Dypn) cosnél e " (4.7)
n=0 n=0

where we have written

n = ky, £ =kx — wt. (4.8)



