Stochastic Radner equilibria and a system of quadratic BSDEs

Hao Xing
London School of Economics

joint work with
Kostas Kardaras, Gordan Žitković

London-Paris Bachelier workshop on Mathematical Finance, London, September 26, 2015

Problem

Agent: for $i=1, \ldots, d$,

1. utility: $U_{i}(x)=-e^{-x / \delta_{i}}, \delta_{i}>0$,
2. random endowment: $E^{i} \in \mathbb{L}^{0}\left(\mathcal{F}_{T}\right)$.

Problem

Agent: for $i=1, \ldots, d$,

1. utility: $U_{i}(x)=-e^{-x / \delta_{i}}, \delta_{i}>0$,
2. random endowment: $E^{i} \in \mathbb{L}^{0}\left(\mathcal{F}_{T}\right)$.

Market: a single risky asset with return

$$
d B_{t}^{\lambda}=\lambda_{t} d t+d B_{t}
$$

Problem

Agent: for $i=1, \ldots, d$,

1. utility: $U_{i}(x)=-e^{-x / \delta_{i}}, \delta_{i}>0$,
2. random endowment: $E^{i} \in \mathbb{L}^{0}\left(\mathcal{F}_{T}^{B, W}\right)$.

Market: a single risky asset with return

$$
d B_{t}^{\lambda}=\lambda_{t} d t+d B_{t}, \quad W \Perp B .
$$

Problem

Agent: for $i=1, \ldots, d$,

1. utility: $U_{i}(x)=-e^{-x / \delta_{i}}, \delta_{i}>0$,
2. random endowment: $E^{i} \in \mathbb{L}^{0}\left(\mathcal{F}_{T}^{B, W}\right)$.

Market: a single risky asset with return

$$
d B_{t}^{\lambda}=\lambda_{t} d t+d B_{t}, \quad W \Perp B .
$$

Equilibrium: $\lambda,\left(\pi_{i}\right)_{1 \leq i \leq d}$,

1. Utility maximization: $\mathbb{E}\left[U_{i}\left(\pi_{i} \cdot B_{T}^{(\lambda)}+E^{i}\right)\right] \rightarrow$ Max;
2. Market clearing: $\sum_{i=1}^{d} \pi_{i}=0$.

Completeness

All future risk can be exchanged for upfront cash.
[Duffie 01], [Karatzas-Shreve 98], and many many others.

Completeness

All future risk can be exchanged for upfront cash.
[Duffie 01], [Karatzas-Shreve 98], and many many others.

- Representative agent method

$$
U_{\text {rep }}(c ; \gamma):=\sup _{\sum c^{i}=c} \sum_{i=1}^{d} \gamma_{i} U^{i}\left(c^{i}\right) .
$$

The problem reduces to find the weight $\left(\gamma_{i}\right)_{i}$.

- Equilibrium is Pareto optimal.
- All agents share the same pricing measure:

$$
M_{T}^{\text {com }} \propto U_{r e p}^{\prime}(c ; \gamma) .
$$

[Breeden 79]

Incompleteness

Discrete time:

[Radner 82] extended the classical Arrow-Debreu model.
[Hart 75] gave a counter-example that equilibrium may not exist.
[Duffie-Shafer 85, 86] showed equilibrium exists for generic endowments.

Incompleteness

Discrete time:

[Radner 82] extended the classical Arrow-Debreu model.
[Hart 75] gave a counter-example that equilibrium may not exist.
[Duffie-Shafer 85, 86] showed equilibrium exists for generic endowments.

Continuous time: long standing open problem
[Cuoco-He 94]
[Žitković 12]
[Zhao 12], [Choi-Larsen 14]
[Christensen-Larsen-Munk 12], [Christensen-Larsen 14]

Our results

Our goal: Global existence

1. Non-Markovian case: (http://arxiv.org/abs/1505.07224)

- unbounded endowment
- equilibrium exists, when endowments are close to Pareto optimality
- equilibrium exists when
i) many similar agents, or
ii) small time horizon

2. Markovian case: [Benoussan-Frehse 02] working progress with G. Žitković

- bounded terminal condition
- global existence
- add probabilistic flavor to the proof of [Benoussan-Frehse 02]

Risk-aware reparametrization

Define

$$
G^{i}=\frac{1}{\delta^{i}} E^{i} \quad \text { and } \quad \rho^{i}=\frac{1}{\delta^{i}} \pi^{i}
$$

Then the market clearing condition is

$$
A[\rho]=\sum_{i} \alpha^{i} \rho^{i}=0
$$

where $\alpha^{i}=\delta^{i} /\left(\sum_{j} \delta^{j}\right)$ with $\sum_{i} \alpha^{i}=1$.

Risk-aware reparametrization

Define

$$
G^{i}=\frac{1}{\delta^{i}} E^{i} \quad \text { and } \quad \rho^{i}=\frac{1}{\delta^{i}} \pi^{i} .
$$

Then the market clearing condition is

$$
A[\rho]=\sum_{i} \alpha^{i} \rho^{i}=0
$$

where $\alpha^{i}=\delta^{i} /\left(\sum_{j} \delta^{j}\right)$ with $\sum_{i} \alpha^{i}=1$.

We look for equilibrium λ in bmo (or $H_{\text {Bмо }}$).

$$
\text { bmo }=\left\{\mu: \sup _{\tau}\left\|\mathbb{E}_{\tau}\left[\int_{\tau}^{T}\left|\mu_{u}\right|^{2} d u\right]\right\|_{\mathbb{L}^{\infty}}<\infty\right\} .
$$

Assumptions on endowments

We assume, following [Delbaen et al. 02],
G is bounded from above with $\mathbb{E}\left[e^{-(1+\epsilon) G}\right]<\infty$ for some $\epsilon>0$.

Assumptions on endowments

We assume, following [Delbaen et al. 02],
G is bounded from above with $\mathbb{E}\left[e^{-(1+\epsilon) G}\right]<\infty$ for some $\epsilon>0$.

Define

$$
X_{t}^{G}=-\log \mathbb{E}_{t}[\exp (-G)], \quad t \in[0, T],
$$

and (m, n) via the following BSDE

$$
d X_{t}^{G}=m_{t} d B_{t}+n_{t} d W_{t}+\frac{1}{2}\left(m_{t}^{2}+n_{t}^{2}\right) d t, \quad X_{T}^{G}=G .
$$

We assume

$$
(m, n) \in \text { bmo }
$$

Assumptions on endowments

We assume, following [Delbaen et al. 02],
G is bounded from above with $\mathbb{E}\left[e^{-(1+\epsilon) G}\right]<\infty$ for some $\epsilon>0$.

Define

$$
X_{t}^{G}=-\log \mathbb{E}_{t}[\exp (-G)], \quad t \in[0, T],
$$

and (m, n) via the following BSDE

$$
d X_{t}^{G}=m_{t} d B_{t}+n_{t} d W_{t}+\frac{1}{2}\left(m_{t}^{2}+n_{t}^{2}\right) d t, \quad X_{T}^{G}=G
$$

We assume

$$
(m, n) \in \text { bmo }
$$

In particular, when G is bounded, these assumptions are satisfied.

BSDE characterization of equilibria

Certainty-equivalent process

$$
\exp \left(-Y_{t}^{\lambda, G}\right)=\operatorname{ess} \sup _{\rho} \mathbb{E}_{t}\left[\exp \left(-\rho \cdot B_{T}^{\lambda}+\rho \cdot B_{t}^{\lambda}-G\right)\right], \quad t \in[0, T]
$$

BSDE characterization of equilibria

Certainty-equivalent process

$$
\exp \left(-Y_{t}^{\lambda, G}\right)=\operatorname{ess} \sup _{\rho} \mathbb{E}_{t}\left[\exp \left(-\rho \cdot B_{T}^{\lambda}+\rho \cdot B_{t}^{\lambda}-G\right)\right], \quad t \in[0, T]
$$

Theorem
For $\lambda \in$ bmo, the following are equivalent:

1. λ is an equilibrium;
2. $\lambda=A[\mu]=\sum_{i} \alpha^{i} \mu^{i}$ for some solution $\left(Y^{i}, \mu^{i}, \nu^{i}\right)_{i}$ of the BSDE system

$$
\begin{aligned}
d Y_{t}^{i} & =\mu_{t}^{i} d B_{t}+\nu_{t}^{i} d W_{t}+\left(\frac{1}{2}\left(\nu_{t}^{i}\right)^{2}-\frac{1}{2} \lambda_{t}^{2}+\lambda_{t} \mu_{t}^{i}\right) d t \\
Y_{T}^{i} & =G^{i}, \quad i \in\{1,2, \ldots, I\}
\end{aligned}
$$

and $\left(\mu^{i}, \nu^{i}\right) \in$ bmo for all i.

System of quadratic BSDEs

Open problem: [Peng 99]

- [Darling 95], [Blache 05, 06]: Harmonic map
- [Tang 03]: Riccati system
- [Tevzadze 08]: existence when terminal condition is small
- [Frei-dos Reis 11]: counter example
- [Cheridito-Nam 14]: generator $f+z g, f$ and g are Lipschitz
- [Hu-Tang 14]: diagonally quadratic
- [Jamneshan-Kupper-Luo 15]: cases not covered by [Tevzadze 08]

System of quadratic BSDEs

Open problem: [Peng 99]

- [Darling 95], [Blache 05, 06]: Harmonic map
- [Tang 03]: Riccati system
- [Tevzadze 08]: existence when terminal condition is small
- [Frei-dos Reis 11]: counter example
- [Cheridito-Nam 14]: generator $f+z g, f$ and g are Lipschitz
- [Hu-Tang 14]: diagonally quadratic
- [Jamneshan-Kupper-Luo 15]: cases not covered by [Tevzadze 08]

Applications:

- Stochastic differential game: [Bensoussan-Frehse 02], [EI Karoui-Hamadène 03]
- Relative performance: [Espinosa-Touzi 13], [Frei-dos Reis 11], [Frei 14]:
- Equilibrium pricing: [Cheridito-Horst-Kupper-Pirvu 12]:
- Market making: [Kramkov-Pulido 14]

Pareto optimality

$\left(\xi^{i}\right)_{i}$ is Pareto optimal if there is no $\sum_{i} \alpha^{i} \xi^{i}$-feasible allocation which is strictly better off.

Lemma
$\left(G^{i}\right)_{i}$ is Pareto optimal if and only if there exists ξ^{c} and constants $\left(c^{i}\right)_{i}$ such that

$$
G^{i}=\xi^{c}+c^{i}, \quad \text { for all } i
$$

Pareto optimality

$\left(\xi^{i}\right)_{i}$ is Pareto optimal if there is no $\sum_{i} \alpha^{i} \xi^{i}$-feasible allocation which is strictly better off.

Lemma
$\left(G^{i}\right)_{i}$ is Pareto optimal if and only if there exists ξ^{c} and constants $\left(c^{i}\right)_{i}$ such that

$$
G^{i}=\xi^{c}+c^{i}, \quad \text { for all } i .
$$

Distance to Pareto optimality:

$$
H(G)=\inf _{\xi^{c}} \max _{i}\left\|\left(m^{i}-m^{c}, n^{i}-n^{c}\right)\right\|_{\text {bmo }\left(\mathbb{P}^{c}\right)},
$$

where $d \mathbb{P}^{c} / d \mathbb{P}=\mathcal{E}\left(-m^{c} \cdot B-n^{c} \cdot W\right)_{T}=\exp \left(-\xi^{c}\right) / \mathbb{E}\left[\exp \left(-\xi^{c}\right)\right]$.

First main result (non-Markovian)

Theorem
Suppose that

$$
H(G)<\frac{3}{2}-\sqrt{2} \approx 0.0858 .
$$

Then, there exists a unique equilibrium $\lambda \in$ bmo.

First main result (non-Markovian)

Theorem
Suppose that

$$
H(G)<\frac{3}{2}-\sqrt{2} \approx 0.0858 .
$$

Then, there exists a unique equilibrium $\lambda \in b$ bo.

- Global uniqueness, similar to [Kramkov-Pulido 14].
- Uniqueness for the quadratic system as well.

Two corollaries

Smallness in size:
If

$$
\inf _{\xi^{c}} \max _{i}\left\|G^{i}-\xi^{c}\right\|_{\mathbb{L}^{\infty}}<\left(\frac{3-2 \sqrt{2}}{4}\right)^{2}
$$

Then \exists ! equilibrium.
For a given total endowment $E_{\Sigma} \in \mathbb{L}^{\infty}$, equilibrium exists among sufficient more sufficient homogeneous agent.

Two corollaries

Smallness in size:

If

$$
\inf _{\xi^{c}} \max _{i}\left\|G^{i}-\xi^{c}\right\|_{\mathbb{L}^{\infty}}<\left(\frac{3-2 \sqrt{2}}{4}\right)^{2}
$$

Then \exists ! equilibrium.
For a given total endowment $E_{\Sigma} \in \mathbb{L}^{\infty}$, equilibrium exists among sufficient more sufficient homogeneous agent.

Smallness in time:
If $D^{b}\left(G^{i}-\xi^{c}\right), D^{w}\left(G^{i}-\xi^{c}\right) \in \mathcal{S}^{\infty}$, for some ξ^{c} and all i. Then a unique equilibrium exists when

$$
T<T^{*}=\frac{\left(\frac{3}{2}-\sqrt{2}\right)^{2}}{\max _{i}\left(\left\|D^{b}\left(G^{i}-\xi^{c}\right)\right\|_{\mathcal{S}^{\infty}}^{2}+\left\|D^{w}\left(G^{i}-\xi^{c}\right)\right\|_{\mathcal{S}^{\infty}}^{2}\right)}
$$

Outline of proof

$$
d Y_{t}^{i}=\mu_{t}^{i} d B_{t}+\nu_{t}^{i} d W_{t}+\left(\frac{1}{2}\left(\nu_{t}^{i}\right)^{2}-\frac{1}{2} \lambda_{t}^{2}+\lambda_{t} \mu_{t}^{i}\right) d t, \quad Y_{T}^{i}=G^{i} .
$$

where $\lambda=A[\mu]$.
Consider the excess-demand map

$$
F: \lambda \mapsto A[\mu] .
$$

A fixed point in bmo gives a solution.

Outline of proof

$$
d Y_{t}^{i}=\mu_{t}^{i} d B_{t}+\nu_{t}^{i} d W_{t}+\left(\frac{1}{2}\left(\nu_{t}^{i}\right)^{2}-\frac{1}{2} \lambda_{t}^{2}+\lambda_{t} \mu_{t}^{i}\right) d t, \quad Y_{T}^{i}=G^{i}
$$

where $\lambda=A[\mu]$.
Consider the excess-demand map

$$
F: \lambda \mapsto A[\mu]
$$

A fixed point in bmo gives a solution.

1. A priori estimate: if λ is an equilibrium, then

$$
\|\lambda\|_{\mathrm{bmo}} \leq \max _{i}\left\|\left(m^{i}, n^{i}\right)\right\|_{\mathrm{bmo}}
$$

2. Suppose $\max _{i}\left\|\left(m^{i}, n^{i}\right)\right\|_{\text {bmo }} \leq \epsilon$,
F is a contraction on $B(a \epsilon)$ for some $a>1$.

Second main results (non-Markovian)

An allocation G is pre-Pareto if there exists an equilibrium λ such that

$$
\tilde{G}=G+\rho^{\lambda, G} \cdot B_{T}^{\lambda}
$$

is Pareto optimal.

Second main results (non-Markovian)

An allocation G is pre-Pareto if there exists an equilibrium λ such that

$$
\tilde{G}=G+\rho^{\lambda, G} \cdot B_{T}^{\lambda}
$$

is Pareto optimal.
For pre-Pareto G, the system can be explicitly solved.

Second main results (non-Markovian)

An allocation G is pre-Pareto if there exists an equilibrium λ such that

$$
\tilde{G}=G+\rho^{\lambda, G} \cdot B_{T}^{\lambda}
$$

is Pareto optimal.
For pre-Pareto G, the system can be explicitly solved.
Fix a pre-Pareto G^{p}, consider the relative system.

Second main results (non-Markovian)

An allocation G is pre-Pareto if there exists an equilibrium λ such that

$$
\tilde{G}=G+\rho^{\lambda, G} \cdot B_{T}^{\lambda}
$$

is Pareto optimal.
For pre-Pareto G, the system can be explicitly solved.
Fix a pre-Pareto G^{p}, consider the relative system.

Theorem
If G is "close" to a pre-Pareto G^{p}, then an equilibrium exists.

Markovian case

$$
\begin{aligned}
& d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}, \\
& d Y_{t}=-f\left(t, X_{t}, Z_{t}\right) d t+Z_{t} d W_{t}, \quad Y_{T}=G\left(X_{T}\right),
\end{aligned}
$$

where X is d-dim and Y is n-dim.

Markovian case

$$
\begin{aligned}
& d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}, \\
& d Y_{t}=-f\left(t, X_{t}, Z_{t}\right) d t+Z_{t} d W_{t}, \quad Y_{T}=G\left(X_{T}\right),
\end{aligned}
$$

where X is d-dim and Y is n-dim.

Assumption:

1. $b, \sigma \sigma^{\prime}$ bounded and uniformly elliptic
2. G locally Hölder
3. $f=\left(f^{1}, \ldots, f^{n}\right)$ satisfies

$$
\begin{aligned}
& f^{i}(t, x, z)=g^{i}(t, x, z) \cdot z^{i}+h^{i}(t, x, z)+\ell^{i}(t, x, z)+k^{i}(t, x), \\
& \left\|g^{i}\right\| \leq C_{i}\|z\|, \\
& \left|\ell^{i}\right| \leq C_{i}\|z\|^{\beta_{i}}, \quad \text { for some } \beta \in[0,2) \text {, } \\
& k^{i} \in \mathbb{L}^{\infty} \text {, } \\
& \left|h^{i}\right| \leq \sum_{j=1}^{i} C_{i j}\left\|z^{j}\right\|^{2},
\end{aligned}
$$

where z^{i} is the i-th column of z.

Main result (Markovian)

Assumption: \exists a priori estimate on $\|Y\|_{\mathcal{S}^{\infty}}$.

Main result (Markovian)

Assumption: \exists a priori estimate on $\|Y\|_{\mathcal{S}^{\infty}}$.

Theorem
There exists a solution (Y, Z) with Y bounded.

Main result (Markovian)

Assumption: \exists a priori estimate on $\|Y\|_{\mathcal{S}^{\infty}}$.

Theorem
There exists a solution (Y, Z) with Y bounded.

Example (Equilibrium)

Two agents ($\mathrm{n}=2$)

- Y^{1}, Y^{2} are bounded from below, $Y^{1}+Y^{2}$ is bounded from above.
- Let $\tilde{Y}^{1}=Y^{1}-Y^{2}$ and $\tilde{Y}^{2}=Y^{1}+Y^{2}$. The previous structural condition is satisfied.

Therefore, equilibrium exists for all time.

Outline of proof

Difficulty: System does not have comparison result [Hu-Peng 06].

Outline of proof

Difficulty: System does not have comparison result [Hu-Peng 06].

- Truncation into Lipschitz system.
$Y^{n}=v^{n}\left(\cdot, X_{\text {. }}\right)$. Uniform bounds on $\left\|v^{n}\right\|_{\infty}$.
- \exists local uniform convergence subsequence $\left(v^{n}\right)_{n}$. (Key compactness)
- Convergence of semi-martingale [Barlow-Protter 90].

Outline of proof

Difficulty: System does not have comparison result [Hu-Peng 06].

- Truncation into Lipschitz system. $Y^{n}=v^{n}\left(\cdot, X_{\text {. }}\right)$. Uniform bounds on $\left\|v^{n}\right\|_{\infty}$.
- \exists local uniform convergence subsequence $\left(v^{n}\right)_{n}$. (Key compactness)
- Convergence of semi-martingale [Barlow-Protter 90].

Campanato space:

$$
\sup _{\left(t_{0}, x_{0}\right)} \sup _{R} R^{-d-2-\alpha} \int_{Q_{\delta, R}\left(t_{0}, x_{0}\right)}\|v-\bar{v}\|^{2}<\infty
$$

where $Q_{\delta, R}\left(t_{0}, x_{0}\right)$ is a parabolic domain and \bar{v} is the average of v on Q.

Outline of proof

Difficulty: System does not have comparison result [Hu-Peng 06].

- Truncation into Lipschitz system. $Y^{n}=v^{n}\left(\cdot, X_{\text {. }}\right)$. Uniform bounds on $\left\|v^{n}\right\|_{\infty}$.
- \exists local uniform convergence subsequence $\left(v^{n}\right)_{n}$. (Key compactness)
- Convergence of semi-martingale [Barlow-Protter 90].

Campanato space:

$$
\sup _{\left(t_{0}, x_{0}\right)} \sup _{R} R^{-d-2-\alpha} \int_{Q_{\delta, R}\left(t_{0}, x_{0}\right)}\|v-\bar{v}\|^{2}<\infty
$$

where $Q_{\delta, R}\left(t_{0}, x_{0}\right)$ is a parabolic domain and \bar{v} is the average of v on Q.

Campanato ~ Hölder.

Step 1: Itô estimate on $\|Z\|^{2}$

1-dim: exponential transformation $h(y)=e^{\gamma y}-\gamma y-1$.

$$
\exists \gamma \quad \frac{1}{2} D^{2} h(y) z z^{\prime}-D h(y) f \geq\|z\|^{2}-k .
$$

Step 1: Itô estimate on $\|Z\|^{2}$

1-dim: exponential transformation $h(y)=e^{\gamma y}-\gamma y-1$.

$$
\exists \gamma \quad \frac{1}{2} D^{2} h(y) z z^{\prime}-D h(y) f \geq\|z\|^{2}-k .
$$

Multi-dim: [Bensoussan-Freshe 02]: Consider

$$
\alpha(u)=e^{u}+e^{-u}-2 .
$$

Define the map $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ via

$$
\begin{aligned}
H^{n}(y) & =\exp \left(\alpha\left(\gamma^{n} y^{n}\right)\right) \\
H^{i}(y) & =\exp \left(\alpha\left(\gamma^{i} y^{i}\right)+H^{i+1}(y)\right), \quad i=1, \ldots, n-1
\end{aligned}
$$

Step 1: Itô estimate on $\|Z\|^{2}$

1-dim: exponential transformation $h(y)=e^{\gamma y}-\gamma y-1$.

$$
\exists \gamma \quad \frac{1}{2} D^{2} h(y) z z^{\prime}-D h(y) f \geq\|z\|^{2}-k .
$$

Multi-dim: [Bensoussan-Freshe 02]: Consider

$$
\alpha(u)=e^{u}+e^{-u}-2 .
$$

Define the map $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ via

$$
\begin{aligned}
H^{n}(y) & =\exp \left(\alpha\left(\gamma^{n} y^{n}\right)\right) \\
H^{i}(y) & =\exp \left(\alpha\left(\gamma^{i} y^{i}\right)+H^{i+1}(y)\right), \quad i=1, \ldots, n-1 .
\end{aligned}
$$

Define $h_{t}=H^{1}\left(t, Y_{t}\right)$ and apply Itô's formula to h to obtain

$$
\exists\left(\gamma_{i}\right)_{i} \quad d h_{t} \geq\left\|Z_{t}\right\|^{2} d t-k\left(t, X_{t}\right) d t+\text { local martingale. }
$$

[Bensoussan-Frehse 02] used integration by part. [Barles-Lesigne 97].

Step 2: "Hole-filling" technique by [Struwe 81]

Lemma
There exist a constant C and $\alpha \in(0,1)$ such that

$$
\iint_{\text {red }}\|\nabla v\|^{2} p \leq C \iint_{\text {blue } \backslash \text { red }}\|\nabla v\|^{2} p+R^{2 \alpha}
$$

where p is the transition density.

Step 2: "Hole-filling" technique by [Struwe 81]

Lemma
There exist a constant C and $\alpha \in(0,1)$ such that

$$
\iint_{\text {red }}\|\nabla v\|^{2} p \leq C \iint_{\text {blue } \backslash \text { red }}\|\nabla v\|^{2} p+R^{2 \alpha}
$$

where p is the transition density.

$$
(1+C) \iint_{\text {red }}\|\nabla v\|^{2} p \leq C \iint_{\text {blue }}\|\nabla v\|^{2} p+R^{2 \alpha} .
$$

Step 2: "Hole-filling" technique by [Struwe 81]

Lemma

There exist a constant C and $\alpha \in(0,1)$ such that

$$
\iint_{\text {red }}\|\nabla v\|^{2} p \leq C \iint_{\text {blue } \backslash \text { red }}\|\nabla v\|^{2} p+R^{2 \alpha}
$$

where p is the transition density.

$$
R^{-2 \alpha_{0}} \iint_{\text {red }}\|\nabla v\|^{2} p \leq \frac{2^{2 \alpha_{0}} C}{1+C}(2 R)^{-2 \alpha_{0}} \iint_{\text {blue }}\|\nabla v\|^{2} p+R^{2\left(\alpha-\alpha_{0}\right)} .
$$

Step 2: "Hole-filling" technique by [Struwe 81]

Lemma
There exist a constant C and $\alpha \in(0,1)$ such that

$$
\iint_{\text {red }}\|\nabla v\|^{2} p \leq C \iint_{\text {blue } \backslash \text { red }}\|\nabla v\|^{2} p+R^{2 \alpha}
$$

where p is the transition density.

$$
\underbrace{R^{-2 \alpha_{0}} \iint_{\text {red }}\|\nabla v\|^{2} p}_{\varphi(R)} \leq \underbrace{\frac{2^{2 \alpha_{0}} C}{1+C}}_{\nu} \underbrace{(2 R)^{-2 \alpha_{0}} \iint_{\text {blue }}\|\nabla v\|^{2} p}_{\varphi(2 R)}+C .
$$

Step 2: "Hole-filling" technique by [Struwe 81]

Lemma

There exist a constant C and $\alpha \in(0,1)$ such that

$$
\iint_{\text {red }}\|\nabla v\|^{2} p \leq C \iint_{\text {blue } \backslash \text { red }}\|\nabla v\|^{2} p+R^{2 \alpha}
$$

where p is the transition density.

Proposition

There exist a constant C and $\alpha_{0} \in(0,1)$ such that

$$
\sup _{\left(t_{0}, x_{0}\right)} \sup _{R \leq 1} R^{-d-2 \alpha_{0}} \iint\|\nabla v\|^{2} \leq C
$$

Campanato norm estimate

Proposition

There exist a constant C and $\alpha_{0} \in(0,1)$ such that

$$
\sup _{\left(t_{0}, x_{0}\right)} \sup _{R \leq 1} R^{-d-2-2 \alpha_{0}} \iint\|v-\bar{v}\|^{2} \leq C
$$

Campanato norm estimate

Proposition

There exist a constant C and $\alpha_{0} \in(0,1)$ such that

$$
\sup _{\left(t_{0}, x_{0}\right)} \sup _{R \leq 1} R^{-d-2-2 \alpha_{0}} \iint\|v-\bar{v}\|^{2} \leq C .
$$

Proof.
Poincaré inequality:

$$
\int\|v-\bar{v}\|^{2} \leq C R^{2} \int\|\nabla v\|^{2}
$$

Campanato norm estimate

Proposition

There exist a constant C and $\alpha_{0} \in(0,1)$ such that

$$
\sup _{\left(t_{0}, x_{0}\right)} \sup _{R \leq 1} R^{-d-2-2 \alpha_{0}} \iint\|v-\bar{v}\|^{2} \leq C .
$$

Proof.
Poincaré inequality:

$$
\begin{aligned}
\int\|v-\bar{v}\|^{2} & \leq C R^{2} \int\|\nabla v\|^{2} \\
\iint\|v-\bar{v}\|^{2} & \leq C R^{2} \iint\|\nabla v\|^{2} \leq C R^{d+2+2 \alpha_{0}} .
\end{aligned}
$$

Conclusion

1. We study a continuous time equilibrium in an incomplete market.
2. Translate the problem to a system of quadratic BSDE.
3. Non-Markovian: local existence + global uniqueness
4. Markovian: global existence.

Thanks for your attention!

