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The SPX volatility surface as of 15-Sep-2005

Figure 1: The SPX volatility surface as of 15-Sep-2005 (Figure 3.2 of
The Volatility Surface).
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Term structure of at-the-money skew

Given one smile for a fixed expiration, little can be said about
the process generating it.

In contrast, the dependence of the smile on time to expiration
is intimately related to the underlying dynamics.

In particular model estimates of the term structure of ATM
volatility skew defined as

ψ(τ) :=

∣∣∣∣ ∂∂k σBS(k , τ)

∣∣∣∣
k=0

.

are very sensitive to the choice of volatility dynamics in a
stochastic volatility model.
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Term structure of SPX ATM skew as of 15-Sep-2005

Figure 2: Term structure of ATM skew as of 15-Sep-2005, with power
law fit τ−0.44 superimposed in red.
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Stylized facts

Although the levels and orientations of the volatility surfaces
change over time, their rough shape stays very much the
same.

It’s then natural to look for a time-homogeneous model.

The term structure of ATM volatility skew

ψ(τ) ∼ 1

τα

with α ∈ (0.3, 0.5).
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Motivation for Rough Volatility I: Better fitting stochastic
volatility models

Conventional stochastic volatility models generate volatility
surfaces that are inconsistent with the observed volatility
surface.

In stochastic volatility models, the ATM volatility skew is
constant for short dates and inversely proportional to T for
long dates.
Empirically, we find that the term structure of ATM skew is
proportional to 1/Tα for some 0 < α < 1/2 over a very wide
range of expirations.

The conventional solution is to introduce more volatility
factors, as for example in the DMR and Bergomi models.

One could imagine the power-law decay of ATM skew to be
the result of adding (or averaging) many sub-processes, each
of which is characteristic of a trading style with a particular
time horizon.
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Bergomi Guyon

Define the forward variance curve ξt(u) = E [vu| Ft ].

According to [BG12], in the context of a variance curve
model, implied volatility may be expanded as

σBS(k,T ) = σ0(T ) +

√
w

T

1

2w2
C x ξ k + O(η2) (1)

where η is volatility of volatility, w =
∫ T

0 ξ0(s) ds is total
variance to expiration T , and

C x ξ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt
. (2)

Thus, given a stochastic model, defined in terms of an SDE,
we can easily (at least in principle) compute this smile
approximation.
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The Bergomi model

The n-factor Bergomi variance curve model reads:

ξt(u) = ξ0(u) exp

{
n∑

i=1

ηi

∫ t

0
e−κi (t−s) dW

(i)
s + drift

}
.

(3)

The Bergomi model generates a term structure of volatility
skew ψ(τ) that is something like

ψ(τ) =
∑
i

1

κi τ

{
1− 1− e−κi τ

κi τ

}
.

This functional form is related to the term structure of the
autocorrelation function.
Which is in turn driven by the exponential kernel in the
exponent in (3).
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Tinkering with the Bergomi model

Empirically, ψ(τ) ∼ τ−α for some α.

It’s tempting to replace the exponential kernels in (3) with a
power-law kernel.

This would give a model of the form

ξt(u) = ξ0(u) exp

{
η

∫ t

0

dWs

(t − s)γ
+ drift

}
which looks similar to

ξt(u) = ξ0(u) exp
{
ηWH

t + drift
}

where WH
t is fractional Brownian motion.
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Motivation for Rough Volatility II: Power-law scaling of the
historical volatility process

The Oxford-Man Institute of Quantitative Finance makes
historical realized variance (RV) estimates freely available at
http://realized.oxford-man.ox.ac.uk. These estimates
are updated daily.

Using daily RV estimates as proxies for instantaneous variance,
we may investigate the time series properties of vt empirically.

http://realized.oxford-man.ox.ac.uk
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The smoothness of the volatility process

For q ≥ 0, we define the qth sample moment of differences of
log-volatility at a given lag ∆1:

m(q,∆) = 〈|log σt+∆ − log σt |q〉

For example

m(2,∆) = 〈(log σt+∆ − log σt)
2〉

is just the sample variance of differences in log-volatility at the
lag ∆.

1〈·〉 denotes the sample average.
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Scaling of m(q,∆) with lag ∆

Figure 3: logm(q,∆) as a function of log ∆, SPX.
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Scaling of ζq with q

Figure 4: Scaling of ζq with q.
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Monofractal scaling result

From the log-log plot Figure 3, we see that for each q,
m(q,∆) ∝ ∆ζq .

And from Figure 4 the monofractal scaling relationship

ζq = q H

with H ≈ 0.13.

Note also that our estimate of H is biased high because we
proxied instantaneous variance vt with its average over each

day 1
T

∫ T

0
vt dt, where T is one day.

On the other hand, the time series of realized variance is noisy
and this causes our estimate of H to be biased low.

A time series of H for SPX following the methodology of
[BLP16] is shown in the next figure.
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The time series of α̂ = H − 1
2 for SPX

Figure 10: Half year rolling-window estimates of ↵ on the realized variance measures of the daily volatility by variogram OLS
regression (3.10) with m = 3. The pink area is the 95% confidence interval by bootstrap method with B = 999. The four
vertical dashed blue lines indicate four periods of market turmoil: Lehman Brothers filing for bankruptcy, the Flash Crash,
the first bailout during Greek debt crisis and the Brexit referendum.

20
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Distributions of (log σt+∆ − log σt) for various lags ∆

Figure 5: Histograms of (log σt+∆ − log σt) for various lags ∆; normal
fit in red; ∆ = 1 normal fit scaled by ∆0.14 in blue.
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Universality?

In [GJR14], we compute daily realized variance estimates over
one hour windows for DAX and Bund futures contracts,
finding similar scaling relationships.

We have also checked that Gold and Crude Oil futures scale
similarly.

Although the increments (log σt+∆ − log σt) seem to be fatter
tailed than Gaussian.

In [BLP16] Bennedsen et al., estimate volatility time series for
more than five thousand individual US equities, finding rough
volatility in every case.
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A natural model of realized volatility

Distributions of differences in the log of realized volatility are
close to Gaussian.

This motivates us to model σt as a lognormal random variable.

Moreover, the scaling property of variance of RV differences
suggests the model:

log σt+∆ − log σt = ν
(
WH

t+∆ −WH
t

)
(4)

where WH is fractional Brownian motion.

In [GJR14], we refer to a stationary version of (4) as the
RFSV (for Rough Fractional Stochastic Volatility) model.
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A Hawkes model of price formation

In [EFR16], El Euch, Fukasawa and Rosenbaum consider a
generalization of a simple model of price dynamics in terms of
Hawkes processes due to Bacry et al. ([BM14]) with the following
properties:

Reflecting the high degree of endogeneity of the market, the
L1 norm of the kernel matrix is close to one (nearly unstable).

No drift in the price process imposes a relationship between
buy and sell kernels.

Liquidity asymmetry: The average impact of a sell order is
greater than the impact of a buy order.

Splitting of metaorders motivates power-law decay of the
Hawkes kernels ϕ(τ) ∼ τ−(1+α) (empirically α ≈ 0.6).
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The scaling limit of the price model

They construct a sequence of such Hawkes processes suitably
rescaled in time and space that converges in law to a Rough
Heston process of the form

dSt
St

=
√
vt dZt

vt = v0 +
λ

Γ(α)

∫ t

0

θ − vs
(t − s)1−α ds +

λ ν

Γ(α)

∫ t

0

√
vs dWs

(t − s)1−α

with
d〈Z ,W 〉t = ρ dt.

The correlation ρ is related to a liquidity asymmetry
parameter.
Rough volatility can thus be understood as relating to the
persistence of order flow and the high degree of endogeneity
of liquid markets.
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The characteristic function

Define the fractional integral and differential operators:

I 1−αf (t) =
1

Γ(1− α)

∫ t

0

f (s)

(t − s)α
ds; Dαf (t) =

d

dt
I 1−αf (t).

Remarkably, in [ER16], El Euch and Rosenbaum compute the
following expression for the characteristic function of the Rough
Heston model:

φt(u) = exp

{
θ λ

∫ t

0
h(u, s) ds + v0 I

1−αh(u, t)

}
where h(u, ) solves the fractional Riccati equation

Dαh(u, s) = −1

2
u (u + i) + λ (i ρ ν u − 1) h(u, s) +

(λ ν)2

2
h2(u, s).
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Representations of fBm

There are infinitely many possible representations of fBm in terms
of Brownian motion. For example, with γ = 1

2 − H,

Mandelbrot-Van Ness

WH
t = CH

{∫ t

−∞

dWs

(t − s)γ
−
∫ 0

−∞

dWs

(−s)γ

}
.

where the choice

CH =

√
2H Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)

ensures that

E
[
WH

t WH
s

]
=

1

2

{
t2H + s2H − |t − s|2H

}
.
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Pricing under rough volatility

Once again, the data suggests the following model for volatility
under the real (or historical or physical) measure P:

log σt = νWH
t .

Let γ = 1
2 − H. We choose the Mandelbrot-Van Ness

representation of fractional Brownian motion WH as follows:

WH
t = CH

{∫ t

−∞

dWP
s

(t − s)γ
−
∫ 0

−∞

dWP
s

(−s)γ

}
where the choice

CH =

√
2H Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)

ensures that

E
[
WH

t WH
s

]
=

1

2

{
t2H + s2H − |t − s|2H

}
.
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Pricing under rough volatility

Then

log vu − log vt

= ν CH

{∫ u

t

1

(u − s)γ
dWP

s +

∫ t

−∞

[
1

(u − s)γ
− 1

(t − s)γ

]
dWP

s

}
=: 2 ν CH [Mt(u) + Zt(u)] . (5)

Note that EP [Mt(u)| Ft ] = 0 and Zt(u) is Ft-measurable.

To price options, it would seem that we would need to know
Ft , the entire history of the Brownian motion Ws for s < t!
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Pricing under P

Let

W̃P
t (u) :=

√
2H

∫ u

t

dWP
s

(u − s)γ

With η := 2 ν CH/
√

2H we have 2 ν CH Mt(u) = η W̃P
t (u) so

denoting the stochastic exponential by E(·), we may write

vu = vt exp
{
ηW̃P

t (u) + 2 ν CH Zt(u)
}

= EP [vu| Ft ] E
(
η W̃P

t (u)
)
. (6)

The conditional distribution of vu depends on Ft only through
the variance forecasts EP [vu| Ft ],

To price options, one does not need to know Ft , the entire
history of the Brownian motion WP

s for s < t.
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Pricing under Q

Our model under P reads:

vu = EP [vu| Ft ] E
(
η W̃P

t (u)
)
. (7)

Consider some general change of measure

dWP
s = dWQ

s + λs ds,

where {λs : s > t} has a natural interpretation as the price of
volatility risk. We may then rewrite (7) as

vu = EP [vu| Ft ] E
(
η W̃Q

t (u)
)

exp

{
η
√

2H

∫ u

t

λs
(u − s)γ

ds

}
.

Although the conditional distribution of vu under P is
lognormal, it will not be lognormal in general under Q.

The upward sloping smile in VIX options means λs cannot be
deterministic in this picture.
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The rough Bergomi (rBergomi) model

Let’s nevertheless consider the simplest change of measure

dWP
s = dWQ

s + λ(s) ds,

where λ(s) is a deterministic function of s. Then from (27), we
would have

vu = EP [vu| Ft ] E
(
η W̃Q

t (u)
)

exp

{
η
√

2H

∫ u

t

1

(u − s)γ
λ(s) ds

}
= ξt(u) E

(
η W̃Q

t (u)
)

(8)

where the forward variances ξt(u) = EQ [vu| Ft ] are (at least in
principle) tradable and observed in the market.

ξt(u) is the product of two terms:
EP [vu| Ft ] which depends on the historical path {Ws , s < t}
of the Brownian motion
a term which depends on the price of risk λ(s).
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Features of the rough Bergomi model

The rBergomi model is a non-Markovian generalization of the
Bergomi model:

E [vu| Ft ] 6= E[vu|vt ].

The rBergomi model is Markovian in the (infinite-dimensional)
state vector EQ [vu| Ft ] = ξt(u).

We have achieved our aim of replacing the exponential kernels
in the Bergomi model (3) with a power-law kernel.

We may therefore expect that the rBergomi model will
generate a realistic term structure of ATM volatility skew.



Motivation Modeling Pricing Applications Calibration

The stock price process

The observed anticorrelation between price moves and
volatility moves may be modeled naturally by anticorrelating
the Brownian motion W that drives the volatility process with
the Brownian motion driving the price process.

Thus
dSt
St

=
√
vt dZt

with
dZt = ρ dWt +

√
1− ρ2 dW⊥

t

where ρ is the correlation between volatility moves and price
moves.
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Hybrid simulation of BSS processes

In [BFG16], we simulate the rBergomi model by generating
paths of W̃ and Z with the correct joint marginals using
Cholesky decomposition.

This is very slow!

The rBergomi variance process is a special case of a Brownian
Semistationary (BSS) process.

In [BLP15], Bennedsen et al. show how to simulate such
processes more efficiently.

Their hybrid BSS scheme is much more efficient than the exact
simulation described above.
However, it is still not fast enough to enable efficient
calibration of the Rough Bergomi model to the volatility
surface.
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Guessing rBergomi model parameters

The rBergomi model has only three parameters: H, η and ρ.

These parameters have very direct interpretations:

H controls the decay of ATM skew ψ(τ) for very short
expirations
The product ρ η sets the level of the ATM skew for longer
expirations.
Keeping ρ η constant but decreasing ρ (so as to make it more
negative) pushes the minimum of each smile towards higher
strikes.

So we can guess parameters in practice.



Motivation Modeling Pricing Applications Calibration

SPX smiles in the rBergomi model

In Figure 7, we show how well a rBergomi model simulation
with guessed parameters fits the SPX option market as of
August 14, 2013, one trading day before the third Friday
expiration.

Options set at the open of August 16, 2013 so only one
trading day left.

rBergomi parameters were: H = 0.05, η = 2.3, ρ = −0.9.

Only three parameters to get a very good fit to the whole SPX
volatility surface!

Note in particular that the extreme short-dated smile is well
reproduced by the rBergomi model.

There is no need to add jumps!



Motivation Modeling Pricing Applications Calibration

SPX smiles as of August 14, 2013

Figure 6: Red and blue points represent bid and offer SPX implied
volatilities; orange smiles are from the rBergomi simulation.
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The one-month SPX smile as of August 14, 2013

Figure 7: Red and blue points represent bid and offer SPX implied
volatilities; the orange smiles is from the rBergomi simulation.
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ATM volatilities and skews

In Figures 8 and 9, we see just how well the rBergomi model can
match empirical ATM vols and skews. Recall also that the
parameters we used are just guesses!
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Term structure of ATM vol as of August 14, 2013

Figure 8: Blue points are empirical ATM volatilities; green points are
from the rBergomi simulation. The two match very closely, as they
should.
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Term structure of ATM skew as of August 14, 2013

Figure 9: Blue points are empirical skews; the red line is from the
rBergomi simulation.
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The forecast formula

In the RFSV model (4), log vt ≈ 2 νWH
t + C for some

constant C .

[NP00] show that WH
t+∆ is conditionally Gaussian with

conditional expectation

E[WH
t+∆|Ft ] =

cos(Hπ)

π
∆H+1/2

∫ t

−∞

WH
s

(t − s + ∆)(t − s)H+1/2
ds

and conditional variance

Var[WH
t+∆|Ft ] = c ∆2H .

where

c =
Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)
.
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The forecast formula

Thus, we obtain

Variance forecast formula

EP [vt+∆| Ft ] = exp
{
EP [ log(vt+∆)| Ft ] + 2 c ν2∆2H

}
(9)

where

EP [ log vt+∆| Ft ]

=
cos(Hπ)

π
∆H+1/2

∫ t

−∞

log vs
(t − s + ∆)(t − s)H+1/2

ds.

[BLP16] confirm that this forecast outperforms the best
performing existing alternatives such as HAR, at least at daily
or higher timescales.
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Calibration

As mentioned earlier, calibration of the rBergomi model is not
easy.

We have investigated a number of approaches to calibration

Asymptotic expansions
Chebyshev interpolation
Moment matching

So far, we cannot claim to have had real success with any of
these approaches.
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Calibration using Chebyshev interpolation

Christian Bayer and I tried calibrating the Rough Bergomi model
to the volatility surface as follows:

For a given set of 3 parameters, compute option prices using
the hybrid BSS scheme [BLP15]. Compute a suitably chosen
objective function.

Following a suggestion of Kathrin Glau,

Repeat this 125 times on a 5x5x5 grid of Chebyshev knots.
Use Chebyshev interpolation to fill in the gaps.
Find the minimum of the objective.
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Despite that the hybrid scheme is very much faster than the
Cholesky exact simulation scheme used in [BFG16], this
procedure still took 2 hours running in parallel on 32 CPUs.

The problem is that over one million paths are needed to get
Monte Carlo error down to a level that allows resolution of the
minimum of the objective function.

Another idea is to find some quantity, such as the variance
swap, that is exactly computable in the model, and may be
accurately estimated from market prices.
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The Alòs decomposition formula

Following Elisa Alòs in [Alò12], let Xt = log St/K and consider the
price process

dXt = σt dZt −
1

2
σ2
t dt. (10)

Now let F (Xt ,wt) (Ft for short) be some function that solves the
Black-Scholes equation.

Specifically,

−∂wFt +
1

2
(∂x ,x − ∂x)Ft = 0. (11)
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We define

wt(T ) = E
[∫ T

t
σ2
s ds

∣∣∣∣Ft

]
=

∫ T

t
ξt(u) du.

where the ξt(u) are forward variances.

wt(T ) then represents the value of the static hedge portfolio
(the log-strip) for a variance swap and is thus a tradable asset
in the terminology of Fukasawa [Fuk14].

For each u, ξt(u) is a martingale in t so we may write

dwt(T ) = −σ2
t dt +

∫ T

t
dξt(u) du =: −σ2

t dt + dMt (12)

where M is a martingale.
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Applying Itô’s Lemma to F , taking conditional expectations,
simplifying using the Black-Scholes equation and integrating, we
obtain

Theorem (The Itô Decomposition Formula of Alòs)

E [FT | Ft ] = Ft + E
[∫ T

t
∂x ,wFs d〈X ,M〉s

∣∣∣∣Ft

]
+

1

2
E
[∫ T

t
∂w ,wFs d〈M,M〉s

∣∣∣∣Ft

]
.

(13)

Note in particular that (13) is an exact decomposition.
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Notation

We adopt the following notation for the Bergomi-Guyon
autocorrelation functionals:

CXM
t (T ) = E

[∫ T

t
d〈X ,M〉s

∣∣∣∣Ft

]
CMM
t (T ) = E

[∫ T

t
d〈M,M〉s

∣∣∣∣Ft

]
. (14)

In the notation of [BG12], CXM
t (T ) = C xξ and

CMM
t (T ) = C ξξ.
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Conditional variance of XT

Consider

Ft = X 2
t + wt(T ) (1− Xt) +

1

4
wt(T )2.

Ft satisfies the Black-Scholes equation and FT = X 2
T .

∂x,wFt = −1 and ∂w ,wFt = 1
2 .

Plugging into the Decomposition Formula (13) gives

E
[
X 2
T

∣∣Ft

]
= wt(T ) +

1

4
wt(T )2 − E

[∫ T

t
d〈Y ,M〉s

∣∣∣∣Ft

]
+

1

4
E
[∫ T

t
d〈M,M〉s

∣∣∣∣Ft

]
= wt(T ) +

1

4
wt(T )2 − CXM

t (T ) +
1

4
CMM
t (T ).
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Volatility stochasticity

We can rewrite this as

Lemma

ζt(T ) := var[XT |Ft ]− wt(T ) = −CXM
t (T ) +

1

4
CMM
t (T ). (15)

Recall that in a stochastic volatility model, the variance of the
terminal distribution of the log-underlying is not in general
equal to the expected quadratic variation.

In the Black-Scholes model of course ζt(T ) = 0.

We term the difference ζt(T ) volatility stochasticity or just
stochasticity.
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Model calibration

Once again, equation (15) reads

ζt(T ) = −CXM
t (T ) +

1

4
CMM
t (T ).

The LHS may be estimated from the volatility surface using
the spanning formula.

ζt(T ) is a tradable asset for each T .
We get a matching condition for each expiry Ti , i ∈ {1, ..n}.

The RHS may typically be computed in a given model as a
function of model parameters.

If so, we would be able calibrate such a model directly to
tradable assets with no need for any expansion.
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ζt(T ) from the smile

Let

d±(k) =
−k

σBS(k,T )
√
T
± σBS(k ,T )

√
T

2

and following Fukasawa, denote the inverse functions by
g±(z) = d−1

± (z). Further define

σ(z) = σBS(g−(z),T )
√
T .



Motivation Modeling Pricing Applications Calibration

In terms of the implied volatility smile, it is a well-known corollary
of Matytsin’s characteristic function representation in [Mat00], that

wt(T ) =

∫
dz N ′(z)σ2(z) =: σ̄2.

Similarly, we can show that

ζt(T ) =
1

4

∫
N ′(z)

[
σ2(z)− σ̄2

]2
dz +

2

3

∫
N ′(z) z σ3(z) dz .

(16)
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Example: The Heston model

Consider the Heston model

dvt = −λ (vt − θ) dt + η
√
v dWt

with d〈W ,Z 〉t = ρ dt.

As is typical in the Heston model, everything may be
computed explicitly.

With τ = T − t,

wt(T ) = (vt − θ)
1− e−λ τ

λ
+ θ τ.

Likewise we may compute both the LHS and RHS of

ζt(T ) = −CXM
t (T ) +

1

4
CMM
t (T ).



Motivation Modeling Pricing Applications Calibration

We find

CXM
t (T ) =

ρ η

λ2

{
(vt − θ)

[
1− e−λτ (1 + λτ)

]
+θ

(
e−λτ − 1 + λτ

)}
CMM
t (T ) =

η2

λ3

{(
1− 2λτ e−λτ − e−2λτ

)
(vt − θ)

+
1

2
θ

[
2
(
e−λτ − 1 + λτ

)
−
(

1− e−λτ
)2
]}

.

Compare with the small η Bergomi-Guyon expansion which
gives only approximate expressions for ATM level, skew and
curvature.
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The Rough Bergomi model

The rBergomi model reads

St = S0 E
(∫ t

0

√
vu dZu

)
vu = ξ0(u) E

(
η̃

∫ u

0

dWs

(u − s)γ

)
.

with γ = 1
2 − H and η̃ = η

√
2H. Then

dSt
St

=
√
ξt(t) dZt ,

dξt(u)

ξt(u)
= η̃

dWt

(u − t)γ

with E[dZt dWt ] = ρ dt.
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CXM
t (T ) and CMM

t (T ) are then computed as:

CXM
t (T )

= ρ η̃

∫ T

t

ds
√
ξt(s)

∫ T

s

ξt(u) exp

{
η̃2

2
(s − t)2 H

[
Gγ

(
u − t

s − t

)
− 1

8H

]}
du

(u − s)γ

and

CMM
t (T )

= 2 η̃2

∫ T

t

ξt(v) dv

∫ v

t

ξt(u) du

[
exp

{
η̃2 (u − t)2H Gγ

(
v − t

u − t

)}
− 1

]
.

where for y ≥ 1,

Gγ(y) =

∫ 1

0

dr

(y − r)γ (1− r)γ

=
1

(1− γ) (y − 1)
y1−γ

2F1

(
1, 2− 2γ; 2− γ;

y

y − 1

)
.
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A numerical experiment

We start with SPX options as of February 4, 2010, noting all
strikes and expirations with nonzero bid prices.

Starting from model with parameters chosen to more or less
fit the observed smiles, for these strikes and expirations, we
replace market option prices with model option prices and
compute implied volatilities.

We then check to see how consistent robust estimates of
stochasticity from these (fake) market smiles are with known
values.
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Heston stochasticity: robust estimates vs exact

Figure 10: Plot of ζt(T )
T 3/2 vs time to expiry. The blue line is the exact

Heston formula, the red dots are robust estimates from the Heston
implied volatility smiles using (16).
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Remarks on the experiment

In Figure 10, we note that some of the red points are off.

For these expirations, there are insufficient strikes to accurately
estimate the integrals in

ζt(T ) =
1

4

∫
N ′(z)

[
σ2(z)− σ̄2

]2
dz +

2

3

∫
N ′(z) z σ3(z) dz .

Despite this, Heston parameters may be accurately recovered
from the fake smiles.

To generate Figure 10, we used flat extrapolation of the smile
beyond available strikes, as in [Fuk12].

What happens if we extrapolate using SVI?
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Heston stochasticity: robust estimates vs exact

Figure 11: Plot of ζt(T )
T 3/2 vs time to expiry. The blue line is the exact

Heston formula, the red and green dots are robust estimates using flat
and SVI extrapolation respectively. We note significant sensitivity to the
extrapolation method.
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rBergomi stochasticity: robust estimates vs exact

Figure 12: Plot of ζt(T )
T 3/2 vs time to expiry. The blue line is the exact

computation, the red and green dots are robust estimates using flat and
SVI extrapolation respectively. We note even greater sensitivity to the
extrapolation method.
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One particular rBergomi volatility smile

Figure 13: The fake rBergomi 22-Dec-2012 expiration smile (2.88 years)
as of 04-Feb-2010. The blue points are market strikes; the dotted line is
the model generated smile.
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rBergomi stochasticity: robust estimates vs exact again

Figure 14: Plot of ζt(T )
T 3/2 vs time to expiry. The blue line is the exact

computation, the red and green dots are robust estimates using flat and
SVI extrapolation respectively. The orange points use the whole smile in
Figure 13.
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Interim conclusion

rBergomi stochasticity is very sensitive to the extrapolation
method in practice.

There are insufficiently many strikes available in the market for
robust estimation of rBergomi stochasticity.
Calibration of model parameters by matching model and
market stochasticity would then need a very (unrealistically?)
good smile extrapolation method.

Though matching model and market stochasticity is a nice
idea in theory, we have not yet found a smile extrapolation
method to make it work in practice.
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Plot integrands

We now plot the various integrands for the fake rBergomi
22-Dec-2012 expiration smile to visualize sensitivity to the
extrapolation method.

Recall that the variance swap is given by

σ̄2 =

∫
dz N ′(z)σ2(z)

and stochasticity by

ζt(T ) =
1

4

∫
N ′(z)

[
σ2(z)− σ̄2

]2
dz +

2

3

∫
N ′(z) z σ3(z) dz

=:
1

4
I4 +

2

3
I3.
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The variance swap integrand

Figure 15: Plot of N ′(z)σ2(z). The solid line corresponds to strikes
available in the market. 10% of the integral is sensitive to extrapolation.
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The stochasticity integrand I4

Figure 16: Plot of N ′(z)
[
σ2(z)− σ̄2

]2
. The solid line corresponds to

strikes available in the market. 28% of the integral is sensitive to
extrapolation.
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The stochasticity integrand I3

Figure 17: Plot of N ′(z) z σ3(z). The solid line corresponds to strikes
available in the market. 29% of the integral is sensitive to extrapolation.
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Summary

We uncovered a remarkable monofractal scaling relationship in
historical volatility which now appears to be universal.

This leads to a natural non-Markovian stochastic volatility
model under P.

The resulting volatility forecast beats existing alternatives.

The simplest specification of dQ
dP gives a non-Markovian

generalization of the Bergomi model.
The history of the Brownian motion {Ws , s < t} required for
pricing is encoded in the forward variance curve, which is
observed in the market.

This model fits the observed volatility surface surprisingly well
with very few parameters.
Efficient calibration of the model to the volatility surface
remains an open problem.

Matching model and market stochasticity is still work in
progress.
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