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Lack of a natural numéraire

e Standard models of financial markets: in units of a
pre-specified numéraire.

e Here: multiple financial assets, any of which may potentially
lose all value relative to the others.
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1. (Formulation of the First and Second FTAP. Symmetric in the
sense that no asset is prioritized.)

2. Interpretation of strict local martingale models, arising by
fixing a numéraire that has positive probability to default.
= Non-classical pricing formulas can be economically justified
and extended.

3. Assume that for each asset there exists a probability measure
under which discounted prices (with the corresponding asset
as numéraire) are local martingales. These measures need not
be equivalent.

Question: How can these measures be aggregated to an
arbitrage-free pricing operator that takes all events of
devaluations into account?
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Non-classical pricing operators

Popular model in FX:

51,2(1') — 51,2(0) -+ /Ot (851,2(U)2 -+ bS]_’Q(U) —+ C) dW(u)

“Quadratic normal volatility” (stopped when hitting zero)
Calibration usually yields strict local martingale dynamics.
Let's assume a complete market and zero interest rate.

Superreplication cost of S12(T) is strictly smaller than S; 2(0)
(if we price according to risk-neutral expectations). This
contradicts no-arbitrage “in practice.”

Possible ways out:

e Use a different model.
e Change the concept of pricing operator.
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New pricing operators

e Lewis: “add correction term” to risk-neutral expectation when
pricing calls.

e Madan & Yor: Exchange expectations and limits.

e Cox & Hobson: Restrict class of admissible strategies.

e Paulot: Linear operator on a Banach space of payoffs
e Carr & Fisher & Ruf:

e Note that a change of numéraire via strict local martingale
S1.2 yields non-equivalent measure.

e Then consider the minimal superreplication cost under both
measures (the original one and the new one).
e Yields an explicit formula for the correction term.
Issues:
e Correction term seems non-symmetric in currencies.
e What to do in an incomplete market??

e \What to do with more than two currencies??
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Relative prices are modelled by an exchange matrix

e d: number of currencies

e Let S;(t) denote the price of the j:th currency in terms of
the i:th currency, at time t.

e 5 =(5;)) is an F—progressive, cadlag process taking values in
[0, 00]9%9 such that S(t) is an exchange matrix:

5ij(t)S;k(t) = Sik(t) (whenever defined);
Siji(t) = 1.

e Note: there exists always a strongest currency i* with

Zj 5,'*71'(1') < d.
o Define: A(t) = {i: > :Si;(t) <oo} #0.
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Setup

Value vector

A value vector v = (v;); (with respect to S(t)) encodes the
price of an asset in terms of the d currencies.

The i:th component describes the price of an asset in terms of
the /:th currency.

v satisfies consistency condition:
Sij(t)vi =vi (whenever defined).

Dt: the set of all F(t)-measurable value vectors with respect
to S(t) (which are bounded, in a weak sense)
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Valuation operator

e A valuation operator relates future random prices to present
deterministic prices.

o Concept goes back to Harrison & Pliska (1981); see also
Biagini & Cont (2006) and literature on risk measures.

We say that a family of operators V = (V"!)g<,<t<T, with
vt Dt 5 D

Is a valuation operator with respect to S if it satisfies:
1. Positivity

Linearity

Continuity from below

Time consistency

Martingale property

S ok

Redundancy
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Valuation operator — the conditions

1. (Positivity) If C € DT and C > 0 then V%7 (C) > 0.

. (Linearity) If H € £°>", and C, C' € Dt then

Vr’t(Hl{H#O}C -+ C/) = Hl{H#O}Vr’t(C) + Vr’t(C/).

. (Continuity from below) If (C,)nen C D' is a nondecreasing

sequence of nonnegative value vectors converging to C € D',
then VOt(C,) converges to V%¢(C).

. (Time consistency) For C € DT,

Vr’t(Vt’T(C)) _ Vr’T(C).

. (Martingale property) V&7 (S.i(T)) = S.i(t)1fica)-
. (Redundancy) For C € D with Y ; 1¢¢,_gy > 0, V"*(C) = 0.
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Disaggegration and aggregation

A family (Qj;); of probability measures such that S; a
Q;—supermartingale is called consistent if the following
change-of-numéraire formula holds:

E%[S;j(t)1a] = Sij(0) x Q;(AN{S;i(t) > 0}).

Given a valuation operator V there exist a consistent family of
supermartingale measures (Q;); such that

V(O = S S | (1)

forall r <t, je(r), CeD"
Conversely, given a consistent family of supermartingale measures
(Q/);, (1) defines a valuation operator V.
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The appearance of strict local martingales

Consistent family (Q;);, with A = Q:
E%[Si,(t)] = $1(0) x Q;(S;.i(t) > 0).

e 5, is a Q—martingale if and only if Q;(S;;(T)=0)=0.

e 5;jisa QQj—local martingale if and only if 5;; does not jump
to zero under ;.
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The case of two assets

d = 2, with value vector C = (G, G)*

E.g., C=((S512(T)— K)", (1 = KS1(T))")*!

0,7 _ < y o C1 _ > Q2 G
VPT(C) = S1a(0) X B | ek |+ 5,0(0) ¥ B |

= 5;1(0) x E¥[C1] + 552(0) x E¥2[Colys, ,(T)=oc}]

equals Lewis’ correction term
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Example: The Camara-Heston model

Camara-Heston extend the BSM model with a huge jump
upward or a huge jump downward to explain observed skews
and smiles.

They derive analytic call and put prices by solving a suitable
PDE.

In our setup: d =2

W is P-BM, and 7y, ™ are independent exponential times
with intensities A1, Ao:

51,2(t) — eGW(t)+Mt1{t§Tl/\TQ} _|_ o0 X 1{7’1<7‘2/\t}

Call option with C; = (S12(T) — K)™ and
C2 = (1 — K5271(T))+. Then

V2T (C) = e M7 51 5(0)d(dh)—Ke 2T d(dp)+51.2(0)(1—e M 7).



(Dis-)aggregation
°

The concept of “no obvious devaluations”

We say that a probability measure P on (€2, F(T)) satisfies “No
Obvious Devaluations” (NOD) if

P(i e A(T)|F(7)) >0 on {1 <oo}n{ieA(7)}

for all i and stopping times 7.
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Aggregation without numéraire-consistency

Let (Q;); be be a family of probability measures. Then there exists

a martingale valuation operator V ~ > . Q; if one of the following
two conditions is satisfied:

1. S;is a Q;—martingale.
2. The following four conditions hold:

2.1 S; is a Q;—local martingale.
2.2 . Q; satisfies (NOD).
2.3

QulFr{s; se(T)<o0} ™ (Z Q,>

]:ﬂ{zj Sk,j(T)<OO}

2.4 There exist ¢ > 0, N € N, predictable times (T,)nc(1,... Ny S-t.

S (tw): ZSkJ(t)—ooand ZS,U )<d+e CU[[T]].

k n=1
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Conclusion

We consider an exchange economy with d currencies, where
each currency has the possibility to complete devaluate
against any other currency.

(In such an economy, we introduce the concept of a valuation
operator and link it to a no-arbitrage condition.)

We interpret the lack of martingale property of an asset price
as a reflection of the possibility that the numéraire currency
may devalue completely.

We study conditions under which not necessarily equivalent
measures, corresponding to different numéraires, may be
aggregated to obtain a numéraire-independent valuation
operator.



Merci beaucoup!
Many thanks!
Bon Appétit!



