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Stochastic regularization
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Stochastic regularization in a nutshell

The following slides are based on the lecture notes of Franco
Flandoli (2015) and on his St. Flour lecture Notes ”Random
Perturbation of PDEs and Fluid Dynamic Models” (2010).
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A first example

• Let ϕ : Rd → R be a non smooth bounded measurable map

• Perturb it by adding a Brownian motion (Bt)t as:

ϕ(x + Bt)

• Take expectation and set:

u(t, x) := E [ϕ(x + Bt)]

The map u is smooth and solves the Heat equation:

∂u

∂t
=

1

2
∆u, u(0, ·) = ϕ(·),

and

u(t, x) =

∫
Rd

Pheat
t (x − y)ϕ(y)dy .
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A second example

• Consider the following ODE:

dXt = b(t,Xt)dt, X0 = x0,

for some b : [0,T ]× Rd → Rd .

• When b is not smooth, uniqueness may fail...

• Take for instance d = 1 and b(t, x) := b(x) := 2sgn(x)
√
|x |

and x0 := 0, then every function of the form

Xt := ±(t − t0)21t≥t0 , t0 ≥ 0

is solution.

What is then a good solution?



Stochastic regularization Itô-Wentzell-Tanaka trick
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A second example

• Add some noise:

dXt = b(t,Xt)dt + σdBt , X0 = x0,

where (Bt)t is a Brownian motion and σ > 0.

• Why is it useful?

• Selection of solutions: Assume that for any σ there exists a
unique solution, then let Pσ denotes its law. Then prove that
(Pσ)σ>0 is tight and converges in law (as σ tends to 0) to
some measure supported on the set of solutions to the ODE.

For instance, Bafico and Baldi (81’) proved that for
b(x) = 2sgn(x)

√
|x | and x0 = 0 it converges to:

1

2
δ+t2 +

1

2
δ−t2 .
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A second example

• Add some noise:

dXt = b(t,Xt)dt + σdBt , X0 = x0,

where (Bt)t is a Brownian motion and σ > 0.

• (Veretennikov 81’) If b is bounded then the equation admits
pathwise uniqueness.

• (Krylov-Röckner 05’) If b belongs to Lq([0,T ]; Lp(Rd)) with
d
p + 2

q < 1 (p, q ≥ 2) then the equation admits pathwise
uniqueness.

• How does it work?
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A second example

• Recall that:

Xt = x0 +

∫ t

0
b(s,Xs)ds + σBt

We try to get regularity of the blue term using the Itô-Tanaka
Trick.

• Example: use the celebrated Itô-Tanaka formula for b = δa
and for B:∫ t

0
δa(Bs)ds = |Bt − a| − |a| −

∫ t

0
sgn(Bs − a)dBs .

• Idea: to express
∫ t

0 b(s,Xs)ds by means of more regular
objects
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The Itô-Tanaka trick
• Apply Itô’s formula with a smooth mapping U:

U(t,Xt) = U(T ,XT )−
∫ T

t

(
∂U

∂t
+ b · ∇U +

1

2
σ2∆U

)
(s,Xs)ds

− σ
∫ T

t
∇U(s,Xs)dBs

• So if U is solution to the Fokker-Planck (Backward) PDE

∂U

∂t
+ b · ∇U +

σ2

2
∆U = −b, U(T , x) = 0,

then ∫ T

t
b(s,Xs)ds = −U(t,Xt) + σ

∫ T

t
∇U(s,Xs)dBs

and so

Xt = x0 + U(0, x0)− U(t,Xt) + σ

∫ t

0
(∇U(s,Xs) + Id .)dBs .
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Applications of the Itô-Tanaka trick to SPDEs

• The Itô-Tanaka Trick can be used to obtain new results in
linear transport equations by introducing a stochastic
perturbation (see Flandoli, Gubinelli, Priola; 10’; Invent.
Math.).

• Limitation to other problems: (Flandoli et al.)

”The generalization to nonlinear transport equations, where b
depends on u itself, would be a major next step for
applications to fluid dynamics but it turns out to be a difficult
problem. Specifically there are already some difficulties in
dealing with a vector field b which depends itself on the
random perturbation W . There is no obvious extension of the
Itô-Tanaka trick to integrals of the form

∫ T
0 f (ω, s,X x

s (ω))ds
with random f .”
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Generalizations to random mappings

The problem pointed out previously is to provide an expression for:∫ T

0
f (s, ω,Xs)ds,

where f is now random (previously we had f = b where b was
deterministic) in a predictable way.

• If we reproduce the ideas before we need to consider the
Fokker-Planck SPDE:

U(t, x) = −
∫ T

t

(
1

2
∆ + b(s, ω, x) · ∇

)
U(s, x)ds−

∫ T

t
f (s, ω, x)ds.

• But: in that case U(t, x) is not adapted (even if the data b, f
are adapted) so you can not use classical Itô calculus and the
previous approach fails.
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Generalizations to random mappings

• Idea: make it adapted, and consider rather the following
Fokker-Planck BSPDE:

Ua(t, x) = −
∫ T

t
LsUa(s, x)ds−

∫ T

t
f (s, ω, x)ds−

∫ T

t
Z (s, x)dBs ,

with Ls := 1
2 ∆ + b(s, ω, x) · ∇.

If solvable, Ua and Z are two predictable processes.
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Itô-Wentzell-Tanaka trick

Theorem (Duboscq, R.)

Assume that Ua and Z exist and are regular enough, then∫ T

0
f (s, ω,Xs)ds =− Ua(0,X0)−

∫ T

0
(∇Ua(s,Xs) + Z (s,Xs)) dBs

−
∫ T

0
∇Z (s,Xs)ds, P− a.s..

Now we need to study the BSPDE and the regularity of
(Ua,Z ).



Stochastic regularization Itô-Wentzell-Tanaka trick
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Analysis of the BSPDE

Theorem (Duboscq, R.)

Let p, q ≥ 2. Assume that b, f are adapted and that f belongs to
a ”Lp − Lq space ” and is Malliavin differentiable. There exists a
unique strong (predictable) solution to the Fokker-Planck BSPDE

(Ua,Z ) ∈ (”Lp − Lq space ”)2 .

Futhermore, we have the following representation of Ua

Ua(t, x) = E
[
−
∫ T

t
PX
t,r f (r , x)dr

∣∣∣Ft

]
. (1)

In addition, for a.e. (t, x), Ua(t, x) is Malliavin differentiable, and
for a.e. x ∈ Rd , a version of the process (Z (t, x))t∈[0,T ] is given by

Z (t, x) = DtU
a(t, x) = E

[
−
∫ T

t
DtP

X
t,r f (r , x)dr

∣∣∣Ft

]
. (2)

...
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Analysis of the BSPDE

Theorem (Duboscq, R.)

... Finally, Ua admits the following mild (a.k.a. Duhamel’s
formula) representation

Ua(t, x) = −
∫ T

t
PX
t,r f (r , x)dr −

∫ T

t
PX
t,rZ (r , x)dBr , (3)

where PXφ is the unique solution to:

PX
s,tφ(x) = φ(x)−

∫ t

s
LrPX

r ,tφ(x)dr , 0 ≤ s ≤ t.
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Analysis of the BSPDE

Remarks

• We are not working in L2

• We provide an explicit representation which is a counterpart
of the one for linear BSDEs (no reversibility of the semigroup)

• Malliavin differentiability in Lp − Lq spaces is not completely
trivial...there are catches

• Duhamel’s formula in that context is new
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