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Framework

Let (Ω,F ,P) be a probability space.

I Let W be a Brownian motion

I N(dt, du) be a Poisson random measure with intensity
ν(du)dt such that ν is a σ-finite measure on R∗.
Let Ñ(dt, du) be its compensated process.

I Let F = {Ft , t ≥ 0} be the natural filtration associated with
W and N.

I Fix T > 0.



Notation

I IH2: set of predictable processes φ s.t. ‖φ‖2IH2 := E
[∫ T

0
φ2tdt

]
<∞.

I L2ν : set of Borelian fns ` s.t. ‖`‖2ν :=
∫

R∗ |`(u)|2ν(du) < +∞.
L2ν is a Hilbert with 〈δ, `〉ν :=

∫
R∗ δ(u)`(u)ν(du)

I IH2
ν : set of predictable processes l s.t.

‖l‖2IH2
ν

:= E
[∫ T

0
‖lt‖2νdt

]
<∞.

I S2: set of real-valued RCLL adapted processes φ s.t.
‖φ‖2Sp := E (sup0≤t≤T |φt |2) <∞.

I T0: set of stopping times τ s.t. τ ∈ [0,T ] a.s

I For S in T0, TS := {τ , S ≤ τ ≤ T a.s. }



BSDEs with jumps

Definition: A function g is a driver if g : Ω× [0,T ]× R2 × L2ν → R
(ω, t, y , z , k) 7→ g(ω, t, t, y , z , k) is predictable, and g(., 0, 0, 0) ∈ IH2.

A driver g is a Lipschitz driver if ∃ C ≥ 0 s.t.

|g(ω, t, y1, z1, k1)−g(ω, t, y2, z2, k2)| ≤ C (|y1−y2|+|z1−z2|+‖k1−k2‖ν).

∀ (y1, z1, k1), ∀ (y2, z2, k2)

Theorem
(Barles-Buckdahn-Pardoux) Let T > 0. Let ξ ∈ L2(FT ),
∃ ! (X ,Z , k) ∈ S2,T × IH2,T × IH2,T

ν s.t.

− dXt = g(t,Xt− ,Zt , kt)dt − ZtdWt −
∫

R∗
kt(e)Ñ(dt, de); YT = ξ.

This solution is denoted by (X g (ξ,T ),Z g (ξ,T ), kg (ξ,T )).



Nonlinear pricing associated with g/ g -evaluation

3 assets: prices S0,S1, S2 with dS0
t = S0

t rtdt{
dS1

t = S1
t [µ1tdt + σ1t dWt ]

dS2
t = S ,2t [µ2tdt + σ2t dWt + βtdÑt ].

Let x = initial wealth.
At t, he chooses the amount ϕ1

t (resp. ϕ2
t ) invested S1 (resp S2).

ϕ. = (ϕ1
t , ϕ

2
t )′ called risky assets stategy.

Let V x ,ϕ
t (or Vt) = value of the portfolio.

In the classical case

dVt = (rtVt + ϕ1
t θ

1
t σ

1
t + ϕ2

t θ
2
t βt)dt + ϕ′tσtdWt + ϕ2

tβtdÑt ,

where θ1t :=
µ1t − rt
σ1t

and θ2t :=
µ2t − σ2t θ1t − rt

βt
.



Case with nonlinear constraints:

−dVt = g(t,Vt , ϕt
′σt , ϕ

2
tβt)dt − ϕt

′σtdWt − ϕ2
tβtdÑt ,

or equivalently, setting Zt = ϕt
′σt Kt = ϕ2

tβt ,

−dVt = g(t,Vt ,Zt ,Kt)dt − ZtdWt − KtdÑt ,

Consider a European option with payoff ξ ∈ L2(FT ).
∃ ! (X ,Z ,K ) square integrable/

− dXt = g(t,Xt ,Zt ,Kt)dt − ZtdWt − KtdÑt ; XT = ξ. (1)

The hedging risky assets stategy ϕ = (ϕ1, ϕ2)′ is such that

ϕt
′σt = Zt ; ϕ2

tβt = Kt , (2)

⇒ X = V X0,ϕ (value of the replicating portfolio) = price.
Example:
g(t,Vt , ϕtσt , ϕ

2
tβt) = −(rtVt + ϕ1

t θ
1σ1 + ϕ2

t θ
2β) + ρ(ϕ1

t + ϕ2
t )+.



I This defines a nonlinear pricing system, introduced in El
Karoui-Q (1996) in a Brownian framework, called
g -evaluation by Peng (2004), denoted by Eg .

I ∀ T , ∀ ξ ∈ L2(FT ), the g -evaluation of (T , ξ) is defined by

Egt,T (ξ) := X g
t (T , ξ), 0 ≤ t ≤ T .

I Definition
An RCLL adapted process Xt in S2 is said to be an
Eg -supermartingale if Eσ,τ (Xτ ) ≤ Xσ a.s. , ∀ σ ≤ τ ∈ T0.

I Note that ∀ x ∈ R ∀ ϕ, V x ,ϕ is an Eg -martingale
(“g -martingale”).

I In order to ensure that ξ 7→ Eg.,T (ξ) is non decreasing, we
make the following assumption:

g(t, y , z , k1)− g(t, y , z , k2) ≥ γy ,z,k1,k2t (k1 − k2)νt ,

γy ,z,k1,k2t ≥ −1.



Assumption A.1

∀ (y , z , k1, k2),

g(t, y , z , k1)− g(t, y , z , k2) ≥ 〈γy ,z,k1,k2t , k1 − k2〉ν ,

with γ : [0,T ]×Ω×R2×(L2ν)2 → L2ν ; (ω, t, y , z , k1, k2) 7→ γy ,z,k1,k2t (ω, .)

predictable and s.t. ∀ (y , z , k1, k2),

γy ,z,k1,k2t (e) ≥ −1 and |γy ,z,k1,k2t (e)| ≤ ψ(e), (3)

where ψ ∈ L2ν .

I Eg is non decreasing (Q. and Sulem (2013)).



Evaluation of an American option

Let (ξt , 0 ≤ t ≤ T ) be a RCLL process ∈ S2 (payoff)
Price of the American option:

v(S) := ess sup
τ∈TS
ES ,τ (ξτ ). (4)

Theorem ( Sulem, Q. (2013))

(i) We have
v(S) = YS a.s.

where Y is the solution of the reflected BSDE with obstacle ξ.
(ii) τε := inf{u ≥ S ; Yu ≤ ξu + ε} is Kε-optimal for (4), i.e.

ES,τε(ξτε) ≥ YS − Kε a.s.

Result generalized by Grigorova, Quen., Imk.,Ouk. (april 2015) to
the case ξ only right-u.s.c.



Doob-Meyer Decomposition for E-supermartingales
Theorem : (Dumitrescu-Quenez-Sulem (2014))
(Yt) be an E-supermartingale if and only if ∃ (At) ∈ A2 and
(Z , k) ∈ IH2 × IH2

ν such that

−dYs = f (s,Ys ,Zs , ks)ds + dAs − ZsdWs −
∫

R∗
ks(u)Ñ(ds, du).

Proof: For each τ ∈ TS , YS ≥ ES,τ (Yτ ) a.s.

⇒ YS ≥ ess sup
τ∈TS
ES,τ (Yτ ) a.s.

Now, YS ≤ ess supτ∈TS ES,τ (Yτ ) a.s.

⇒ YS = ess sup
τ∈TS
ES,τ (Yτ ) a.s.

By the previous characterization, (Yt) is equal to the solution of the
reflected BSDE with RCLL obstacle (Yt). �
Generalization by Grigorova, Q. et al. (april 2015):
Mertens Decomposition of strong E-supermartingales (not RCLL)



Evaluation of a Game option
Let ξ and ζ ∈ S2 such that ξ ≤ ζ and ξT = ζT a.s.

I The buyer can exercise it at any time τ ∈ T . Then, the seller pays
to him the amount ξτ .

I The seller can cancel it at any σ ∈ T . If σ ≤ τ , then he pays to
the buyer the amount ζσ.

I Note that ζσ − ξσ ≥ 0 is the penalty the seller pays for the
cancellation of the contract.

I Hence, the game option consists for the seller to select σ ∈ T and
for the buyer to choose τ ∈ T , so that the seller pays to the buyer
at time τ ∧ σ the payoff

I (τ, σ) := ξτ1τ≤σ + ζσ1σ<τ . (5)

Suppose that the seller has chosen σ. Then, the game option reduces to
an American option with payoff I (., σ), whose initial price is given by
supτ∈T E

g
0,τ∧σ[I (τ, σ)]. Set

Y (0) := inf
σ∈T

sup
τ∈T
Eg0,τ∧σ[I (τ, σ)]. (6)

called the fair value of the game option in the sequel.
→ new game problem.



Generalized Dynkin games

Let ξ and ζ ∈ S2 such that ξ ≤ ζ and ξT = ζT a.s.
For each τ, σ ∈ T0, let

I (τ, σ) = ξτ1τ≤σ + ζσ1σ<τ .

For S ∈ T0,

V (S) := ess inf
σ∈TS

ess sup
τ∈TS
ES,τ∧σ[I(τ, σ)]

V (S) := ess sup
τ∈TS

ess inf
σ∈TS
ES,τ∧σ[I(τ, σ)].

We clearly have the inequality V (S) ≤ V (S) a.s.



V (S) := ess inf
σ∈TS

ess sup
τ∈TS
ES,τ∧σ[I(τ, σ)]

V (S) := ess sup
τ∈TS

ess inf
σ∈TS
ES,τ∧σ[I(τ, σ)].

Definition
we say that the game is fair at time S if V (S) = V (S) a.s.

Definition
Let S ∈ T0. A pair (τ∗, σ∗) ∈ T 2

S is called an S-saddle point if ∀
(τ, σ) ∈ T 2

S , we have

ES ,τ∧σ∗ [I (τ, σ∗)] ≤ ES ,τ∗∧σ∗ [I (τ∗, σ∗)] ≤ ES ,τ∗∧σ[I (τ∗, σ)]a.s.



Double barrier reflected BSDEs with jumps

Let ξ and ζ ∈ S2 such that ξt ≤ ζt and ξT = ζT a.s.

Definition
Solution: (Y ,Z , k ,A,A′) in S2 × IH2 × IH2

ν × (A2)2 such that

− dYt = g(t,Yt ,Zt , kt)dt + dAt − dA
′

t − ZtdWt −
∫

R∗
kt(u)Ñ(dt, du);

YT = ξT , (7)

ξt ≤ Yt ≤ ζt , 0 ≤ t ≤ T a.s.,∫ T

0

(Yt − ξt)dAc
t = 0 a.s. and

∫ T

0

(ζt − Yt)dA
′c
t = 0 a.s. (8)

∆Ad
τ = ∆Ad

τ1{Yτ−=ξτ−} and ∆A
′d
τ = ∆A

′d
τ 1{Yτ−=ζτ−} a.s. ∀τ ∈ T0 predictable

dAt ⊥ dA′t (9)



A particular classical case: g does not depend on y , z
Fix S ∈ T0.
∀ τ, σ ∈ TS , define

IS(τ, σ) :=

∫ σ∧τ

S

gsds + ξτ1{τ≤σ} + ζσ1{σ<τ}

We have
V (S) = ess inf

σ∈TS
ess sup

τ∈TS
E[IS(τ, σ)|FS ]

V (S) = ess sup
τ∈TS

ess inf
σ∈TS

E[IS(τ, σ)|FS ]

→ Classical Dynkin games (see e.g. Cvitanic and K. (1996),
Hamadène ) They show that the value function of the classical Dynkin
game coincides with the solution of the doubly reflected BSDE associated
with the driver process gt (which does not depend on y , z).



Recall that classicaly, we introduce

ξ̃gt := ξt−E[ξT+

∫ T

t
g(s)ds|Ft ], ζ̃gt := ζt−E[ξT+

∫ T

t
g(s)ds|Ft ], 0 ≤ t ≤ T .

so that ξ̃gT = ζ̃gT = 0 a.s.
By results on classical Dynkin games , one can construct by using
a recursive procedure two supermartingales Jg and J

′g , valued in
R+ ∪ {+∞} (see K.-Q.-C. 2013) which satisfy:

Jg = R(J
′g+ξ̃) J

′g= R(Jg−ζ̃).

Then, when Jg and J
′g are finite (which is the case when under

Mokobodski’s condition), then (see e.g. Cvitanic and K...)

Y t := Jgt − J
′g
t + E [ξT +

∫ T

t
g(s)ds|Ft ]; 0 ≤ t ≤ T .

is solution of the doubly reflected BSDE associated with the driver
process g(s) (which does not depend on y , z).



Doubly reflected BSDEs with a general driver g(t, y , z , k)

Here the driver g(t, y , z , k) depends on y , z .
Recall that under Mokobodski’s condition,
the DRBSDE associated with general driver g(t, y , z , k) admits a
unique solution (Y ,Z , k ,A,A′) ∈ S2 × IH2 × IH2

ν × (A2)2.
Remark: In the previous literature (Cvitanic-K. ....), the authors
have noted that the solution Y of the DRBSDE coincides with the
value function of the previous classical Dynkin game with
gs := g(s,Ys ,Zs , ks). Here, the gain is given by

IS(τ, σ) =

∫ σ∧τ

S
g(u,Yu,Zu, ku)du + ξτ1{τ≤σ} + ζσ1{σ<τ}. (10)

But it is not so interesting because the instantaneous reward
process gs := g(s,Ys ,Zs , ks) depends on the value function Y
of the associated Dynkin game itself.



Generalized Dynkin Game
(Here, g(t, y , z , k) depends on y , z)
Definition: Let S ∈ T0. A pair (τ̂ , σ̂) ∈ T 2

S is an S-saddle point
if ∀ (τ, σ) ∈ T 2

S , we have

ES ,τ∧σ̂[I (τ, σ̂)] ≤ ES ,τ̂∧σ̂[I (τ̂ , σ̂)] ≤ ES ,τ̂∧σ[I (τ̂ , σ)]a.s.

The classical sufficient condition of ”optimality” for the classical
Dynkin game, based on Jg and J

′g (see Alario-N.et al. (1982)), is
not appropriate to our case. Here, we have

Lemma (Sufficient condition of ”optimality”, Dum.-Que-Sul.
2013)

Let (Y ,Z , k,A,A′) be the solution of the DBBSDE .
Let (τ̂ , σ̂) ∈ TS .
Suppose (Yt ,S ≤ t ≤ τ̂) is an E-submartingale and
(Yt ,S ≤ t ≤ σ̂) is an E-supermartingale
with Yτ̂ = ξτ̂ and Yσ̂ = ζσ̂ a.s.
⇒ (τ̂ , σ̂) is a S-saddle point and

YS = V (S) = V (S) a.s.



Proof:

Let τ ∈ TS . We want to show that for each τ ∈ TS

YS ≥ ES ,τ∧σ̂(I (τ, σ̂)) a.s. (11)

Since the process (Yt ,S ≤ t ≤ τ ∧ σ̂) is an E supermartingale,

YS ≥ ES,τ∧σ̂(Yτ∧σ̂). (12)

Since Y ≥ ξ and Yσ̂ = ζσ̂ a.s. , we have

Yτ∧σ̂ = Yτ1τ≤σ̂ + Yσ̂1σ̂<τ ≥ ξτ1τ≤σ̂ + ζσ̂1σ̂<τ = I (τ, σ̂).

By (12) and since E is increasing, we derive (11).
Similarly, for each σ ∈ TS :

YS ≤ ES ,τ̂∧σ(I (τ̂ , σ)) a.s.

⇒ (τ̂ , σ̂) is an S-saddle point and YS = V (S) = V (S) a.s.



Theorem (Existence of S-saddle point, D-Q-S. 2013)

Let (Y ,Z , k,A,A′) be the solution of the DBBSDE.
Suppose that A,A′ are continuous (which is the case if ξ and
−ζ are left-u.s.c. along s.t.).
For each S ∈ T0, let

σ∗S := inf{t ≥ S , Yt = ζt}; τ∗S := inf{t ≥ S , Yt = ξt},

⇒ (τ∗S , σ
∗
S) is an S-saddle point for YS = V (S) = V (S) a.s.

proof: Since Y and ξ are cad, we have Yσ∗S = ξσ∗S and Yτ∗S = ξτ∗S
a.s. Also, Yt > ξt for each t ∈ [S , τ∗S [. Hence, since Y is solution
of the DBBSDE, A is constant on [S , τ∗S ] a.s.



proof:

I Since Y and ξ are cad, we have Yσ∗S = ξσ∗S and Yτ∗S = ξτ∗S a.s.
Also, Yt > ξt for each t ∈ [S , τ∗S [. Hence, since Y is solution
of the DBBSDE, A is constant on [S , τ∗S ] a.s.

I ⇒ Y is an E-submartingale on [S , τ∗S ].

I Similarly, Y is an E-supermartingale on [S , σ∗S ].

I By the Lemma, (τ∗S , σ
∗
S) is an S-saddle point and

YS = V (S) = V (S) a.s.



The main result
Here, A,A′ are not supposed to be continuous. There does not a
priori exist a saddle-point. However,

Theorem (Characterization, D.-Q.-S. 2013)

Let (Y ,Z , k,A,A′) be the solution of the doubly reflected BSDE
associated with the nonlinear driver g(t, y , z , k).
The Generalized Dynkin game is fair and

YS = V (S) = V (S) a.s.

Sketch of the proof:

τ εS := inf{t ≥ S , Yt ≤ ξt + ε}.

σεS := inf{t ≥ S , Yt ≥ ζt − ε}.

We first show that AτεS = AS a.s. and A′σε
S

= A′S a.s.

We then derive that (τ εS , σ
ε
S) is a Kε-saddle point at time S and

the desired result.



Application to game options in the market with constraints
I Corollary (Dumistrescu-Quenez-Sulem (2014)) The fair value

of the game option satisfies

Y (0) = inf
σ∈T

sup
τ∈T
Eg0,τ∧σ(I (τ, σ)) = sup

τ∈T
inf
σ∈T
Eg0,τ∧σ[I (τ, σ)] = Y0,

where (Y ,Z ,K ,A,A′) is the unique solution in
S2 × L2(W )× L2(M)×A2 ×A2 of the doubly reflected
BSDE with nonlinear driver g(t, y , z , k).

I In the particular case when g is linear with respect to y , z ,
→ Hamadène’s result.

I Definition: for each initial wealth x , a super-hedge against
the game option is a pair (σ, ϕ) of a s.t. σ ∈ T and a strategy
ϕ such that

V x ,ϕ
t ≥ ξt , 0 ≤ t ≤ σ and V x ,ϕ

σ ≥ ζσ a.s.
I A(x) := set of all super-hedges associated with x .
I The super-hedging price is defined by

u0 := inf{x ∈ R, ∃(σ, ϕ) ∈ A(x)}.



Theorem (Dum-Que-Sul 2015):

I Let (Y ,Z ,K ,A,A′) is the solution of the DRBSDE.
Suppose A′ is continuous (satisfied if ζ is left lower-s.c.
along s.t.)

I Then, super-hedging price = fair value of the game option,
that is

u0 = Y0.

I Let σ∗ := inf{t ≥ 0, Yt = ζt} and ϕ∗ := Φ(Z ,K ) (defined as
before).
Then, (σ∗, ϕ∗) belongs to A(Y0).

Rem 1: Under these assumptions, there does not a priori exist
τ∗ such that (τ∗, σ∗) is a saddle point.
Rem 2: If A′ is not continuous, then, generally, u0 6= Y0.



A mixed game problem with nonlinear expectations

I Two actions: stopping times and controls (u, v) ∈ U × V.

I A classical mixed game problem (Hamadène, Lepeltier) :
The criterium is

EQu,v

[∫ τ∧σ

S
c(t, ut , vt)dt + I (τ, σ)|FS

]
,

with Qu,v the probability with density Zu,v
T /

dZu,v
t = Zu,v

t [β(t, ut , vt)dWt+

∫
R∗
γ(t, ut , vt , e)Ñ(dt, de)]; Zu,v

0 = 1.

I First player: chooses (u, τ) ∈ U × TS and aims to maximize
the criterium
Second player: chooses (v , σ) ∈ V × TS and aims to minimize
the criterium.



Generalized mixed game problem
Let (gu,v ; (u, v) ∈ U × V) be a family of Lipschitz drivers / A.1 .
Let S ∈ T0. For each (u, τ, v , σ) ∈ U × TS × V × TS , the criterium
at time S is :

Eu,vS,τ∧σ(I (τ, σ)),

where Eu,v = gu,v -conditional expectation.
For each S ∈ T0,

V (S) := ess inf
v∈V,σ∈TS

ess sup
u∈U ,τ∈TS

Eu,vS,τ∧σ(I (τ, σ)); (13)

V (S) := ess sup
u∈U ,τ∈TS

ess inf
v∈V,σ∈TS

Eu,vS,τ∧σ(I (τ, σ)). (14)

Definition
Let S ∈ T0. A quadruple (u, τ , v , σ) ∈ U × TS × V × TS is called
an S-saddle point if for each (u, τ, v , σ) we have

Eu,vS ,τ∧σ(I (τ, σ)) ≤ Eu,vS ,τ∧σ(I (τ ∧ σ)) ≤ Eu,vS ,τ∧σ(I (τ , σ)) a.s.



Existence of saddle points for the mixed game problem

Theorem (Dum.-Que-Sul. 2013)

Suppose ξ and ζ are left u.s.c. along stopping times +
Mokobodski’s condition.
Suppose that ∃ u ∈ U and v ∈ V such that for each
(u, v) ∈ U × V,

gu,v (t,Yt ,Zt , kt) ≤ gu,v (t,Yt ,Zt , kt) ≤ gu,v (t,Yt ,Zt , kt) dt⊗dP a.s. ,

where (Y ,Z , k ,A,A′) is the solution of the DBBSDE associated
with driver gu,v . Let

τ∗S := inf{t ≥ S : Yt = ξt} ; σ∗S := inf{t ≥ S : Yt = ζt}.

The quadruple (u, τ∗S , v , σ
∗
S) is then an S-saddle point and

YS = V (S) = V (S) a.s.



The generalized mixed game problem is fair.

Suppose ξ and ζ are not left u.s.c. along stopping times. We have

Theorem (Dum.-Que-Sul. 2013)

Suppose that ∃ u ∈ U and v ∈ V such that for each
(u, v) ∈ U × V,

gu,v (t,Yt ,Zt , kt) ≤ gu,v (t,Yt ,Zt , kt) ≤ gu,v (t,Yt ,Zt , kt) dt⊗dP a.s. ,

where (Y ,Z , k ,A,A′) is the solution of the DBBSDE associated
with driver gu,v .
Then, the generalized mixed game problem is fair. and
YS = V (S) = V (S) a.s.

There does not necessarily exist a saddle point.



Application:
Let U,V be compact Polish spaces.

Let F : [0,T ]× Ω× U × V × R2 × L2ν → R,
(t, ω, u, v , y , z , k) 7→ F (t, ω, u, v , y , z , k), supposed to be
measurable with respect to P ⊗ B(U)⊗ B(V )⊗ B(R2)⊗ B(L2ν),
continuous, concave (resp. convex) with respect to u (resp. v),
and uniformly Lipchitz with respect to (y , z , k). Suppose that
F (t, ω, u, v , 0, 0, 0) is uniformly bounded.

Let U (resp. V) be the set of predictable processes valued in U
(resp. V ). For each (u, v) ∈ U × V, let gu,v be the driver defined
by

gu,v (t, ω, y , z , k) := F (t, ω, ut(ω), vt(ω), y , z , k).

Define for each (t, ω, y , z , k)

g(t, ω, y , z , k) := sup
u∈U

inf
v∈V

F (t, ω, u, v , y , z , k). (15)

g is a Lipschitz driver.
Let (Y ,Z , k ,A,A′) ∈ S2 ×H2 ×H2

ν × (A2)2 be the solution of
the DRBSDE associated with g .



By classical convex analysis, and then by applying a selection
theorem, we get that ∃ predictable process (u∗, v∗) ∈ U × V such
that dt ⊗ dP a.s., for all (u, v) ∈ U × V we have dt ⊗ dP a.s.:

F (t, ut , v
∗
t ,Zt , kt) ≤ F (t, u∗t , v

∗
t ,Yt ,Zt , kt) ≤ F (t, u∗t , vt ,Yt ,Zt , kt)

and g(t,Yt ,Zt , kt) := F (t, u∗t , v
∗
t ,Yt ,Zt , kt). Hence, Assumption

(12) is satisfied. By the above Theorems, we derive :

Proposition (i) The generalized mixed game problem is fair.
Let Y be the solution of the DRBSDE associated with obstacles ξ,
ζ and the driver g defined by (15).
For each stopping time S ∈ T0, we have YS = V (S) = V (S) a.s.



Proposition

(i) The generalized mixed game problem (associated with the
map F (t, u, v , y , z , k)) is fair. Let Y be the solution of the
DRBSDE associated with obstacles ξ, ζ and the driver g defined
by (15).
For each stopping time S ∈ T0, we have YS = V (S) = V (S) a.s.
(ii) Suppose now that ξ and −ζ are l.u.s.c. along s.t. Set

τ∗S := inf{t ≥ S : Yt = ξt} ; σ∗S := inf{t ≥ S : Yt = ζt}.

The quadruple (u∗, τ∗S , v
∗, σ∗S) is then an S-saddle point for this

mixed game problem.



Other useful applications of our main result

I From the characterization theorem, we easily derive a
comparison theorem for Doubly RBSDEs, which generalizes
the one obtained by Crepey-Matoussi (2008).

I We also derive new a priori estimates for Doubly RBSDEs
with universal constants.
Remark: Under some additional assumptions on the
barriers, Crepey-Matoussi (2008) have proved a priori
estimates (but with non universal constants).

I These estimates are an efficient tool to study the
Markovian case for DRBSDEs (see Dum-Quen-Sul (2013)).

I and also the Markovian case with uncertainty, that is a mixed
generalized DG (see Dum-Quen-Sul (2015)).


