Generalized Dynkin games with g-conditional expectation and nonlinear pricing of game options

Roxana Dumitrescu
Agnès Sulem
M-Claire Quenez

References

- Classical Dynkin Games in continuous time: Alario-Nazaret, Lepeltier and Marchal, B. (1982).
- Links with Doubly RBSDEs when the driver g does not depend on y, z : Cvitanic and Karatzas (1996), Hamadène (2002) and Lepeltier (2000) (Hyp: Brownian + regularity).
- Pricing of Game options, links with Dynkin Games: Kifer (2000)
- Pricing of Game options in a complete financial market and links with Doubly RBSDEs with a driver g linear with respect to y, z : Hamadène (2006).
- Doubly RBSDEs with jumps: e.g. Essaky, Harraj, Ouknine (2005), Hamadène and Hassani (2006), Crépey and Matoussi (2008).
- This work: Generalized Dynkin games and DRBSDEs http://arxiv.org/abs/1504.06094 2013
+ Nonlinear pricing in a market with defaults: forthcoming.

Framework

Let (Ω, \mathcal{F}, P) be a probability space.

- Let W be a Brownian motion
- $N(d t, d u)$ be a Poisson random measure with intensity $\nu(d u) d t$ such that ν is a σ-finite measure on \mathbf{R}^{*}. Let $N(d t, d u)$ be its compensated process.
- Let $\mathbb{F}=\left\{\mathcal{F}_{t}, t \geq 0\right\}$ be the natural filtration associated with W and N.
- Fix $T>0$.

Notation

- \boldsymbol{H}^{2} : set of predictable processes ϕ s.t. $\|\phi\|_{H^{2}}^{2}:=E\left[\int_{0}^{T} \phi_{t}^{2} d t\right]<\infty$.
- L_{ν}^{2} : set of Borelian fns ℓ s.t. $\|\ell\|_{\nu}^{2}:=\int_{\mathbf{R}^{*}}|\ell(u)|^{2} \nu(d u)<+\infty$.
L_{ν}^{2} is a Hilbert with $\langle\delta, \ell\rangle_{\nu}:=\int_{\mathbf{R}^{*}} \delta(u) \ell(u) \nu(d u)$
- \boldsymbol{H}_{ν}^{2} : set of predictable processes / s.t.

$$
\|I\|_{H_{\nu}^{2}}^{2}:=E\left[\int_{0}^{T}\left\|I_{t}\right\|_{\nu}^{2} d t\right]<\infty .
$$

- S^{2} : set of real-valued RCLL adapted processes ϕ s.t. $\|\phi\|_{S^{p}}^{2}:=E\left(\sup _{0 \leq t \leq T}\left|\phi_{t}\right|^{2}\right)<\infty$.
- \mathcal{T}_{0} : set of stopping times τ s.t. $\tau \in[0, T]$ a.s
- For S in $\mathcal{T}_{0}, \mathcal{T}_{S}:=\{\tau, S \leq \tau \leq T$ a.s. $\}$

BSDEs with jumps

Definition: A function g is a driver if $g: \Omega \times[0, T] \times \mathbf{R}^{2} \times L_{\nu}^{2} \rightarrow \mathbf{R}$ $(\omega, t, y, z, k) \mapsto g(\omega, t, t, y, z, k)$ is predictable, and $g(., 0,0,0) \in \boldsymbol{H}^{2}$.

A driver g is a Lipschitz driver if $\exists C \geq 0$ s.t.
$\left|g\left(\omega, t, y_{1}, z_{1}, k_{1}\right)-g\left(\omega, t, y_{2}, z_{2}, k_{2}\right)\right| \leq C\left(\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|+| | k_{1}-k_{2} \|_{\nu}\right)$.
$\forall\left(y_{1}, z_{1}, k_{1}\right), \forall\left(y_{2}, z_{2}, k_{2}\right)$
Theorem
(Barles-Buckdahn-Pardoux) Let $T>0$. Let $\xi \in \mathcal{L}^{2}\left(\mathcal{F}_{T}\right)$, $\exists!(X, Z, k) \in S^{2, T} \times \boldsymbol{H}^{2, T} \times \boldsymbol{H}_{\nu}^{2, T}$ s.t.

$$
-d X_{t}=g\left(t, X_{t^{-}}, Z_{t}, k_{t}\right) d t-Z_{t} d W_{t}-\int_{\mathbf{R}^{*}} k_{t}(e) \tilde{N}(d t, d e) ; \quad Y_{T}=\xi
$$

This solution is denoted by $\left(X^{g}(\xi, T), Z^{g}(\xi, T), k^{g}(\xi, T)\right)$.

Nonlinear pricing associated with g / g-evaluation

3 assets: prices S^{0}, S^{1}, S^{2} with $d S_{t}^{0}=S_{t}^{0} r_{t} d t$

$$
\left\{\begin{array}{l}
d S_{t}^{1}=S_{t}^{1}\left[\mu_{t}^{1} d t+\sigma_{t}^{1} d W_{t}\right] \\
d S_{t}^{2}=S_{t}^{2,2}\left[\mu_{t}^{2} d t+\sigma_{t}^{2} d W_{t}+\beta_{t} d \tilde{N}_{t}\right]
\end{array}\right.
$$

Let $x=$ initial wealth.
At t, he chooses the amount $\varphi_{t}^{1}\left(\right.$ resp. $\left.\varphi_{t}^{2}\right)$ invested $S^{1}\left(\right.$ resp $\left.S^{2}\right)$.
$\varphi .=\left(\varphi_{t}^{1}, \varphi_{t}^{2}\right)^{\prime}$ called risky assets stategy.
Let $V_{t}^{\times, \varphi}\left(\right.$ or $\left.V_{t}\right)=$ value of the portfolio.
In the classical case

$$
d V_{t}=\left(r_{t} V_{t}+\varphi_{t}^{1} \theta_{t}^{1} \sigma_{t}^{1}+\varphi_{t}^{2} \theta_{t}^{2} \beta_{t}\right) d t+\varphi_{t}^{\prime} \sigma_{t} d W_{t}+\varphi_{t}^{2} \beta_{t} d \tilde{N}_{t}
$$

where $\theta_{t}^{1}:=\frac{\mu_{t}^{1}-r_{t}}{\sigma_{t}^{1}}$ and $\theta_{t}^{2}:=\frac{\mu_{t}^{2}-\sigma_{t}^{2} \theta_{t}^{1}-r_{t}}{\beta_{t}}$.

Case with nonlinear constraints:

$$
-d V_{t}=g\left(t, V_{t}, \varphi_{t}^{\prime} \sigma_{t}, \varphi_{t}^{2} \beta_{t}\right) d t-\varphi_{t}^{\prime} \sigma_{t} d W_{t}-\varphi_{t}^{2} \beta_{t} d \tilde{N}_{t}
$$

or equivalently, setting $Z_{t}=\varphi_{t}{ }^{\prime} \sigma_{t} \quad K_{t}=\varphi_{t}^{2} \beta_{t}$,

$$
-d V_{t}=g\left(t, V_{t}, Z_{t}, K_{t}\right) d t-Z_{t} d W_{t}-K_{t} d \tilde{N}_{t}
$$

Consider a European option with payoff $\xi \in L^{2}\left(\mathcal{F}_{T}\right)$.
$\exists!(X, Z, K)$ square integrable/

$$
\begin{equation*}
-d X_{t}=g\left(t, X_{t}, Z_{t}, K_{t}\right) d t-Z_{t} d W_{t}-K_{t} d \tilde{N}_{t} ; X_{T}=\xi \tag{1}
\end{equation*}
$$

The hedging risky assets stategy $\varphi=\left(\varphi^{1}, \varphi^{2}\right)^{\prime}$ is such that

$$
\begin{equation*}
\varphi_{t}^{\prime} \sigma_{t}=Z_{t} ; \varphi_{t}^{2} \beta_{t}=K_{t} \tag{2}
\end{equation*}
$$

$\Rightarrow X=V^{X_{0, \varphi}}$ (value of the replicating portfolio) $=$ price.
Example:
$g\left(t, V_{t}, \varphi_{t} \sigma_{t}, \varphi_{t}^{2} \beta_{t}\right)=-\left(r_{t} V_{t}+\varphi_{t}^{1} \theta^{1} \sigma^{1}+\varphi_{t}^{2} \theta^{2} \beta\right) \pm \rho\left(\varphi_{t}^{1}+\varphi_{t}^{2}\right)_{\vec{ٍ}}^{+}$

- This defines a nonlinear pricing system, introduced in El Karoui-Q (1996) in a Brownian framework, called g-evaluation by Peng (2004), denoted by \mathcal{E}^{g}.
- $\forall T, \forall \xi \in L^{2}\left(\mathcal{F}_{\mathcal{T}}\right)$, the g-evaluation of (T, ξ) is defined by

$$
\mathcal{E}_{t, T}^{g}(\xi):=X_{t}^{g}(T, \xi), 0 \leq t \leq T
$$

- Definition

An RCLL adapted process X_{t} in \mathcal{S}^{2} is said to be an \mathcal{E}^{g}-supermartingale if $\mathcal{E}_{\sigma, \tau}\left(X_{\tau}\right) \leq X_{\sigma}$ a.s. , $\forall \sigma \leq \tau \in \mathcal{T}_{0}$.

- Note that $\forall x \in \mathbb{R} \forall \varphi, V^{x, \varphi}$ is an \mathcal{E}^{g}-martingale (" g-martingale").
- In order to ensure that $\xi \mapsto \mathcal{E}^{g},, T(\xi)$ is non decreasing, we make the following assumption:

$$
g\left(t, y, z, k_{1}\right)-g\left(t, y, z, k_{2}\right) \geq \gamma_{t}^{y, z, k_{1}, k_{2}}\left(k_{1}-k_{2}\right) \nu_{t}
$$

$$
\gamma_{t}^{y, z, k_{1}, k_{2}} \geq-1
$$

Assumption A. 1

$\forall\left(y, z, k_{1}, k_{2}\right)$,

$$
g\left(t, y, z, k_{1}\right)-g\left(t, y, z, k_{2}\right) \geq\left\langle\gamma_{t}^{\nu, z, k_{1}, k_{2}}, k_{1}-k_{2}\right\rangle_{\nu},
$$

with $\gamma:[0, T] \times \Omega \times \mathbf{R}^{2} \times\left(L_{\nu}^{2}\right)^{2} \rightarrow L_{\nu}^{2} ;\left(\omega, t, y, z, k_{1}, k_{2}\right) \mapsto \gamma_{t}^{y, z, k_{1}, k_{2}}(\omega,$. predictable and s.t. $\forall\left(y, z, k_{1}, k_{2}\right)$,

$$
\begin{equation*}
\gamma_{t}^{y, z, k_{1}, k_{2}}(e) \geq-1 \quad \text { and } \quad\left|\gamma_{t}^{y, z, k_{1}, k_{2}}(e)\right| \leq \psi(e), \tag{3}
\end{equation*}
$$

where $\psi \in L_{\nu}^{2}$.

- \mathcal{E}^{g} is non decreasing (Q. and Sulem (2013)).

Evaluation of an American option

Let $\left(\xi_{t}, 0 \leq t \leq T\right)$ be a RCLL process $\in \mathcal{S}^{2}$ (payoff)
Price of the American option:

$$
\begin{equation*}
v(S):=\operatorname{ess} \sup _{\tau \in \mathcal{T}_{S}} \mathcal{E}_{S, \tau}\left(\xi_{\tau}\right) \tag{4}
\end{equation*}
$$

Theorem (Sulem, Q. (2013))
(i) We have

$$
v(S)=Y_{S} \quad \text { a.s. }
$$

where Y is the solution of the reflected $B S D E$ with obstacle ξ. (ii) $\tau_{\varepsilon}:=\inf \left\{u \geq S ; Y_{u} \leq \xi_{u}+\varepsilon\right\}$ is K ε-optimal for (4), i.e.

$$
\mathcal{E}_{S, \tau_{\varepsilon}}\left(\xi_{\tau_{\varepsilon}}\right) \geq Y_{S}-K \varepsilon \quad \text { a.s. }
$$

Result generalized by Grigorova, Quen., Imk.,Ouk. (april 2015) to the case ξ only right-u.s.c.

Doob-Meyer Decomposition for \mathcal{E}-supermartingales

Theorem : (Dumitrescu-Quenez-Sulem (2014))
$\left(Y_{t}\right)$ be an \mathcal{E}-supermartingale if and only if $\exists\left(A_{t}\right) \in \mathcal{A}^{2}$ and $(Z, k) \in \boldsymbol{H}^{2} \times \boldsymbol{H}_{\nu}^{2}$ such that
$-d Y_{s}=f\left(s, Y_{s}, Z_{s}, k_{s}\right) d s+d A_{s}-Z_{s} d W_{s}-\int_{\mathbf{R}^{*}} k_{s}(u) \tilde{N}(d s, d u)$.
Proof: For each $\tau \in \mathcal{T}_{S}, \quad Y_{S} \geq \mathcal{E}_{S, \tau}\left(Y_{\tau}\right) \quad$ a.s.

$$
\Rightarrow \quad Y_{S} \geq \operatorname{ess} \sup _{\tau \in \mathcal{T}_{S}} \mathcal{E}_{S, \tau}\left(Y_{\tau}\right) \quad \text { a.s. }
$$

Now, $Y_{S} \leq \operatorname{ess}_{\sup }^{\tau \in \mathcal{T}_{s}} \mathcal{E}_{S, \tau}\left(Y_{\tau}\right)$ a.s.

$$
\Rightarrow \quad Y_{S}=\operatorname{ess} \sup _{\tau \in \mathcal{T}_{S}} \mathcal{E}_{S, \tau}\left(Y_{\tau}\right) \quad \text { a.s. }
$$

By the previous characterization, $\left(Y_{t}\right)$ is equal to the solution of the reflected BSDE with RCLL obstacle (Y_{t}). \square
Generalization by Grigorova, Q. et al. (april 2015):
Mertens Decomposition of strong \mathcal{E}-supermartingales (not RCLL)

Evaluation of a Game option

Let ξ and $\zeta \in \mathcal{S}^{2}$ such that $\xi \leq \zeta$ and $\xi_{T}=\zeta_{T}$ a.s.

- The buyer can exercise it at any time $\tau \in \mathcal{T}$. Then, the seller pays to him the amount ξ_{τ}.
- The seller can cancel it at any $\sigma \in \mathcal{T}$. If $\sigma \leq \tau$, then he pays to the buyer the amount ζ_{σ}.
- Note that $\zeta_{\sigma}-\xi_{\sigma} \geq 0$ is the penalty the seller pays for the cancellation of the contract.
- Hence, the game option consists for the seller to select $\sigma \in \mathcal{T}$ and for the buyer to choose $\tau \in \mathcal{T}$, so that the seller pays to the buyer at time $\tau \wedge \sigma$ the payoff

$$
\begin{equation*}
I(\tau, \sigma):=\xi_{\tau} \mathbf{1}_{\tau \leq \sigma}+\zeta_{\sigma} \mathbf{1}_{\sigma<\tau} . \tag{5}
\end{equation*}
$$

Suppose that the seller has chosen σ. Then, the game option reduces to an American option with payoff $I(., \sigma)$, whose initial price is given by $\sup _{\tau \in \mathcal{T}} \mathcal{E}_{0, \tau \wedge \sigma}^{g}[l(\tau, \sigma)]$. Set

$$
\begin{equation*}
Y(0):=\inf _{\sigma \in \mathcal{T}} \sup _{\tau \in \mathcal{T}} \mathcal{E}_{0, \tau \wedge \sigma}^{g}[I(\tau, \sigma)] . \tag{6}
\end{equation*}
$$

called the fair value of the game option in the sequel.
\rightarrow new game problem.

Generalized Dynkin games

Let ξ and $\zeta \in \mathcal{S}^{2}$ such that $\xi \leq \zeta$ and $\xi_{T}=\zeta_{T}$ a.s.
For each $\tau, \sigma \in \mathcal{T}_{0}$, let

$$
I(\tau, \sigma)=\xi_{\tau} \mathbf{1}_{\tau \leq \sigma}+\zeta_{\sigma} \mathbf{1}_{\sigma<\tau}
$$

For $S \in \mathcal{T}_{0}$,

$$
\begin{aligned}
& \bar{V}(S):=\text { ess } \inf _{\sigma \in \mathcal{T}_{S}} \text { ess } \sup _{\tau \in \mathcal{T}_{S}} \mathcal{E}_{\mathcal{S}, \tau \wedge \sigma}[\mathcal{I}(\tau, \sigma)] \\
& \underline{V}(S):=\text { ess } \sup _{\tau \in \mathcal{T}_{S}} \text { ess } \inf _{\sigma \in \mathcal{T}_{S}} \mathcal{E}_{\mathcal{S}, \tau \wedge \sigma}[\mathcal{I}(\tau, \sigma)] .
\end{aligned}
$$

We clearly have the inequality $\underline{V}(S) \leq \bar{V}(S)$ a.s.

$$
\begin{aligned}
& \bar{V}(S):=e \operatorname{ess} \inf _{\sigma \in \mathcal{T}_{\mathcal{S}}} \text { ess } \sup _{\tau \in \mathcal{T}_{\mathcal{S}}} \mathcal{E}_{\mathcal{S}, \tau \wedge \sigma}[\mathcal{I}(\tau, \sigma)] \\
& \underline{V}(S):=\underset{\tau \in \mathcal{T}_{s}}{\operatorname{ess} \sup _{s \in} \inf _{\sigma \in \mathcal{T}_{s}} \mathcal{E}_{\mathcal{S}, \tau \wedge \sigma}[\mathcal{I}(\tau, \sigma)] ~}
\end{aligned}
$$

Definition

we say that the game is fair at time S if $\bar{V}(S)=\underline{V}(S)$ a.s.
Definition
Let $S \in \mathcal{T}_{0}$. A pair $\left(\tau^{*}, \sigma^{*}\right) \in \mathcal{T}_{S}^{2}$ is called an S-saddle point if \forall $(\tau, \sigma) \in \mathcal{T}_{S}^{2}$, we have

$$
\mathcal{E}_{S, \tau \wedge \sigma^{*}}\left[I\left(\tau, \sigma^{*}\right)\right] \leq \mathcal{E}_{S, \tau^{*} \wedge \sigma^{*}}\left[I\left(\tau^{*}, \sigma^{*}\right)\right] \leq \mathcal{E}_{S, \tau^{*} \wedge \sigma}\left[I\left(\tau^{*}, \sigma\right)\right] \text { a.s. }
$$

Double barrier reflected BSDEs with jumps

Let ξ and $\zeta \in \mathcal{S}^{2}$ such that $\xi_{t} \leq \zeta_{t}$ and $\xi_{T}=\zeta_{T}$ a.s.
Definition
Solution: $\left(Y, Z, k, A, A^{\prime}\right)$ in $\mathcal{S}^{2} \times \boldsymbol{H}^{2} \times \boldsymbol{H}_{\nu}^{2} \times\left(\mathcal{A}^{2}\right)^{2}$ such that
$-d Y_{t}=g\left(t, Y_{t}, Z_{t}, k_{t}\right) d t+d A_{t}-d A_{t}^{\prime}-Z_{t} d W_{t}-\int_{\mathbf{R}^{*}} k_{t}(u) \tilde{N}(d t, d u) ;$
$Y_{T}=\xi_{T}$,
$\xi_{t} \leq Y_{t} \leq \zeta_{t}, 0 \leq t \leq T$ a.s.,
$\int_{0}^{T}\left(Y_{t}-\xi_{t}\right) d A_{t}^{c}=0$ a.s. and $\int_{0}^{T}\left(\zeta_{t}-Y_{t}\right) d A_{t}^{\prime c}=0$ a.s.
$\Delta A_{\tau}^{d}=\Delta A_{\tau}^{d} \mathbf{1}_{\left\{Y_{\tau^{-}}=\xi_{\tau^{-}}\right\}}$and $\Delta A_{\tau}^{\prime d}=\Delta A_{\tau}^{\prime d} \mathbf{1}_{\left\{Y_{\tau^{-}}=\zeta_{\tau^{-}}\right\}}$a.s. $\forall \tau \in \mathcal{T}_{0}$ predictabl $d A_{t} \perp d A_{t}^{\prime}$

A particular classical case: g does not depend on y, z Fix $S \in \mathcal{T}_{0}$.
$\forall \tau, \sigma \in \mathcal{T}_{S}$, define

$$
I_{S}(\tau, \sigma):=\int_{S}^{\sigma \wedge \tau} g_{s} d s+\xi_{\tau} \mathbf{1}_{\{\tau \leq \sigma\}}+\zeta_{\sigma} \mathbf{1}_{\{\sigma<\tau\}}
$$

We have

$$
\begin{aligned}
& \bar{V}(S)=\text { ess } \inf _{\sigma \in \mathcal{T}_{S}} \text { ess } \sup _{\tau \in \mathcal{T}_{s}} \mathbf{E}\left[I_{S}(\tau, \sigma) \mid \mathcal{F}_{\mathcal{S}}\right] \\
& \underline{V}(S)=\text { ess } \sup _{\tau \in \mathcal{T}_{S}} \text { ess } \inf _{\sigma \in \mathcal{T}_{s}} \mathbf{E}\left[I_{S}(\tau, \sigma) \mid \mathcal{F}_{\mathcal{S}}\right]
\end{aligned}
$$

\rightarrow Classical Dynkin games (see e.g. Cvitanic and K. (1996), Hamadène) They show that the value function of the classical Dynkin game coincides with the solution of the doubly reflected BSDE associated with the driver process g_{t} (which does not depend on y, z).

Recall that classically, we introduce
$\tilde{\xi}_{t}^{g}:=\xi_{t}-\mathbb{E}\left[\xi_{T}+\int_{t}^{T} g(s) d s \mid F_{t}\right], \quad \tilde{\zeta}_{t}^{g}:=\zeta_{t}-\mathbb{E}\left[\xi_{T}+\int_{t}^{T} g(s) d s \mid F_{t}\right]$,
so that $\tilde{\xi}_{T}^{g}=\tilde{\zeta}_{T}^{g}=0$ ass.
By results on classical Dynkin games, one can construct by using a recursive procedure two supermartingales J^{g} and $J^{\prime g}$, valued in $\mathbb{R}^{+} \cup\{+\infty\}$ (see K.-Q.-C. 2013) which satisfy:

$$
J^{g}=\mathcal{R}\left(J^{\prime} g+\tilde{\xi}\right) \quad J^{\prime} g=\mathcal{R}\left(J^{g}-\tilde{\zeta}\right)
$$

Then, when J^{g} and $J^{\prime} g$ are finite (which is the case when under Mokobodski's condition), then (see e.g. Cvitanic and K...)

$$
\bar{Y}_{t}:=J_{t}^{g}-J_{t}^{\prime g}+E\left[\xi_{T}+\int_{t}^{T} g(s) d s \mid \mathcal{F}_{t}\right] ; 0 \leq t \leq T
$$

is solution of the doubly reflected BSDE associated with the driver process $g(s)$ (which does not depend on y, z).

Doubly reflected BSDEs with a general driver $g(t, y, z, k)$

Here the driver $g(t, y, z, k)$ depends on y, z.
Recall that under Mokobodski's condition, the DRBSDE associated with general driver $g(t, y, z, k)$ admits a unique solution $\left(Y, Z, k, A, A^{\prime}\right) \in \mathcal{S}^{2} \times \boldsymbol{H}^{2} \times \boldsymbol{H}_{\nu}^{2} \times\left(\mathcal{A}^{2}\right)^{2}$.
Remark: In the previous literature (Cvitanic-K.), the authors have noted that the solution Y of the DRBSDE coincides with the value function of the previous classical Dynkin game with $g_{s}:=g\left(s, Y_{s}, Z_{s}, k_{s}\right)$. Here, the gain is given by

$$
\begin{equation*}
I_{S}(\tau, \sigma)=\int_{S}^{\sigma \wedge \tau} g\left(u, Y_{u}, Z_{u}, k_{u}\right) d u+\xi_{\tau} \mathbf{1}_{\{\tau \leq \sigma\}}+\zeta_{\sigma} \mathbf{1}_{\{\sigma<\tau\}} \tag{10}
\end{equation*}
$$

But it is not so interesting because the instantaneous reward process $g_{s}:=g\left(s, Y_{s}, Z_{s}, k_{s}\right)$ depends on the value function Y of the associated Dynkin game itself.

Generalized Dynkin Game

(Here, $g(t, y, z, k)$ depends on y, z)
Definition: Let $S \in \mathcal{T}_{0}$. A pair $(\hat{\tau}, \hat{\sigma}) \in \mathcal{T}_{S}^{2}$ is an S-saddle point if $\forall(\tau, \sigma) \in \mathcal{T}_{S}^{2}$, we have

$$
\mathcal{E}_{S, \tau \wedge \hat{\sigma}}[I(\tau, \hat{\sigma})] \leq \mathcal{E}_{S, \hat{\tau} \wedge \hat{\sigma}}[I(\hat{\tau}, \hat{\sigma})] \leq \mathcal{E}_{S, \hat{\tau} \wedge \sigma}[I(\hat{\tau}, \sigma)] \text { a.s. }
$$

The classical sufficient condition of "optimality" for the classical Dynkin game, based on J^{g} and $J^{\prime g}$ (see Alario-N.et al. (1982)), is not appropriate to our case. Here, we have
Lemma (Sufficient condition of "optimality", Dum.-Que-Sul. 2013)

Let $\left(Y, Z, k, A, A^{\prime}\right)$ be the solution of the DBBSDE .
Let $(\hat{\tau}, \hat{\sigma}) \in \mathcal{T}_{S}$.
Suppose $\left(Y_{t}, S \leq t \leq \hat{\tau}\right)$ is an \mathcal{E}-submartingale and
$\left(Y_{t}, S \leq t \leq \hat{\sigma}\right)$ is an \mathcal{E}-supermartingale with $Y_{\hat{\tau}}=\xi_{\hat{\tau}}$ and $Y_{\hat{\sigma}}=\zeta_{\hat{\sigma}}$ a.s.
$\Rightarrow(\hat{\tau}, \hat{\sigma})$ is a S-saddle point and

$$
Y_{S}=\bar{V}(S)=\underline{V}(S) \text { a.s. }
$$

Proof:

Let $\tau \in \mathcal{T}_{S}$. We want to show that for each $\tau \in \mathcal{T}_{S}$

$$
\begin{equation*}
Y_{S} \geq \mathcal{E}_{S, \tau \wedge \hat{\sigma}}(I(\tau, \hat{\sigma})) \text { a.s. } \tag{11}
\end{equation*}
$$

Since the process $\left(Y_{t}, S \leq t \leq \tau \wedge \hat{\sigma}\right)$ is an \mathcal{E} supermartingale,

$$
\begin{equation*}
Y_{S} \geq \mathcal{E}_{S, \tau \wedge \hat{\sigma}}\left(Y_{\tau \wedge \hat{\sigma}}\right) \tag{12}
\end{equation*}
$$

Since $Y \geq \xi$ and $Y_{\hat{\sigma}}=\zeta_{\hat{\sigma}}$ a.s., we have

$$
Y_{\tau \wedge \hat{\sigma}}=Y_{\tau} \mathbf{1}_{\tau \leq \hat{\sigma}}+Y_{\hat{\sigma}} \mathbf{1}_{\hat{\sigma}<\tau} \geq \xi_{\tau} \mathbf{1}_{\tau \leq \hat{\sigma}}+\zeta_{\hat{\sigma}} \mathbf{1}_{\hat{\sigma}<\tau}=I(\tau, \hat{\sigma}) .
$$

By (12) and since \mathcal{E} is increasing, we derive (11).
Similarly, for each $\sigma \in \mathcal{T}_{S}$:

$$
Y_{S} \leq \mathcal{E}_{S, \hat{\tau} \wedge \sigma}(I(\hat{\tau}, \sigma)) \quad \text { a.s. }
$$

$\Rightarrow(\hat{\tau}, \hat{\sigma})$ is an S-saddle point and $Y_{S}=\bar{V}(S)=\underline{V}(S)$ a.s.

Theorem (Existence of S-saddle point, D-Q-S. 2013)
Let $\left(Y, Z, k, A, A^{\prime}\right)$ be the solution of the DBBSDE.
Suppose that A, A^{\prime} are continuous (which is the case if ξ and $-\zeta$ are left-u.s.c. along s.t.).
For each $S \in \mathcal{T}_{0}$, let

$$
\sigma_{S}^{*}:=\inf \left\{t \geq S, \quad Y_{t}=\zeta_{t}\right\} ; \quad \tau_{S}^{*}:=\inf \left\{t \geq S, \quad Y_{t}=\xi_{t}\right\},
$$

$\Rightarrow\left(\tau_{S}^{*}, \sigma_{S}^{*}\right)$ is an S-saddle point for $Y_{S}=\bar{V}(S)=\underline{V}(S)$ a.s.
proof: Since Y and ξ are cad, we have $Y_{\sigma_{s}^{*}}=\xi_{\sigma_{s}^{*}}$ and $Y_{\tau_{s}^{*}}=\xi_{\tau_{s}^{*}}$ a.s. Also, $Y_{t}>\xi_{t}$ for each $t \in\left[S, \tau_{s}^{*}\right.$ [. Hence, since Y is solution of the DBBSDE, A is constant on $\left[S, \tau_{s}^{*}\right]$ a.s.

proof:

- Since Y and ξ are cad, we have $Y_{\sigma_{s}^{*}}=\xi_{\sigma_{s}^{*}}$ and $Y_{\tau_{s}^{*}}=\xi_{\tau_{s}^{*}}$ a.s. Also, $Y_{t}>\xi_{t}$ for each $t \in\left[S, \tau_{S}^{*}[\right.$. Hence, since Y is solution of the DBBSDE, A is constant on $\left[S, \tau_{S}^{*}\right]$ a.s.
- $\Rightarrow Y$ is an \mathcal{E}-submartingale on $\left[S, \tau_{S}^{*}\right]$.
- Similarly, Y is an \mathcal{E}-supermartingale on $\left[S, \sigma_{S}^{*}\right]$.
- By the Lemma, $\left(\tau_{S}^{*}, \sigma_{S}^{*}\right)$ is an S-saddle point and $Y_{S}=\bar{V}(S)=\underline{V}(S)$ a.s.

The main result

Here, A, A^{\prime} are not supposed to be continuous. There does not a priori exist a saddle-point. However,

Theorem (Characterization, D.-Q.-S. 2013)
Let $\left(Y, Z, k, A, A^{\prime}\right)$ be the solution of the doubly reflected BSDE associated with the nonlinear driver $g(t, y, z, k)$.
The Generalized Dynkin game is fair and

$$
Y_{S}=\bar{V}(S)=\underline{V}(S) \quad \text { a.s. }
$$

Sketch of the proof:

$$
\begin{aligned}
\tau_{S}^{\varepsilon} & :=\inf \left\{t \geq S, \quad Y_{t} \leq \xi_{t}+\varepsilon\right\} \\
\sigma_{S}^{\varepsilon} & :=\inf \left\{t \geq S, \quad Y_{t} \geq \zeta_{t}-\varepsilon\right\}
\end{aligned}
$$

We first show that $A_{\tau_{S}^{\varepsilon}}=A_{S}$ a.s. and $A_{\sigma_{S}^{\varepsilon}}^{\prime}=A_{S}^{\prime}$ a.s.
We then derive that $\left(\tau_{S}^{\varepsilon}, \sigma_{S}^{\varepsilon}\right)$ is a $K \epsilon$-saddle point at time S and the desired result.

Application to game options in the market with constraints

- Corollary (Dumistrescu-Quenez-Sulem (2014)) The fair value of the game option satisfies
$Y(0)=\inf _{\sigma \in \mathcal{T}} \sup _{\tau \in \mathcal{T}} \mathcal{E}_{0, \tau \wedge \sigma}^{g}(I(\tau, \sigma))=\sup _{\tau \in \mathcal{T}} \inf _{\sigma \in \mathcal{T}} \mathcal{E}_{0, \tau \wedge \sigma}^{g}[I(\tau, \sigma)]=Y_{0}$,
where $\left(Y, Z, K, A, A^{\prime}\right)$ is the unique solution in $\mathcal{S}^{2} \times L^{2}(W) \times L^{2}(M) \times \mathcal{A}^{2} \times \mathcal{A}^{2}$ of the doubly reflected BSDE with nonlinear driver $g(t, y, z, k)$.
- In the particular case when g is linear with respect to y, z, \rightarrow Hamadène's result.
- Definition: for each initial wealth x, a super-hedge against the game option is a pair (σ, φ) of a s.t. $\sigma \in \mathcal{T}$ and a strategy φ such that

$$
V_{t}^{x, \varphi} \geq \xi_{t}, 0 \leq t \leq \sigma \text { and } \quad V_{\sigma}^{x, \varphi} \geq \zeta_{\sigma} \text { a.s. }
$$

- $\mathcal{A}(x):=$ set of all super-hedges associated with x.
- The super-hedging price is defined by

$$
u_{0}:=\inf \{x \in \mathbf{R}, \exists(\sigma, \varphi) \in \mathcal{A}(x)\} .
$$

Theorem (Dum-Que-Sul 2015):

- Let (Y, Z, K, A, A^{\prime}) is the solution of the DRBSDE. Suppose A^{\prime} is continuous (satisfied if ζ is left lower-s.c. along s.t.)
- Then, super-hedging price $=$ fair value of the game option, that is

$$
u_{0}=Y_{0}
$$

- Let $\sigma^{*}:=\inf \left\{t \geq 0, Y_{t}=\zeta_{t}\right\}$ and $\varphi^{*}:=\Phi(Z, K)$ (defined as before).
Then, $\left(\sigma^{*}, \varphi^{*}\right)$ belongs to $\mathcal{A}\left(Y_{0}\right)$.
Rem 1: Under these assumptions, there does not a priori exist τ^{*} such that $\left(\tau^{*}, \sigma^{*}\right)$ is a saddle point.
Rem 2: If A^{\prime} is not continuous, then, generally, $u_{0} \neq Y_{0}$.

A mixed game problem with nonlinear expectations

- Two actions: stopping times and controls $(u, v) \in \mathcal{U} \times \mathcal{V}$.
- A classical mixed game problem (Hamadène, Lepeltier) : The criterium is

$$
E_{Q^{u, v}}\left[\int_{S}^{\tau \wedge \sigma} c\left(t, u_{t}, v_{t}\right) d t+I(\tau, \sigma) \mid \mathcal{F}_{S}\right]
$$

with $Q^{u, v}$ the probability with density $Z_{T}^{u, v} /$

$$
d Z_{t}^{u, v}=Z_{t}^{u, v}\left[\beta\left(t, u_{t}, v_{t}\right) d W_{t}+\int_{\mathbf{R}^{*}} \gamma\left(t, u_{t}, v_{t}, e\right) \tilde{N}(d t, d e)\right] ; Z_{0}^{u, v}=1
$$

- First player: chooses $(u, \tau) \in \mathcal{U} \times \mathcal{T}_{S}$ and aims to maximize the criterium
Second player: chooses $(v, \sigma) \in \mathcal{V} \times \mathcal{T}_{S}$ and aims to minimize the criterium.

Generalized mixed game problem

Let $\left(g^{u, v} ;(u, v) \in \mathcal{U} \times \mathcal{V}\right)$ be a family of Lipschitz drivers / A.1. Let $S \in \mathcal{T}_{0}$. For each $(u, \tau, v, \sigma) \in \mathcal{U} \times \mathcal{T}_{S} \times \mathcal{V} \times \mathcal{T}_{S}$, the criterium at time S is :

$$
\mathcal{E}_{S, \tau \wedge \sigma}^{u, v}(I(\tau, \sigma)),
$$

where $\mathcal{E}^{u, v}=g^{u, v}$-conditional expectation.
For each $S \in \mathcal{T}_{0}$,

$$
\begin{align*}
& \bar{V}(S):=\text { ess } \inf _{v \in \mathcal{V}, \sigma \in \mathcal{T}_{S}} \text { ess } \sup _{u \in \mathcal{U}, \tau \in \mathcal{T}_{S}} \mathcal{E}_{S, \tau \wedge \sigma}^{u, v}(I(\tau, \sigma)) ; \tag{13}\\
& \underline{V}(S):=\text { ess } \sup _{u \in \mathcal{U}, \tau \in \mathcal{T}_{S}} \text { ess } \inf _{v \in \mathcal{V}, \sigma \in \mathcal{T}_{S}} \mathcal{E}_{S, \tau \wedge \sigma}^{u, v}(I(\tau, \sigma)) . \tag{14}
\end{align*}
$$

Definition

Let $S \in \mathcal{T}_{0}$. A quadruple $(\bar{u}, \bar{\tau}, \bar{v}, \bar{\sigma}) \in \mathcal{U} \times \mathcal{T}_{S} \times \mathcal{V} \times \mathcal{T}_{S}$ is called an S-saddle point if for each (u, τ, v, σ) we have

$$
\mathcal{E}_{S, \tau \wedge \bar{\sigma}}^{u, \bar{v}}(I(\tau, \bar{\sigma})) \leq \mathcal{E}_{S, \bar{\tau} \wedge \bar{\sigma}}^{\bar{u}, \bar{v}}(I(\bar{\tau} \wedge \bar{\sigma})) \leq \mathcal{E}_{S, \bar{\tau} \wedge \sigma}^{\bar{u}, v}(I(\bar{\tau}, \sigma)) \quad \text { a.s. }
$$

Existence of saddle points for the mixed game problem

Theorem (Dum.-Que-Sul. 2013)
Suppose ξ and ζ are left u.s.c. along stopping times + Mokobodski's condition.
Suppose that $\exists \bar{u} \in \mathcal{U}$ and $\bar{v} \in \mathcal{V}$ such that for each $(u, v) \in \mathcal{U} \times \mathcal{V}$,
$g^{u, \bar{v}}\left(t, Y_{t}, Z_{t}, k_{t}\right) \leq g^{\bar{u}, \bar{v}}\left(t, Y_{t}, Z_{t}, k_{t}\right) \leq g^{\bar{u}, v}\left(t, Y_{t}, Z_{t}, k_{t}\right) \quad d t \otimes d P$ a.s.
where $\left(Y, Z, k, A, A^{\prime}\right)$ is the solution of the DBBSDE associated with driver $g^{\bar{u}, \bar{v}}$. Let

$$
\tau_{S}^{*}:=\inf \left\{t \geq S: Y_{t}=\xi_{t}\right\} \quad ; \quad \sigma_{S}^{*}:=\inf \left\{t \geq S: Y_{t}=\zeta_{t}\right\} .
$$

The quadruple ($\bar{u}, \tau_{S}^{*}, \bar{v}, \sigma_{S}^{*}$) is then an S -saddle point and $Y_{S}=\underline{V}(S)=\bar{V}(S)$ a.s.

The generalized mixed game problem is fair.

Suppose ξ and ζ are not left u.s.c. along stopping times. We have Theorem (Dum.-Que-Sul. 2013)
Suppose that $\exists \bar{u} \in \mathcal{U}$ and $\bar{v} \in \mathcal{V}$ such that for each $(u, v) \in \mathcal{U} \times \mathcal{V}$,
$g^{u, \bar{v}}\left(t, Y_{t}, Z_{t}, k_{t}\right) \leq g^{\bar{u}, \bar{v}}\left(t, Y_{t}, Z_{t}, k_{t}\right) \leq g^{\bar{u}, v}\left(t, Y_{t}, Z_{t}, k_{t}\right) \quad d t \otimes d P$ a.s.
where $\left(Y, Z, k, A, A^{\prime}\right)$ is the solution of the DBBSDE associated with driver $g^{\bar{u}, \bar{v}}$.
Then, the generalized mixed game problem is fair. and $Y_{S}=\underline{V}(S)=\bar{V}(S)$ a.s.
There does not necessarily exist a saddle point.

Application:

Let U, V be compact Polish spaces.
Let $F:[0, T] \times \Omega \times U \times V \times \mathbf{R}^{2} \times L_{\nu}^{2} \rightarrow \mathbf{R}$,
$(t, \omega, u, v, y, z, k) \mapsto F(t, \omega, u, v, y, z, k)$, supposed to be measurable with respect to $\mathcal{P} \otimes \mathcal{B}(U) \otimes \mathcal{B}(V) \otimes \mathcal{B}\left(\mathbf{R}^{2}\right) \otimes \mathcal{B}\left(L_{\nu}^{2}\right)$, continuous, concave (resp. convex) with respect to u (resp. v), and uniformly Lipchitz with respect to (y, z, k). Suppose that $F(t, \omega, u, v, 0,0,0)$ is uniformly bounded.

Let \mathcal{U} (resp. \mathcal{V}) be the set of predictable processes valued in U (resp. V). For each $(u, v) \in \mathcal{U} \times \mathcal{V}$, let $g^{u, v}$ be the driver defined by

$$
g^{u, v}(t, \omega, y, z, k):=F\left(t, \omega, u_{t}(\omega), v_{t}(\omega), y, z, k\right)
$$

Define for each (t, ω, y, z, k)

$$
\begin{equation*}
g(t, \omega, y, z, k):=\sup _{u \in U} \inf _{v \in V} F(t, \omega, u, v, y, z, k) \tag{15}
\end{equation*}
$$

g is a Lipschitz driver.
Let $\left(Y, Z, k, A, A^{\prime}\right) \in \mathcal{S}^{2} \times \mathbb{H}^{2} \times \mathbb{H}_{\nu}^{2} \times\left(\mathcal{A}^{2}\right)^{2}$ be the solution of the DRBSDE associated with g.

By classical convex analysis, and then by applying a selection theorem, we get that \exists predictable process $\left(u^{*}, v^{*}\right) \in \mathcal{U} \times \mathcal{V}$ such that $d t \otimes d P$ a.s., for all $(u, v) \in \mathcal{U} \times \mathcal{V}$ we have $d t \otimes d P$ a.s.:
$F\left(t, u_{t}, v_{t}^{*}, Z_{t}, k_{t}\right) \leq F\left(t, u_{t}^{*}, v_{t}^{*}, Y_{t}, Z_{t}, k_{t}\right) \leq F\left(t, u_{t}^{*}, v_{t}, Y_{t}, Z_{t}, k_{t}\right)$
and $g\left(t, Y_{t}, Z_{t}, k_{t}\right):=F\left(t, u_{t}^{*}, v_{t}^{*}, Y_{t}, Z_{t}, k_{t}\right)$. Hence, Assumption (12) is satisfied. By the above Theorems, we derive :

Proposition (i) The generalized mixed game problem is fair. Let Y be the solution of the DRBSDE associated with obstacles ξ, ζ and the driver g defined by (15).
For each stopping time $S \in \mathcal{T}_{0}$, we have $Y_{S}=\bar{V}(S)=\underline{V}(S)$ a.s.

Proposition

(i) The generalized mixed game problem (associated with the map $F(t, u, v, y, z, k))$ is fair. Let Y be the solution of the DRBSDE associated with obstacles ξ, ζ and the driver g defined by (15).
For each stopping time $S \in \mathcal{T}_{0}$, we have $Y_{S}=\bar{V}(S)=\underline{V}(S)$ a.s.
(ii) Suppose now that ξ and $-\zeta$ are I.u.s.c. along s.t. Set

$$
\tau_{S}^{*}:=\inf \left\{t \geq S: Y_{t}=\xi_{t}\right\} \quad ; \quad \sigma_{S}^{*}:=\inf \left\{t \geq S: Y_{t}=\zeta_{t}\right\}
$$

The quadruple $\left(u^{*}, \tau_{S}^{*}, v^{*}, \sigma_{S}^{*}\right)$ is then an S-saddle point for this mixed game problem.

Other useful applications of our main result

- From the characterization theorem, we easily derive a comparison theorem for Doubly RBSDEs, which generalizes the one obtained by Crepey-Matoussi (2008).
- We also derive new a priori estimates for Doubly RBSDEs with universal constants.
Remark: Under some additional assumptions on the barriers, Crepey-Matoussi (2008) have proved a priori estimates (but with non universal constants).
- These estimates are an efficient tool to study the Markovian case for DRBSDEs (see Dum-Quen-Sul (2013)).
- and also the Markovian case with uncertainty, that is a mixed generalized DG (see Dum-Quen-Sul (2015)).

