Stochastic Radner equilibria and a system of quadratic BSDEs

Hao Xing

London School of Economics

joint work with Kostas Kardaras, Gordan Žitković

London-Paris Bachelier workshop on Mathematical Finance, London, September 26, 2015

```
Agent: for i = 1, \ldots, d,
```

- 1. utility: $U_i(x) = -e^{-x/\delta_i}$, $\delta_i > 0$,
- 2. random endowment: $E^i \in \mathbb{L}^0(\mathcal{F}_T)$.

Agent: for $i = 1, \ldots, d$,

1. utility: $U_i(x) = -e^{-x/\delta_i}$, $\delta_i > 0$,

2. random endowment: $E^i \in \mathbb{L}^0(\mathcal{F}_T)$.

Market: a single risky asset with return

$$dB_t^{\lambda} = \lambda_t dt + dB_t,$$

Agent: for
$$i = 1, \ldots, d$$
,

- 1. utility: $U_i(x) = -e^{-x/\delta_i}$, $\delta_i > 0$,
- 2. random endowment: $E^i \in \mathbb{L}^0(\mathcal{F}_T^{B,W})$.

Market: a single risky asset with return

$$dB_t^{\lambda} = \lambda_t dt + dB_t,$$
 $W \perp B.$

Agent: for $i = 1, \ldots, d$,

- 1. utility: $U_i(x) = -e^{-x/\delta_i}$, $\delta_i > 0$,
- 2. random endowment: $E^i \in \mathbb{L}^0(\mathcal{F}_T^{B,W})$.

Market: a single risky asset with return

$$dB_t^{\lambda} = \lambda_t dt + dB_t,$$
 $W \perp \!\!\!\! \perp B.$

Equilibrium: λ , $(\pi_i)_{1 \leq i \leq d}$,

- 1. Utility maximization: $\mathbb{E}\left[U_i(\pi_i\cdot B_T^{(\lambda)}+E^i)\right] o \mathsf{Max};$
- 2. Market clearing: $\sum_{i=1}^{d} \pi_i = 0$.

Completeness

All future risk can be exchanged for upfront cash.

[Duffie 01], [Karatzas-Shreve 98], and many many others.

Completeness

All future risk can be exchanged for upfront cash.

[Duffie 01], [Karatzas-Shreve 98], and many many others.

Representative agent method

$$U_{rep}(c;\gamma) := \sup_{\sum c^i = c} \sum_{i=1}^d \gamma_i U^i(c^i).$$

The problem reduces to find the weight $(\gamma_i)_i$.

- Equilibrium is Pareto optimal.
- All agents share the same pricing measure:

$$M_T^{com} \propto U_{rep}'(c; \gamma).$$

[Breeden 79]

Incompleteness

Discrete time:

[Radner 82] extended the classical Arrow-Debreu model.

[Hart 75] gave a counter-example that equilibrium may not exist.

[Duffie-Shafer 85, 86] showed equilibrium exists for generic endowments.

Incompleteness

Discrete time:

[Radner 82] extended the classical Arrow-Debreu model.

[Hart 75] gave a counter-example that equilibrium may not exist.

[Duffie-Shafer 85, 86] showed equilibrium exists for generic endowments.

Continuous time: long standing open problem

[Cuoco-He 94]

[Žitković 12]

[Zhao 12], [Choi-Larsen 14]

[Christensen-Larsen-Munk 12], [Christensen-Larsen 14]

Our results

Our goal: Global existence

- 1. Non-Markovian case: (http://arxiv.org/abs/1505.07224)
 - unbounded endowment
 - equilibrium exists, when endowments are close to Pareto optimality
 - equilibrium exists when
 - i) many similar agents, or
 - ii) small time horizon
- 2. Markovian case: [Benoussan-Frehse 02]

working progress with G. Žitković

- bounded terminal condition
- global existence
- add probabilistic flavor to the proof of [Benoussan-Frehse 02]

Risk-aware reparametrization

Define

$$G^i = rac{1}{\delta^i} E^i$$
 and $ho^i = rac{1}{\delta^i} \pi^i$.

Then the market clearing condition is

$$A[\rho] = \sum_{i} \alpha^{i} \rho^{i} = 0,$$

where $\alpha^i = \delta^i/(\sum_i \delta^i)$ with $\sum_i \alpha^i = 1$.

Risk-aware reparametrization

Define

$$G^i = \frac{1}{\delta^i} E^i$$
 and $\rho^i = \frac{1}{\delta^i} \pi^i$.

Then the market clearing condition is

$$A[\rho] = \sum_{i} \alpha^{i} \rho^{i} = 0,$$

where $\alpha^i = \delta^i / (\sum_i \delta^i)$ with $\sum_i \alpha^i = 1$.

We look for equilibrium λ in bmo (or $H_{\rm BMO}$).

$$extstyle extstyle ext$$

Assumptions on endowments

We assume, following [Delbaen et al. 02],

G is bounded from above with $\mathbb{E}[e^{-(1+\epsilon)G}] < \infty$ for some $\epsilon > 0$.

Assumptions on endowments

We assume, following [Delbaen et al. 02],

G is bounded from above with $\mathbb{E}[e^{-(1+\epsilon)G}] < \infty$ for some $\epsilon > 0$.

Define

$$X_t^G = -\log \mathbb{E}_t[\exp(-G)], \quad t \in [0, T],$$

and (m, n) via the following BSDE

$$dX_t^G = m_t dB_t + n_t dW_t + \frac{1}{2}(m_t^2 + n_t^2)dt, \quad X_T^G = G.$$

We assume

$$(m,n) \in bmo$$

Assumptions on endowments

We assume, following [Delbaen et al. 02],

G is bounded from above with $\mathbb{E}[e^{-(1+\epsilon)G}] < \infty$ for some $\epsilon > 0$.

Define

$$X_t^G = -\log \mathbb{E}_t[\exp(-G)], \quad t \in [0, T],$$

and (m, n) via the following BSDE

$$dX_t^G = m_t dB_t + n_t dW_t + \frac{1}{2}(m_t^2 + n_t^2)dt, \quad X_T^G = G.$$

We assume

$$(m,n) \in bmo$$

In particular, when G is bounded, these assumptions are satisfied.

BSDE characterization of equilibria

Certainty-equivalent process

$$\exp(-Y_t^{\lambda,G}) = \text{ess sup}_{\rho} \mathbb{E}_t[\exp(-\rho \cdot B_T^{\lambda} + \rho \cdot B_t^{\lambda} - G)], \quad t \in [0,T].$$

BSDE characterization of equilibria

Certainty-equivalent process

$$\exp(-Y_t^{\lambda,G}) = \text{ess sup}_{\rho} \mathbb{E}_t[\exp(-\rho \cdot B_T^{\lambda} + \rho \cdot B_t^{\lambda} - G)], \quad t \in [0,T].$$

Theorem

For $\lambda \in bmo$, the following are equivalent:

- 1. λ is an equilibrium;
- 2. $\lambda = A[\mu] = \sum_{i} \alpha^{i} \mu^{i}$ for some solution $(Y^{i}, \mu^{i}, \nu^{i})_{i}$ of the BSDE system

$$dY_t^i = \mu_t^i dB_t + \nu_t^i dW_t + \left(\frac{1}{2}(\nu_t^i)^2 - \frac{1}{2}\lambda_t^2 + \lambda_t \mu_t^i\right) dt,$$

$$Y_T^i = G^i, \quad i \in \{1, 2, \dots, I\},$$

and $(\mu^i, \nu^i) \in bmo$ for all i.

System of quadratic BSDEs

Open problem: [Peng 99]

- ▶ [Darling 95], [Blache 05, 06]: Harmonic map
- ► [Tang 03]: Riccati system
- ► [Tevzadze 08]: existence when terminal condition is small
- ► [Frei-dos Reis 11]: counter example
- ▶ [Cheridito-Nam 14]: generator f + z g, f and g are Lipschitz
- ► [Hu-Tang 14]: diagonally quadratic
- ▶ [Jamneshan-Kupper-Luo 15]: cases not covered by [Tevzadze 08]

System of quadratic BSDEs

Open problem: [Peng 99]

- ▶ [Darling 95], [Blache 05, 06]: Harmonic map
- ▶ [Tang 03]: Riccati system
- ► [Tevzadze 08]: existence when terminal condition is small
- ► [Frei-dos Reis 11]: counter example
- ▶ [Cheridito-Nam 14]: generator f + z g, f and g are Lipschitz
- ► [Hu-Tang 14]: diagonally quadratic
- ▶ [Jamneshan-Kupper-Luo 15]: cases not covered by [Tevzadze 08]

Applications:

- Stochastic differential game: [Bensoussan-Frehse 02], [El Karoui-Hamadène 03]
- ▶ Relative performance: [Espinosa-Touzi 13], [Frei-dos Reis 11], [Frei 14]:
- Equilibrium pricing: [Cheridito-Horst-Kupper-Pirvu 12]:
- ► Market making: [Kramkov-Pulido 14]

Pareto optimality

 $(\xi^i)_i$ is Pareto optimal if there is no $\sum_i \alpha^i \xi^i$ -feasible allocation which is strictly better off.

Lemma

 $(G^i)_i$ is Pareto optimal if and only if there exists ξ^c and constants $(c^i)_i$ such that

$$G^i = \xi^c + c^i$$
, for all i.

Pareto optimality

 $(\xi^i)_i$ is Pareto optimal if there is no $\sum_i \alpha^i \xi^i$ -feasible allocation which is strictly better off.

Lemma

 $(G^i)_i$ is Pareto optimal if and only if there exists ξ^c and constants $(c^i)_i$ such that

$$G^i = \xi^c + c^i$$
, for all i.

Distance to Pareto optimality:

$$H(G) = \inf_{\xi^c} \max_i \left\| \left(m^i - m^c, n^i - n^c \right) \right\|_{\text{bmo}(\mathbb{P}^c)},$$

where $d\mathbb{P}^c/d\mathbb{P} = \mathcal{E}(-m^c \cdot B - n^c \cdot W)_T = \exp(-\xi^c)/\mathbb{E}[\exp(-\xi^c)].$

First main result (non-Markovian)

Theorem

Suppose that

$$H(G) < \frac{3}{2} - \sqrt{2} \approx 0.0858.$$

Then, there exists a unique equilibrium $\lambda \in bmo$.

First main result (non-Markovian)

Theorem

Suppose that

$$H(G) < \frac{3}{2} - \sqrt{2} \approx 0.0858.$$

Then, there exists a unique equilibrium $\lambda \in bmo$.

- Global uniqueness, similar to [Kramkov-Pulido 14].
- Uniqueness for the quadratic system as well.

Two corollaries

Smallness in size:

lf

$$\inf_{\xi^c} \max_i \left\| G^i - \xi^c \right\|_{\mathbb{L}^{\infty}} < \left(\frac{3 - 2\sqrt{2}}{4} \right)^2.$$

Then ∃! equilibrium.

For a given total endowment $E_{\Sigma} \in \mathbb{L}^{\infty}$, equilibrium exists among sufficient more sufficient homogeneous agent.

Two corollaries

Smallness in size:

lf

$$\inf_{\xi^c} \max_i \left\| G^i - \xi^c \right\|_{\mathbb{L}^{\infty}} < \left(\frac{3 - 2\sqrt{2}}{4} \right)^2.$$

Then ∃! equilibrium.

For a given total endowment $E_{\Sigma} \in \mathbb{L}^{\infty}$, equilibrium exists among sufficient more sufficient homogeneous agent.

Smallness in time:

If $D^b(G^i - \xi^c)$, $D^w(G^i - \xi^c) \in S^{\infty}$, for some ξ^c and all i. Then a unique equilibrium exists when

$$T < T^* = \frac{\left(\frac{3}{2} - \sqrt{2}\right)^2}{\max_i \left(\|D^b(G^i - \xi^c)\|_{\mathcal{S}^{\infty}}^2 + \|D^w(G^i - \xi^c)\|_{\mathcal{S}^{\infty}}^2 \right)}.$$

Outline of proof

$$dY_t^i = \mu_t^i dB_t + \nu_t^i dW_t + \left(\frac{1}{2}(\nu_t^i)^2 - \frac{1}{2}\lambda_t^2 + \lambda_t \mu_t^i\right) dt, \quad Y_T^i = G^i.$$

where $\lambda = A[\mu]$.

Consider the excess-demand map

$$F: \lambda \mapsto A[\mu].$$

A fixed point in bmo gives a solution.

Outline of proof

$$dY_t^i = \mu_t^i dB_t + \nu_t^i dW_t + \left(\frac{1}{2}(\nu_t^i)^2 - \frac{1}{2}\lambda_t^2 + \lambda_t \mu_t^i\right) dt, \quad Y_T^i = G^i.$$

where $\lambda = A[\mu]$.

Consider the excess-demand map

$$F: \lambda \mapsto A[\mu].$$

A fixed point in bmo gives a solution.

1. A priori estimate: if λ is an equilibrium, then

$$\|\lambda\|_{\mathtt{bmo}} \leq \max_{i} \left\| (m^{i}, n^{i}) \right\|_{\mathtt{bmo}}.$$

2. Suppose $\max_{i} \|(m^{i}, n^{i})\|_{\text{hmo}} \leq \epsilon$,

F is a contraction on $B(a\epsilon)$ for some a > 1.

An allocation G is pre-Pareto if there exists an equilibrium λ such that

$$\tilde{G} = G + \rho^{\lambda,G} \cdot B_T^{\lambda}$$

is Pareto optimal.

An allocation G is pre-Pareto if there exists an equilibrium λ such that

$$\tilde{G} = G + \rho^{\lambda,G} \cdot B_T^{\lambda}$$

is Pareto optimal.

For pre-Pareto G, the system can be explicitly solved.

An allocation ${\it G}$ is pre-Pareto if there exists an equilibrium λ such that

$$\tilde{G} = G + \rho^{\lambda,G} \cdot B_T^{\lambda}$$

is Pareto optimal.

For pre-Pareto G, the system can be explicitly solved.

Fix a pre-Pareto G^p , consider the relative system.

An allocation G is pre-Pareto if there exists an equilibrium λ such that

$$\tilde{G} = G + \rho^{\lambda,G} \cdot B_T^{\lambda}$$

is Pareto optimal.

For pre-Pareto G, the system can be explicitly solved.

Fix a pre-Pareto G^p , consider the relative system.

Theorem

If G is "close" to a pre-Pareto G^p , then an equilibrium exists.

Markovian case

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t,$$

$$dY_t = -f(t, X_t, Z_t)dt + Z_tdW_t, \quad Y_T = G(X_T),$$

where X is d-dim and Y is n-dim.

Markovian case

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t,$$

$$dY_t = -f(t, X_t, Z_t)dt + Z_tdW_t, \quad Y_T = G(X_T),$$

where X is d-dim and Y is n-dim.

Assumption:

- 1. $b, \sigma \sigma'$ bounded and uniformly elliptic
- 2. G locally Hölder
- 3. $f = (f^1, \ldots, f^n)$ satisfies

$$\begin{split} f^i(t,x,z) &= g^i(t,x,z) \cdot z^i + h^i(t,x,z) + \ell^i(t,x,z) + k^i(t,x), \\ \|g^i\| &\leq C_i \|z\|, \\ |\ell^i| &\leq C_i \|z\|^{\beta_i}, \quad \text{for some } \beta \in [0,2), \\ k^i &\in \mathbb{L}^{\infty}, \\ |h^i| &\leq \sum_{i=1}^i C_{ij} \|z^j\|^2, \end{split}$$

where z^i is the *i*-th column of z.

Main result (Markovian)

Assumption: \exists a priori estimate on $\|Y\|_{\mathcal{S}^{\infty}}$.

Main result (Markovian)

Assumption: \exists a priori estimate on $||Y||_{S^{\infty}}$.

Theorem

There exists a solution (Y, Z) with Y bounded.

Main result (Markovian)

Assumption: \exists a priori estimate on $||Y||_{S^{\infty}}$.

Theorem

There exists a solution (Y, Z) with Y bounded.

Example (Equilibrium)

Two agents (n=2)

- $ightharpoonup Y^1, Y^2$ are bounded from below, Y^1+Y^2 is bounded from above.
- ▶ Let $\tilde{Y}^1 = Y^1 Y^2$ and $\tilde{Y}^2 = Y^1 + Y^2$. The previous structural condition is satisfied.

Therefore, equilibrium exists for all time.

Difficulty: System does not have comparison result [Hu-Peng 06].

Difficulty: System does not have comparison result [Hu-Peng 06].

- ► Truncation into Lipschitz system. $Y^n = v^n(\cdot, X_\cdot)$. Uniform bounds on $||v^n||_{\infty}$.
- ▶ \exists local uniform convergence subsequence $(v^n)_n$. (Key compactness)
- Convergence of semi-martingale [Barlow-Protter 90].

Difficulty: System does not have comparison result [Hu-Peng 06].

- ► Truncation into Lipschitz system. $Y^n = v^n(\cdot, X_\cdot)$. Uniform bounds on $||v^n||_{\infty}$.
- ▶ \exists local uniform convergence subsequence $(v^n)_n$. (Key compactness)
- ► Convergence of semi-martingale [Barlow-Protter 90].

Campanato space:

$$\sup_{(t_0,x_0)}\sup_R R^{-d-2-\alpha}\int_{Q_{\delta,R}(t_0,x_0)}\|v-\overline{v}\|^2<\infty,$$

where $Q_{\delta,R}(t_0,x_0)$ is a parabolic domain and \overline{v} is the average of v on Q.

Difficulty: System does not have comparison result [Hu-Peng 06].

- ► Truncation into Lipschitz system. $Y^n = v^n(\cdot, X)$. Uniform bounds on $||v^n||_{\infty}$.
- ▶ \exists local uniform convergence subsequence $(v^n)_n$. (Key compactness)
- ► Convergence of semi-martingale [Barlow-Protter 90].

Campanato space:

$$\sup_{(t_0,x_0)}\sup_R R^{-d-2-\alpha}\int_{Q_{\delta,R}(t_0,x_0)}\|v-\overline{v}\|^2<\infty,$$

where $Q_{\delta,R}(t_0,x_0)$ is a parabolic domain and \overline{v} is the average of v on Q.

Campanato \sim Hölder.

Step 1: Itô estimate on $||Z||^2$

1-dim: exponential transformation $h(y) = e^{\gamma y} - \gamma y - 1$.

$$\exists \gamma \qquad \frac{1}{2}D^2h(y)\,zz'-Dh(y)\,f\geq \|z\|^2-k.$$

Step 1: Itô estimate on $||Z||^2$

1-dim: exponential transformation $h(y) = e^{\gamma y} - \gamma y - 1$.

$$\exists \gamma \qquad \frac{1}{2} D^2 h(y) zz' - Dh(y) f \geq ||z||^2 - k.$$

Multi-dim: [Bensoussan-Freshe 02]: Consider

$$\alpha(u)=e^u+e^{-u}-2.$$

Define the map $H: \mathbb{R}^n \to \mathbb{R}^n$ via

$$H^{n}(y) = \exp(\alpha(\gamma^{n}y^{n})),$$

$$H^{i}(y) = \exp(\alpha(\gamma^{i}y^{i}) + H^{i+1}(y)), \quad i = 1, \dots, n-1.$$

Step 1: Itô estimate on $||Z||^2$

1-dim: exponential transformation $h(y) = e^{\gamma y} - \gamma y - 1$.

$$\exists \gamma \qquad \frac{1}{2}D^2h(y)\,zz'-Dh(y)\,f\geq \|z\|^2-k.$$

Multi-dim: [Bensoussan-Freshe 02]: Consider

$$\alpha(u) = e^u + e^{-u} - 2.$$

Define the map $H: \mathbb{R}^n \to \mathbb{R}^n$ via

$$H^{n}(y) = \exp(\alpha(\gamma^{n}y^{n})),$$

 $H^{i}(y) = \exp(\alpha(\gamma^{i}y^{i}) + H^{i+1}(y)), \quad i = 1, ..., n-1.$

Define $h_t = H^1(t, Y_t)$ and apply Itô's formula to h to obtain

$$\exists (\gamma_i)_i \quad dh_t \geq ||Z_t||^2 dt - k(t, X_t) dt + \text{local martingale.}$$

[Bensoussan-Frehse 02] used integration by part. [Barles-Lesigne 97].

Lemma

There exist a constant C and $\alpha \in (0,1)$ such that

$$\iint_{\text{red}} \|\nabla v\|^2 p \le C \iint_{\text{blue} \backslash \text{red}} \|\nabla v\|^2 p + R^{2\alpha},$$

Lemma

There exist a constant C and $\alpha \in (0,1)$ such that

$$\iint_{\text{red}} \|\nabla v\|^2 p \le C \iint_{\text{blue} \backslash \text{red}} \|\nabla v\|^2 p + R^{2\alpha},$$

$$(1+C)\iint_{red} \|\nabla v\|^2 p \leq C \iint_{blue} \|\nabla v\|^2 p + R^{2\alpha}.$$

Lemma

There exist a constant C and $\alpha \in (0,1)$ such that

$$\iint_{\text{red}} \|\nabla v\|^2 p \le C \iint_{\text{blue}\backslash \text{red}} \|\nabla v\|^2 p + R^{2\alpha},$$

$$R^{-2\alpha_0} \iint_{red} \|\nabla v\|^2 p \leq \frac{2^{2\alpha_0} C}{1+C} (2R)^{-2\alpha_0} \iint_{blue} \|\nabla v\|^2 p + R^{2(\alpha-\alpha_0)}.$$

Lemma

There exist a constant C and $\alpha \in (0,1)$ such that

$$\iint_{\textit{red}} \|\nabla v\|^2 p \leq C \iint_{\textit{blue} \backslash \textit{red}} \|\nabla v\|^2 p + R^{2\alpha},$$

$$\underbrace{R^{-2\alpha_0}\iint_{\text{red}}\|\nabla v\|^2p}_{\varphi(R)}\leq \underbrace{\frac{2^{2\alpha_0}C}{1+C}}_{\nu}\underbrace{(2R)^{-2\alpha_0}\iint_{\text{blue}}\|\nabla v\|^2p}_{\varphi(2R)}+C.$$

Lemma

There exist a constant C and $\alpha \in (0,1)$ such that

$$\iint_{\textit{red}} \|\nabla v\|^2 p \leq C \iint_{\textit{blue} \backslash \textit{red}} \|\nabla v\|^2 p + R^{2\alpha},$$

where p is the transition density.

Proposition

There exist a constant C and $\alpha_0 \in (0,1)$ such that

$$\sup_{(t_0,x_0)}\sup_{R\leq 1}R^{-d-2\alpha_0}\iint\|\nabla v\|^2\leq C.$$

Campanato norm estimate

Proposition

There exist a constant C and $\alpha_0 \in (0,1)$ such that

$$\sup_{(t_0,x_0)}\sup_{R\leq 1}R^{-d-2-2\alpha_0}\iint\|v-\overline{v}\|^2\leq C.$$

Campanato norm estimate

Proposition

There exist a constant C and $\alpha_0 \in (0,1)$ such that

$$\sup_{(t_0,x_0)}\sup_{R\leq 1}R^{-d-2-2\alpha_0}\iint\|v-\overline{v}\|^2\leq C.$$

Proof.

Poincaré inequality:

$$\int \|v - \overline{v}\|^2 \le CR^2 \int \|\nabla v\|^2.$$

Campanato norm estimate

Proposition

There exist a constant C and $\alpha_0 \in (0,1)$ such that

$$\sup_{(t_0,x_0)}\sup_{R\leq 1}R^{-d-2-2\alpha_0}\iint\|v-\overline{v}\|^2\leq C.$$

Proof.

Poincaré inequality:

$$\int \|v - \overline{v}\|^2 \le CR^2 \int \|\nabla v\|^2.$$

$$\iint \|v - \overline{v}\|^2 \le CR^2 \iint \|\nabla v\|^2 \le CR^{d+2+2\alpha_0}.$$

Conclusion

- 1. We study a continuous time equilibrium in an incomplete market.
- 2. Translate the problem to a system of quadratic BSDE.
- 3. Non-Markovian: local existence + global uniqueness
- 4. Markovian: global existence.

Thanks for your attention!