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Financial Crisis

Unprecedented numbers of mortgage defaults led to the 2008
financial crisis.

In the aftermath of the financial crisis, there is a pressing need
for new models and computational methods for risk analysis
of mortgages and other loans.

Challenge: pools of loans are very large
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How Large Can Pools be in Practice?

Mortgage-backed securities (MBS) typically have thousands
to hundreds of thousands of mortgages.

Fannie Mae and Freddie Mac have credit exposure to 25
million mortgages.

Major banks can have credit exposure to 10 million
mortgages.

Banks need to price thousands of mortgage-backed securities
and hundreds of collateralized mortgage obligations (CMOs)
on a daily basis.

A credit card asset-backed security (ABS) can have tens of
millions of credit cards.
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Goals

1 Efficient computation of distribution of default and
prepayment rates for pools of loans

2 Large-scale loan portfolio optimization
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Pre-crisis Approaches to Risk Analysis

Loan-by-loan modeling of such large pools is very
computationally expensive!

hours, days, or even weeks

Instead, rating agencies, banks, and investors often used
simplistic approaches relying only upon average features of
pools (e.g., average credit score).

Pool-level characteristics can lead to inaccurate results due to
ignoring the full loan-level distribution!
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Why is Loan-level Analysis Needed?

Loan-to-value (LTV) ratio = size of loan
value of house × 100 %.

LTV ratio Default Rate

10 % 3.1 %

50 % 3.3 %

90 % 17.9 %

Pool A only has mortgages with LTV ratio 50 %.

Pool B has half its mortgages with LTV ratio 10 % and half
with LTV ratio 90 %.

Average LTV ratio Default Rate

Pool A 50 % 3.3 %

Pool B 50 % 10.5 %
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Example MBS pools
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This Talk

1 Prove weak convergence results for a broad class of models:

Efficient Monte Carlo approximation for the distribution of
default and prepayment in loan pools

Asymptotically optimal portfolio (AOP) for large-scale
optimization of loan portfolios

2 Numerical tests with actual mortgage data: Monte Carlo
approximation is typically several orders of magnitude faster
than brute-force simulation (at a similar level of accuracy).

3 Similar computational advantages using AOP.
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Model Framework

The probability that the n-th loan transitions from its state Un
t−1

at time t − 1 to state u at time t:

Pθ[Un
t = u|Ft−1] = hθ(u,Un

t−1,Y
n,Vt′<t ,H

N
t′<t)

Un
t ∈ U is the state of the n-th mortgage at time t (e.g.,

default, prepaid, or outstanding).

Y n ∈ Y are loan-level features of the n-th mortgage (FICO
score, LTV ratio, geographic location, etc.).

Vt is a vector of common factors (such as national mortgage
rate and unemployment rate).

“Mean-field” process HN
t = 1

N

N∑
n=1

f (Un
t ,Y

n) (e.g., contagion)
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Computational Challenges

Goal: once a model has been fitted, analyze risk for a pool of
N loans

The distribution of default and prepayment rates in the pool
can be found via brute-force simulation of loans 1, . . . ,N.

For large pools of loans, brute-force simulation is very
computationally expensive!

hours, days, or even weeks
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Some Previous Literature

Parallel computing, e.g., Stein et al. (2007)

Top-down models, e.g., Fermanian (2008)

Top-down models with pool-level characteristics, e.g., Roll
(1989)

Limiting laws for default timing models

Bush, Hambly, Haworth, Jin, and Reisinger (2011)
Cvitanic, Ma, and Zhang (2012)
Giesecke, Spiliopoulos, Sowers, and Sirignano (2012)
Spiliopoulos, Sirignano, and Giesecke (2014)
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Law of Large Numbers

Define the empirical measure:

µNt =
1

N

N∑
n=1

δ(Un
t ,Y

n).

Theorem

The empirical measure µN
d→ µ̄ as N −→∞, where µ̄ satisfies:

µ̄t(u, dy) =
∑
u′∈U

hθ(u, u′, y ,Vt′<t , H̄t′<t)µ̄t−1(u′, dy),

and H̄t =
∑
u∈U

∫
RdY

f (u, y)µ̄t(u, dy).
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Central Limit Theorem

Define the empirical fluctuation measure:

ΞN
t =
√

N(µNt − µ̄t)

Theorem

ΞN d→ Ξ̄ as N −→∞, where Ξ̄ satisfies:

Ξ̄t(u, dy) =
∑
u′∈U

hθ(u, u′, y ,Vt′<t , H̄t′<t)Ξ̄t−1(u′, dy)

+
∑
u′∈U

(∂hθ
∂H

(u, u′, y ,Vt′<t , H̄t′<t) · Ēt′<t

)
µ̄t−1(u′, dy)

+ M̄t(u, dy),

where Ēt =
∑
u∈U

∫
RdY

f (u, y)Ξ̄t(u, dy).
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Large Pool Approximation

The law of large numbers and central limit theorem can be
combined to form an approximation for a finite pool of N
mortgages:

µN(u, dy) ≈ µ̄(u, dy) +
1√
N

Ξ̄(u, dy).

The approximation is conditionally Gaussian

easy to simulate

Problem: curse of dimensionality when Y is high-dimensional.

sparse grids

low-dimensional transformation
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Loan-level Data

1 Freddie Mac data set

16 million prime mortgages

loan-level data

2 RMBS data set

10 million subprime mortgages backing over 6000 MBSs

loan-level data

unique identifier for each MBS
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Figure : Comparison of actual distribution with approximate distribution
(using both LLN and CLT). Loss reported as fraction of pool which
defaulted. The horizon is 12 months.
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Ten Actual MBS pools
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Figure : Comparison of actual distribution with approximate distribution
for ten actual deals with 5, 000 < N < 10, 000. Loss reported as fraction
of pool which defaulted. The horizon is 12 months.
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Figure : Distribution of error for 99% VaR from the efficient Monte Carlo
approximation across 185 actual MBS pools. The time horizon is 12
months.
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One-year time horizon

N Time for Brute-force Simulation Time for Approximation

1,000 44.3 seconds 2.7 seconds

5,000 2.6 minutes 2.7 seconds

10,000 4.6 minutes 2.7 seconds

25,000 10.1 minutes 2.7 seconds

100,000 47.5 minutes 2.7 seconds

1,000,000 7.9 hours 2.7 seconds

10,000,000 79.3 hours 2.7 seconds

Table : Comparison of computational times (seconds) for efficient Monte
Carlo approximation and brute-force Monte Carlo simulation of the pool.
1-year time horizon.
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Exploit weak convergence results for optimization

How to optimally select N loans for a portfolio?

Optimal selection of a loan portfolio is a high-dimensional
nonlinear integer program.

High-dimensional: N can be large

Can only choose 0 or 1 of a loan → integer program

Objective and constraint functions are nonlinear (possibly
nonconvex).

Objective and constraint functions can be computationally
expensive to evaluate!
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Empirical measure of the loans: µN = (µNt )t=1,...,T

“Performance measure”: RN
P = f (µN ,V )

Example: RN
P is the return of the portfolio P of N loans.

Optimization problem:

PN,∗ = arg min
PN

E[g(RN
PN )]

s.t. E[φ(RN
PN )] ≥ c ,

q(PN) ≤ d .

where PN = (y1, . . . , yN) ∈ Y.
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1 Approximate empirical measure of the loans:

µN = (µNt )t=1,...,T
d
≈ µ̄N = (µ̄Nt )t=1,...,T

2 Approximate “performance measure”:

RN
P = f (µN ,V )

d
≈ R̄N

P = f (µ̄N ,V )

3 The portfolio choice can be equivalently be written as:

PN =
1

N

N∑
n=1

δyn
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1 “True” optimal portfolio:

PN,∗ = arg min
PN

E[g(RN
PN )]

s.t. E[φ(RN
PN )] ≥ c ,

q(PN) ≤ d .

2 Asymptotically optimal portfolio (AOP):

P̄N,∗ = arg min
P∈M(Y)

E[g(R̄N
P )],

s.t. E[φ(R̄N
P )] ≥ c ,

q(P) ≤ d .
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Theorem

The asymptotically optimal portfolio P̄N,∗ converges to the true
optimal portfolio PN,∗ as N →∞ in

(
M(Y), π

)
, where π is the

Prokhorov metric.

π(PN,∗, P̄N,∗) −→
N→∞

0.
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Computational Performance of AOP

Instead of solving a very computationally challenging
nonlinear integer program, solve for the asymptotically
optimal portfolio (AOP)!

Compare computational performance of AOP with integer
program solvers

MBS equity tranche

Mean-variance portfolio

Log-optimal portfolio
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Select N = 250 loans out of a pool of Np = 1000 loans for portfolio which maximizes expected return
of MBS equity tranche:

Solver Time Exitflag True objective Agreement with AOP

Integer Program 35 min Maxtime .05949 99.4 %

AOP 1 s Min stepsize .05952 100 %

Table : Performance comparison between integer program solvers and AOP. One-period model.
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Select N = 2, 500 loans out of a pool of Np = 10, 000 loans for portfolio which maximizes expected
return of MBS equity tranche:

Solver Time Exitflag True objective Agreement with AOP

Integer Program 5.4 hours Maxtime .05856 99.4 %

AOP 1 s Min stepsize .05857 100 %

Table : Performance comparison between integer program solvers and AOP.
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Select N = 250 out of a pool of Np = 1, 000 loans for mean
variance portfolio:
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Figure : AOP computational time: 29 seconds. Integer program
computational time: 1 hr 28 min. Solutions differ on 18/1000 loans.
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Select 250 loans from 1, 000 subprime mortgages for log-optimal
portfolio:
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Figure : AOP computational time: 34 seconds. Integer program
computational time: 39 min. Solutions differ on 20/1000 loans.
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Summary

1 Prove weak convergence results for a broad class of models:

Efficient Monte Carlo approximation for the distribution of
default and prepayment in loan pools

Asymptotically optimal portfolio (AOP) for large-scale
optimization of loan portfolios

2 Numerical tests with actual mortgage data: Monte Carlo
approximation is typically several orders of magnitude faster
than brute-force simulation (at a similar level of accuracy).

3 Similar computational advantages using AOP.
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