Generalized Dynkin games with g-conditional
expectation and nonlinear pricing of game options

Roxana Dumitrescu
Agnés Sulem
M-Claire Quenez



References

> Classical Dynkin Games in continuous time: Alario-Nazaret,
Lepeltier and Marchal, B. (1982).

» Links with Doubly RBSDEs when the driver g does not depend on
y, z: Cvitanic and Karatzas (1996), Hamadeéne (2002) and Lepeltier
(2000) (Hyp: Brownian+ regularity).

> Pricing of Game options, links with Dynkin Games : Kifer (2000)

» Pricing of Game options in a complete financial market and links
with Doubly RBSDEs with a driver g linear with respect to y, z:
Hamadene (2006).

> Doubly RBSDEs with jumps: e.g. Essaky, Harraj, Ouknine (2005),
Hamadéne and Hassani (2006), Crépey and Matoussi (2008).

> This work : Generalized Dynkin games and DRBSDEs
http://arxiv.org/abs/1504.06094 2013
+ Nonlinear pricing in a market with defaults: forthcoming.



Framework

Let (Q2, F, P) be a probability space.
> Let W be a Brownian motion

» N(dt,du) be a Poisson random measure with intensity
v(du)dt such that v is a o-finite measure on R*.
Let N(dt, du) be its compensated process.

> Let F = {F;, t > 0} be the natural filtration associated with
W and N.

» Fix T > 0.



Notation

» H?: set of predictable processes ¢ s.t. ||¢[|7, := E [fOT qﬁdt} < 0.
> L2: set of Borelian fns ¢ s.t. ||[0]|2 := [5. [¢(u)]Prv(du) < +oo.
L2 is a Hilbert with (6, £), == [g. d(u)l(u)v(du)
» H?2: set of predictable processes / s.t.
113 = E [Jy Ik dt] < oo,
> S2: set of real-valued RCLL adapted processes ¢ s.t.
N3, := E(supg<i<T |e]?) < o0.
> To: set of stopping times 7 s.t. 7 € [0, T] a.s
> For SinTo, Ts :={7,S <7< Tas.}



BSDEs with jumps
Definition: A function g is a driverif g : Q x [0, T] x R* x L2 - R
(w,t,y,z, k) — g(w, t, t,y,z, k) is predictable, and g(.,0,0,0) € H>.
A driver g is a Lipschitz driver if 3 C > 0 s.t.
|g(w7 tayla 71, kl)_g(wa t,}’27227 k2)‘ S C(|y1_y2‘+|Zl_22|+||k1_k2||V)'

V (y1, 21, k1), ¥ (y2, 22, ko)

Theorem
(Barles-Buckdahn-Pardoux) Let T > 0. Let £ € L?(FT),
31 (X,Z,k) € ST x H>T x H2T st.

5

— dXt = g(t,Xt—,Zt, kt)dt — thWt — / kt(e)N(dt, de), YT = 5

This solution is denoted by (X&(¢, T), ZE(€, T), k&(€, T)).



Nonlinear pricing associated with g/ g-evaluation

3 assets: prices SO, S, S with dS? = S0r,dt

dsl = [,utdt + oldW]
dS2 = SP[p2dt + o2dW; + Brd ).

Let x = initial wealth.

At t, he chooses the amount o} (resp. ©?) invested St (resp S2).
©. = (p}, 0?) called risky assets stategy.

Let V% (or V;) = value of the portfolio.

In the classical case

dVy = (Vi + Sotglat + <pt02/8t)dt + prordWs + %OtBtht,
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Case with nonlinear constraints:

—dV; = g(t, Ve, ot o, ‘P%ﬁt)dt — @t ordWs — @%/Btd,vn
or equivalently, setting Z; = /o0 Ki = go%ﬁt,
—dV; = g(t, Vi, Z¢, Kp)dt — Z;dW; — Ked N,

Consider a European option with payoff ¢ € L2(Fr).
31 (X, Z,K) square integrable/

— dXt = g(t7Xt, Zt, Kt)dt — thWt — th/\N/t; XT = 5
The hedging risky assets stategy ¢ = (¢, 0?)" is such that

pilor =2 ; 0iBe = Ko,

= X = VX% (value of the replicating portfolio) = price.
Example:

g(t, Ve, pi01,028t) = —(re Ve + @10t at + 0262 8) 4 p(eot +92) "



» This defines a nonlinear pricing system, introduced in El
Karoui-Q (1996) in a Brownian framework, called
g-evaluation by Peng (2004), denoted by £5.

» YV T,V &c L%(Fr), the g-evaluation of (T,¢) is defined by

E1() = XE(T.€),0<t< T,

» Definition
An RCLL adapted process X; in S? is said to be an
E&-supermartingale if &, -(X;) < X, as. , Yo <T1€T.
> Note that V x € RV ¢, V¥ is an £8-martingale
(“g-martingale”).
> In order to ensure that & — E5(€) is non decreasing, we
make the following assumption:

g(t,y,z, ki) — g(t,y, 2, ko) > 707 " (ki — ko),

,y‘t)'/7z7klyk2 2 _1



Assumption A.1

v (yaza klakZ)v
g(t,y,z, ki) — g(t,y, 2, ko) > (412M% k — ko),

with 7 : [0, TIxQxR?x(L2)2 = 12 (w, t,y, z, ki, ko) — v =R ()
predictable and s.t. V (y, z, ki, k),

WHRe) > —1 and |y PR(e) <yle),  (3)

where ¢ € L2.
» £€ is non decreasing (Q. and Sulem (2013)).



Evaluation of an American option

Let (£;,0 <t < T) be a RCLL process € S2 (payoff)
Price of the American option:

v(S) :=ess sup Es (&) (4)
TETs

Theorem ( Sulem, Q. (2013))
(i) We have
v(S)=Ys as.

where Y is the solution of the reflected BSDE with obstacle .
(i) 7 == inf{u > S; Y, <&, + ¢} is Ke-optimal for (4), i.e.

Es. (&) > Ys — Ke  as.

Result generalized by Grigorova, Quen., Imk.,Ouk. (april 2015) to
the case ¢ only right-u.s.c.



Doob-Meyer Decomposition for £-supermartingales

Theorem : (Dumitrescu-Quenez-Sulem (2014))
(Y:) be an E-supermartingale if and only if 3 (A;) € A2 and
(Z, k) € H? x H? such that

—dYs = f(s, Ys, Zs, ks)ds + dAs — ZedWs — | ke(u)N(ds, du).
R*
Proof: Foreach 7 € 75, Ys>E&s.(Y;) as.

= Ys>esssup &.(Y;) as.
TETs

Now, Ys < esssup,cr. Es-(Yr) as.

= Ys=esssup & (Y:) as.
TE€Ts

By the previous characterization, (Y;) is equal to the solution of the
reflected BSDE with RCLL obstacle (Y;). O

Generalization by Grigorova, Q. et al. (april 2015):

Mertens Decomposition of strong £-supermartingales (not RCLL)



Evaluation of a Game option
Let ¢ and ¢ € S? such that £ < ¢ and &7 = (7T ass.

> The buyer can exercise it at any time 7 € 7. Then, the seller pays
to him the amount &,.

» The seller can cancel it at any 0 € 7. If 0 < 7, then he pays to
the buyer the amount (.

> Note that (, — &, > 0 is the penalty the seller pays for the
cancellation of the contract.

» Hence, the game option consists for the seller to select o € T and
for the buyer to choose T € T, so that the seller pays to the buyer
at time 7 A o the payoff

I(1,0) =& 1o + Coloer. (5)

Suppose that the seller has chosen o. Then, the game option reduces to
an American option with payoff /(., o), whose initial price is given by
SUPeT 557‘/\0[/(77 U)] Set

Y(0) := inf_sup &, [/(7,0)]. (6)
o€T reT

called the fair value of the game option in the sequel.
— new game problem.



Generalized Dynkin games

Let ¢ and ¢ € S? such that € < ¢ and é7 = (7T ass.
For each 7,0 € Ty, let

I(T’ U) = ST]-TSO' + C0'10'<T-
For S € 7Ty,

V(S) := ess inf ess sup Es.ra0lZ(T,0)]
o€Ts T€Ts

V(S) := ess sup ess inf Es no[Z(T,0)].
T€Ts o€Ts

We clearly have the inequality V(S) < V(S) as



V(S) := ess inf ess sup Es.ra0lZ(T,0)]
o€Ts TETs

V(S) :=ess sup ess inf Es no[Z(T,0)].
T€Ts o€Ts

Definition B

we say that the game is fair at time S if V(S) = V(S) as.

Definition

Let S € To. A pair (7*,0*) € T& is called an S-saddle point if V

(1,0) € TZ, we have

SS,T/\O‘* [/(7-7 U*)] < SS,T*/\U* [I(T*, U*)] < SS,T*/\U[I(T*a a)]a.s.



Double barrier reflected BSDEs with jumps

Let £ and ¢ € S? such that & < (; and &7 = (7 as.

Definition
Solution: (Y, Z, k,A,A") in 8% x H? x H? x (A?)? such that

*

— de = g(t, Yt7 Zt7 kt)dt + dAt — dA/t — thWt — / kt(U)N(dt, du),

YT = gT? (7)
<Y <(, 0Kt < Tas,
T T
/ (Ye — £)dAS = 0 as. and / (o — Vi)dAS = 0 as. (8)
0 0

AAL = DALy ¢ yand DAY =AAYy ¢y as. V€T predictabl
dA; L dA, (9)



A particular classical case: g does not depend on y, z
Fix S € To.
YV 1,0 € Ts, define

ONT
/5(7', 0’) = /5 gst + le{TSU} + CUI{U<T}

We have

V(S) = ess inf ess sup E[ls(,0)|Fs]
o€Ts TE€ETs

V(S) = ess sup ess inf E[ls(7,0)|Fs]
T€Ts o€Ts

— Classical Dynkin games (see e.g. Cvitanic and K. (1996),

Hamadéne ) They show that the value function of the classical Dynkin

game coincides with the solution of the doubly reflected BSDE associated

with the driver process g; (which does not depend on y, z).



Recall that classicaly, we introduce

T

~ T ~
& = 6 —Eler+ / g(s)ds|F],  CF = C—Elert / g(s)ds|Fi,
t t

sothat && = (% =0 as.

By results on classical Dynkin games , one can construct by using
a recursive procedure two supermartingales J& and J'&, valued in
RT U {400} (see K--Q.-C. 2013) which satisfy:

J8 =R(JE+E) JeE=R(JE-]).

Then, when J& and J'¢ are finite (which is the case when under
Mokobodski's condition), then (see e.g. Cvitanic and K...)

-
Ye=J8 —JE+ E[¢T +/ g(s)ds|Fe]; 0<t<T.
t

is solution of the doubly reflected BSDE associated with the driver
process g(s) (which does not depend on y, z).

0 -



Doubly reflected BSDEs with a general driver g(t,y, z, k)

Here the driver g(t,y, z, k) depends on y, z.

Recall that under Mokobodski's condition,

the DRBSDE associated with general driver g(t,y, z, k) admits a
unique solution (Y, Z, k, A, A") € 82 x H? x H? x (A?)2.
Remark: In the previous literature (Cvitanic-K. ....), the authors
have noted that the solution Y of the DRBSDE coincides with the
value function of the previous classical Dynkin game with

gs := g(s, Ys, Zs, k). Here, the gain is given by

oNT
Is(r.0) = /5 g(u, Yar Zur ko) + €1 <oy + Colpgry. (10)

But it is not so interesting because the instantaneous reward
process gs := g(s, Ys, Zs, ks) depends on the value function Y
of the associated Dynkin game itself.



Generalized Dynkin Game
(Here, g(t,y,z, k) depends on y, z)
Definition: Let S € 7. A pair (#,6) € T2 is an S-saddle point
if V (1,0) € T2, we have

Esrnall(1,0)] < Esppsll(F,6)] < Espnsll(F,0)]as.

The classical sufficient condition of "optimality” for the classical
Dynkin game, based on J& and J'€ (see Alario-N.et al. (1982)), is
not appropriate to our case. Here, we have

Lemma (Sufficient condition of "optimality”, Dum.-Que-Sul.
2013)

Let (Y,Z,k,A, A") be the solution of the DBBSDE .

Let (7,5) € Ts.

Suppose (Y:, S < t < %) is an E-submartingale and

(Y:, S <t < &) is an E-supermartingale

with Yy = &; and Y3 = (5 a.s.

= (7,8) is a S-saddle point and

Ys = V(S) = V(S) as.



Proof:
Let 7 € Ts. We want to show that for each 7 € Ts
Ys 2 Esrns(l(7,6)) as. (11)
Since the process (Y, S <t <7 AGF) is an € supermartingale,
Ys > Esrn(Yrns)- (12)
Since Y > £ and Yz = (5 a.s., we have
Yirneg = Yelrcs + Yoloor > & hics + Gl = I(7,6).

By (12) and since £ is increasing, we derive (11).
Similarly, for each o € Ts:

Ys < 5577A-/\U(/(7'=,0‘)) a.s.

= (7,6) is an S-saddle point and Ys = V(S) = V(S) ass.



Theorem (Existence of S-saddle point, D-Q-S. 2013)

Let (Y,Z,k,A,A") be the solution of the DBBSDE.

Suppose that A, A’ are continuous (which is the case if £ and
—( are left-u.s.c. along s.t.).

For each S € Ty, let

os:=inf{t>S, Ye=C(} msi=inf{t >S5, Yy =&,

= (7&,0%) is an S-saddle point for Ys = V(S) = V(S) a.s.
proof: Since Y and & are cad, we have Yor = 8oz and Yor = &os
a.s. Also, Yy > &; for each t € [S,7¢[. Hence, since Y is solution
of the DBBSDE, A is constant on [S,7¢] a.s.



proof:

» Since Y and £ are cad, we have Ygg = 5(,; and YTs* = 575* a.s.
Also, Y; > &; for each t € [S, 7¢[. Hence, since Y is solution
of the DBBSDE, A is constant on [S,7¢] a.s.

» = Y is an £-submartingale on [S, 7¢].
» Similarly, Y is an £-supermartingale on [S, 0¢].

» By the Lemma, (7¢,0%) is an S-saddle point and
Ys = V(S) = V(S) as.



The main result
Here, A, A’ are not supposed to be continuous. There does not a
priori exist a saddle-point. However,
Theorem (Characterization, D.-Q.-S. 2013)

Let (Y,Z,k, A, A") be the solution of the doubly reflected BSDE
associated with the nonlinear driver g(t,y, z, k).
The Generalized Dynkin game is fair and

Ys =V(S)=V(S) as

Sketch of the proof:
7’; = |nf{t 2 57 Yt S gt + 6}.

O'% = |nf{t > S, Yt > Ct — 5}.

We first show that A;e = As a.s. and Af,g = AS ass.
We then derive that (75,0%) is a Ke-saddle point at time S and
the desired result.



Application to game options in the market with constraints

>

Corollary (Dumistrescu-Quenez-Sulem (2014)) The fair value
of the game option satisfies

Y(0) = inf sup &, (I(r,0)) = sup inf &5, [/(7,0)] = Yo

where (Y, Z, K, A, A') is the unique solution in
82 x L2(W) x L2(M) x A? x A? of the doubly reflected
BSDE with nonlinear driver g(t,y, z, k).
In the particular case when g is linear with respect to y, z,
— Hamadene's result.
Definition: for each initial wealth x, a super-hedge against
the game option is a pair (0, ) of as.t. 0 € T and a strategy
¢ such that

Vi¥>¢&,0<t<ocand V,%>(, as.

» A(x) := set of all super-hedges associated with x.
» The super-hedging price is defined by

up == inf{x € R, J(o,p) € A(x)}.



Theorem (Dum-Que-Sul 2015):

» Let (Y, Z,K,A, A is the solution of the DRBSDE.
Suppose A’ is continuous (satisfied if ¢ is left lower-s.c.
along s.t.)

» Then, super-hedging price = fair value of the game option,
that is
up = Yo.

» Let o :=inf{t >0, Y; = (¢} and ¢* := ®(Z, K) (defined as
before).
Then, (c*, ¢*) belongs to A(Yp).
Rem 1: Under these assumptions, there does not a priori exist
7* such that (7*,0%) is a saddle point.
Rem 2: If A’ is not continuous, then, generally, up # Yp.



A mixed game problem with nonlinear expectations

» Two actions: stopping times and controls (u,v) € U x V.

» A classical mixed game problem (Hamadéne, Lepeltier) :
The criterium is

TAO
Equ.v [/ c(t, ug, ve)dt + /(T,O')|.F5:| ,
S
with QY the probability with density Z7" /

dZ = Z5V[B(t, ur, ve) dWst / At uz ve, ) Ri(dt, de)]; Z2 = 1
» First player: chooses (u,7) € U x Ts and aims to maximize

the criterium

Second player: chooses (v,0) € V X Ts and aims to minimize

the criterium.



Generalized mixed game problem
Let (g*V; (u,v) €U x V) be a family of Lipschitz drivers / A.1 .
Let S € To. For each (u,7,v,0) €U x Ts X V x Tg, the criterium
at time S is :
s po (7, 0)),

where £ = g"V-conditional expectation.
For each S € 7T,

V(S):=ess inf ess sup E2Y (I(r,0)); 13
( ) veV,oeTs UEU,TpETS S,T/\a(( )) ( )

V(S):=ess sup ess inf &2 (I(r,0)). 14
V(S)=ess sup ess inf  EL,(I(ro)). (1)
Definition

Let S € To. A quadruple (,7,v,7) € U x Ts x V X Ts is called
an S-saddle point if for each (u,T,v,0) we have

Y (I(r, 7)) < €L, (I(7 A7) < L%, (I(7.0))  as.

S TN S TNo



Existence of saddle points for the mixed game problem

Theorem (Dum.-Que-Sul. 2013)

Suppose £ and ( are left u.s.c. along stopping times +
Mokobodski's condition.

Suppose that 3T € U and Vv € V such that for each
(u,v) €U x V,

g (t, Yo, Zey ke) < gBV(t, Yo, Zey ki) < g%V(t, Yi, Ziy ki) dt®dP as. |

where (Y, Z, k, A, A') is the solution of the DBBSDE associated
with driver g%V. Let
o =inf{t >S: Yy =&} ; osi=inf{t>5:Y:=C(t

The quadruple (4, 7¢,V,0%) is then an S-saddle point and
Ys =V(S)=V(S) as.



The generalized mixed game problem is fair.

Suppose £ and ( are not left u.s.c. along stopping times. We have

Theorem (Dum.-Que-Sul. 2013)

Suppose that 31 € U and v € V such that for each
(u,v) eU x V,

gU,V(t’ Yta Zt7 kt) S gﬁ’v(ty Yta Zt7 kt) S gﬂ’v(tv Yt7 Zt) kt) dt®dP a.s. 9
where (Y, Z, k, A, A") is the solution of the DBBSDE associated
with driver gV

Then, the generalized mixed game problem is fair. and
Ys =V(S)=V(S) as.

There does not necessarily exist a saddle point.



Application:
Let U, V be compact Polish spaces.

Let F:[0, T]xQx UxV xR2x[2 R,
(t,w,u,v,y,z, k) — F(t,w,u,v,y,z k), supposed to be
measurable with respect to P ® B(U) ® B(V) ® B(R?) ® B(L2),
continuous, concave (resp. convex) with respect to u (resp. v),
and uniformly Lipchitz with respect to (y, z, k). Suppose that
F(t,w,u,v,0,0,0) is uniformly bounded.

Let U (resp. V) be the set of predictable processes valued in U
(resp. V). For each (u,v) e U x V, let g*¥ be the driver defined
by

gV (t,w,y,z, k) == F(t,w, ut(w), vi(w), y, z, k).

Define for each (t,w,y, z, k)

g(t,w,y,z, k) :=sup inf F(t,w,u,v,y,z, k). (15)
el veV
g is a Lipschitz driver.
Let (Y, Z,k, A A") € S? x H? x H2 x (A?)? be the solution of
the DRBSDE associated with g.



By classical convex analysis, and then by applying a selection
theorem, we get that 3 predictable process (u*,v*) € U x V such
that dt ® dP a.s., for all (u,v) € U x V we have dt ® dP a.s.:

F(t, Ut, V:,Zt, kt) S F(t, U:, V;k, Yt)Ztv kt) S /'-(t7 U:, Vt, Yt,Zt, kt)

and g(t, Y, Ze, ke) := F(t, uf, v, Ye, Zt, ke). Hence, Assumption
(12) is satisfied. By the above Theorems, we derive :

Proposition (i) The generalized mixed game problem is fair.
Let Y be the solution of the DRBSDE associated with obstacles &,
¢ and the driver g defined by (15).

For each stopping time S € To, we have Ys = V/(S) = V(S) ass.



Proposition

(i) The generalized mixed game problem (associated with the
map F(t,u,v,y,z, k)) is fair. Let Y be the solution of the
DRBSDE associated with obstacles £, ¢ and the driver g defined
by (15).

For each stopping time S € To, we have Ys = V(S) = V(S) as.
(i) Suppose now that £ and —( are l.u.s.c. along s.t. Set

rei=inf{t >S:Ye=&}) ; og:=inf{t>S5:Y=(}.

The quadruple (u*, 7, v*,0%) is then an S-saddle point for this
mixed game problem.



Other useful applications of our main result

» From the characterization theorem, we easily derive a
comparison theorem for Doubly RBSDEs, which generalizes
the one obtained by Crepey-Matoussi (2008).

» We also derive new a priori estimates for Doubly RBSDEs
with universal constants.
Remark: Under some additional assumptions on the
barriers, Crepey-Matoussi (2008) have proved a priori
estimates (but with non universal constants).

» These estimates are an efficient tool to study the
Markovian case for DRBSDEs (see Dum-Quen-Sul (2013)).

» and also the Markovian case with uncertainty, that is a mixed
generalized DG (see Dum-Quen-Sul (2015)).



