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Problem

Agent: fori=1,...,d,
1. utility: Ui(x) = —e /% §:.>0,
2. random endowment: E' € ILO(}"?W).

Market: a single risky asset with return

dB} = \idt + dB:, W I B.

Equilibrium: )\, (ﬂi)lgigdv
1. Utility maximization: E | U(n; - B%—A) + E")| = Max;

2. Market clearing: Z;j:l mi = 0.
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All future risk can be exchanged for upfront cash.
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All future risk can be exchanged for upfront cash.

[Duffie 01], [Karatzas-Shreve 98], and many many others.

» Representative agent method
d
Urep(civ) = sup »_7iU(c").
el=cin
The problem reduces to find the weight (7;);.
» Equilibrium is Pareto optimal.
» All agents share the same pricing measure:
MF™ oc Urgp(ci7)-

[Breeden 79]
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Discrete time:

[Radner 82] extended the classical Arrow-Debreu model.
[Hart 75] gave a counter-example that equilibrium may not exist.

[Duffie-Shafer 85, 86] showed equilibrium exists for generic endowments.
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[Radner 82] extended the classical Arrow-Debreu model.
[Hart 75] gave a counter-example that equilibrium may not exist.

[Duffie-Shafer 85, 86] showed equilibrium exists for generic endowments.

Continuous time: long standing open problem
[Cuoco-He 94]

[Zitkovi¢ 12]

[Zhao 12], [Choi-Larsen 14]

[Christensen-Larsen-Munk 12], [Christensen-Larsen 14]



Our results

Our goal: Global existence

1. Non-Markovian case: (http://arxiv.org/abs/1505.07224)

» unbounded endowment
> equilibrium exists, when endowments are close to Pareto optimality

> equilibrium exists when

i) many similar agents, or
ii) small time horizon

2. Markovian case: [Benoussan-Frehse 02]
working progress with G. Zitkovi¢
> bounded terminal condition

> global existence
> add probabilistic flavor to the proof of [Benoussan-Frehse 02]



Risk-aware reparametrization

Define

1. 1
GI:EEI and p':EW.

Then the market clearing condition is
Alpl =Y a'p' =0,

where o/ = §'/(3; &) with 3=, 0 = 1.
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Risk-aware reparametrization

Define

1. 1
GI:EE’ and p’:EW.

Then the market clearing condition is
Alpl =Y a'p' =0,

where o/ = §'/(3; &) with 3=, 0 = 1.

We look for equilibrium A in bmo (or Hguo).

T
bmo = {u D sup / |uu|2du1

E,

<oo}.
LOC

6
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Assumptions on endowments

We assume, following [Delbaen et al. 02],

G is bounded from above with E[e~(1+9¢] < oo for some € > 0.

Define
XE = —logE:[exp(—G)], te]0,T],

and (m, n) via the following BSDE

1
dXF = mydB; + n.dW; + 5(m? +n?)dt, XE&=0G.

We assume
(m, n) € bmo

In particular, when G is bounded, these assumptions are satisfied.
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BSDE characterization of equilibria

Certainty-equivalent process

exp(fY?"G) = ess sup,E¢[exp(—p- By+p-B)—=G), telo,T]

Theorem
For A € bmo, the following are equivalent:

1. X is an equilibrium;

2. A= Alu] =3 o'y’ for some solution (Y, i, v"); of the BSDE
system

o . 1, ., 1 -
dY{ = pidB: + vjdW; + (5( DS+ w’t) dt,
YE=G', ie{1,2,...,1},

and (p',v") € bmo for all i.



System of quadratic BSDEs
Open problem: [Peng 99]

[Darling 95], [Blache 05, 06]: Harmonic map

[Tang 03]: Riccati system

[Tevzadze 08]: existence when terminal condition is small
[Frei-dos Reis 11]: counter example

[Cheridito-Nam 14]: generator f + z g, f and g are Lipschitz
[Hu-Tang 14]: diagonally quadratic

vV Vv Vv VY

[Jamneshan-Kupper-Luo 15]: cases not covered by [Tevzadze 08]
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[Darling 95], [Blache 05, 06]: Harmonic map

[Tang 03]: Riccati system

[Tevzadze 08]: existence when terminal condition is small
[Frei-dos Reis 11]: counter example

[Cheridito-Nam 14]: generator f + z g, f and g are Lipschitz
[Hu-Tang 14]: diagonally quadratic

vV Vv Vv VY

[Jamneshan-Kupper-Luo 15]: cases not covered by [Tevzadze 08]

Applications:

» Stochastic differential game: [Bensoussan-Frehse 02], [El
Karoui-Hamadéne 03]

> Relative performance: [Espinosa-Touzi 13], [Frei-dos Reis 11], [Frei
14]:

» Equilibrium pricing: [Cheridito-Horst-Kupper-Pirvu 12]:

» Market making: [Kramkov-Pulido 14]
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Pareto optimality

(€7); is Pareto optimal if there is no Y, a/¢/-feasible allocation which is
strictly better off.

Lemma
(G"); is Pareto optimal if and only if there exists ¢ and constants (c');
such that

G=¢+c, foralli.

Distance to Pareto optimality:
_ i € i €
H(G) = |gcfmiax||(m mc,.n' —n )||bmc(PC)’

where dP¢/dP = E(—m° - B — n° - W) 1 = exp(—£°)/E[exp(—£°)].



First main result (non-Markovian)

Theorem
Suppose that

H(G) < % — /2~ 0.0858.

Then, there exists a unique equilibrium \ € bmo.
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First main result (non-Markovian)

Theorem
Suppose that

H(G) < ; — /2~ 0.0858.

Then, there exists a unique equilibrium \ € bmo.

» Global uniqueness, similar to [Kramkov-Pulido 14].

» Uniqueness for the quadratic system as well.

11/22



Two corollaries
Smallness in size:

If
2
, 3—-2V2
inf G' —¢€ — .
i < (2=22)
Then 3! equilibrium.

For a given total endowment Ey € IL°°, equilibrium exists among
sufficient more sufficient homogeneous agent.
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Two corollaries
Smallness in size:

If
2
infmax 67— &7, < (%) ~

Then 3! equilibrium.

For a given total endowment Ey € IL°°, equilibrium exists among
sufficient more sufficient homogeneous agent.

Smallness in time:

If DP(G' — €°), D"(G' — £°) € 8, for some £ and all i. Then a unique
equilibrium exists when

3 2

G-v2)

T<T"= . 5 . R
max; (|| DH(G' — €9) |5 + ID*(G = €°)l3-.)

— o

12/22



Outline of proof

) . ) 1 . 1 . . .
dY{ = pidB; + vidW; + (5(1/;)2 — SN Am;) dt, Yi=¢G'.

where \ = Alpu].
Consider the excess-demand map

F = Alp).

A fixed point in bmo gives a solution.
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) . ) 1 . 1 . . .
dY{ = pidB; + vidW; + (5(1/;)2 — SN Atu;) dt, Yi=¢G'.

where \ = Alpu].
Consider the excess-demand map

F = Alp).

A fixed point in bmo gives a solution.

1. A priori estimate: if A is an equilibrium, then

H)‘Hbmo < m,-ax H(mi’ ni)Hbmo '

2. Suppose max; H(mia ni)Hbmo <

€,

F is a contraction on B(ae) for some a > 1.

13/22



Second main results (non-Markovian)
An allocation G is pre-Pareto if there exists an equilibrium A such that

G=G+ph¢ By

is Pareto optimal.
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Second main results (non-Markovian)

An allocation G is pre-Pareto if there exists an equilibrium A such that
G=G+pM° B}

is Pareto optimal.

For pre-Pareto G, the system can be explicitly solved.

Fix a pre-Pareto GP, consider the relative system.

Theorem
If G is “close” to a pre-Pareto GP, then an equilibrium exists.

14 /22



Markovian case

dXt = b(t,Xt)dt + U(t,Xt)th,
dYt — 7f(t,Xt, Zt)dt + thWta
where X is d-dim and Y is n-dim.

Yr = G(X7),



Markovian case

dXt = b(t,Xt)dt + U(t,Xt)th,
dYt — 7f(t,Xt, Zt)dt + thWta YT - G(XT),

where X is d-dim and Y is n-dim.
Assumption:
1. b,o0’ bounded and uniformly elliptic
2. G locally Holder
3. f=(f1,...,f") satisfies

fi(t,x,z) = g'(t,x,z) - 2 4+ W (t,x,z) + £(t,x, z) + k'(t, x),

lg'll < Gill]l,
|0 < Ci||z||”", for some B € [0,2),
ki e L,

1
h <> Cll ),
j=1

where z' is the i-th column of z.



Main result (Markovian)

Assumption: 3 a priori estimate on || Y||s.
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Main result (Markovian)

Assumption: 3 a priori estimate on || Y||ge.

Theorem
There exists a solution (Y, Z) with Y bounded.

Example (Equilibrium)
Two agents (n=2)
> Y1, Y? are bounded from below, Y! + Y2 is bounded from above.

» Let Y1 = Y' — Y2 and Y2 = Y! + Y2, The previous structural
condition is satisfied.

Therefore, equilibrium exists for all time.

16 /22



Outline of proof

Difficulty: System does not have comparison result [Hu-Peng 06].
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» Truncation into Lipschitz system.
Y™ = v"(-,X). Uniform bounds on ||v"||s.

» 3 local uniform convergence subsequence (v"),. (Key compactness)
» Convergence of semi-martingale [Barlow-Protter 90].

Campanato space:
sup sup R_d_2_a/ v — 7| < oo,
Qs,r(to,x0)

(l’o,XO) R

where Qs r(to, Xo) is a parabolic domain and V is the average of v on Q.

Campanato ~ Holder.
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Step 1: Itd estimate on || Z||?

1-dim: exponential transformation h(y) = &7 — vy — 1.

1
Ty 5 D*h(y)zZ — Dh(y)f > [ — k.
Multi-dim: [Bensoussan-Freshe 02]: Consider

afu)=e"+e " —2.

Define the map H : R” — R" via

H(y) = exp(a(y"y")),

Hi(y) = exp (a(v'y") + H*(y)), i=1,...,n—1
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Step 1: Itd estimate on || Z||?
1-dim: exponential transformation h(y) = &7 — vy — 1.
1o / 2
Ty 3Dh(y)zZ — DH(y)F > 2]~ k.

Multi-dim: [Bensoussan-Freshe 02]: Consider

afu)=e"+e " —2.

Define the map H : R” — R" via

H"(y) = exp(a(y"y")),
Hi(y) = exp (a(y'y") + H*Y(y)), i=1,....,n—1,

Define h; = H(t, Y;) and apply [t6's formula to h to obtain
()i dhe > || Ze||?dt — k(t, X¢)dt + local martingale.

[Bensoussan-Frehse 02] used integration by part. [Barles-Lesigne 97].



Step 2: “Hole-filling” technique by [Struwe 81]

Lemma
There exist a constant C and « € (0,1) such that

// ||Vv||p<c// IVv]2p + R,
blue\ red

where p is the transition density.
2R

f

(to, o)

I

to to + R? to+ 4R?
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Lemma
There exist a constant C and « € (0, 1) such that

// ||Vv||p<c// IVv]2p + R,
blue\ red

where p is the transition density.

—2ap 2 22a0C —2ap 2
R IVVIFp < 3= (2R) IVvi*p+C.
red blue
»(R) v »(2R)
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Step 2: “Hole-filling” technique by [Struwe 81]

Lemma
There exist a constant C and « € (0, 1) such that

// ||Vv||p<c// IVv]2p + R,
blue\ red

where p is the transition density.

Proposition
There exist a constant C and «g € (0,1) such that

sup sup R—972 // [Vv|? < C.
(t(),Xg) Rgl
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Campanato norm estimate
Proposition
There exist a constant C and «g € (0,1) such that
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(to,XO) R<1
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Campanato norm estimate

Proposition
There exist a constant C and «g € (0,1) such that

sup sup R—97272 // lv—v|?<C.
(to,XO) R<1

Proof.

Poincaré inequality:

/ Iv— 7|2 < CR? / IV

//||va||2 < CR2/ [Vv]|? < CRIT2H200,



Conclusion

1. We study a continuous time equilibrium in an incomplete market.
2. Translate the problem to a system of quadratic BSDE.
3. Non-Markovian: local existence + global uniqueness

4. Markovian: global existence.



Thanks for your attention!



