Hybrid scheme for Brownian semistationary processes

Mikko Pakkanen^{1,2}

¹Department of Mathematics, Imperial College London ²CREATES, Aarhus University

London–Paris Bachelier Workshop on Mathematical Finance 26 September 2015

Joint work with Mikkel Bennedsen and Asger Lunde

Introduction

Hybrid scheme

Application to rough Bergomi model

Rough processes

- We are interested in efficient simulation methods for rough processes.
- Here, by "rough" we mean that the trajectories are rougher that those of Brownian motion. (*roughly* speaking...)
- Based on some empirical properties of realized volatility and implied volatility surfaces, Gatheral et al. (2014) have suggested that "volatility is rough".
- Bayer et al. (2015) have introduced an option pricing model with rough volatility the so-called rough Bergomi model.
- Rough processes are also useful in the modeling of electricity spot prices (Barndorff-Nielsen et al. 2013; Bennedsen 2015).

Brownian semistationary processes

Definition (Barndorff-Nielsen and Schmiegel, 2007)

Let $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t \in \mathbb{R}}, \mathbf{P})$ be a filtered probability space supporting a Brownian motion $\{W(t)\}_{t \in \mathbb{R}}$.

A Brownian semistationary (BSS) process $\{X(t)\}_{t\in\mathbb{R}}$ is defined by

$$X(t) := \int_{-\infty}^{t} g(t-s)\sigma(s) \mathrm{d}W(s),$$

where

- $g:(0,\infty)\to [0,\infty)$ is a square-integrable kernel function,
- {σ(t)}_{t∈ℝ} is an adapted covariance-stationary volatility process with locally bounded trajectories.

The role of the kernel function

The kernel function g strongly influences the behavior of the BSS process X:

- The behavior of g near zero influence the fine properties such as roughness of X.
- The asymptotics of *g* near infinity determine long-term behavior of *X*.

We consider kernel functions that satisfy:

 $g(x) \propto x^{lpha}$, when x is near zero,

for some $\alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right) \setminus \{0\}.$

Key assumptions

Assumption

For some
$$\alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right) \setminus \{0\}$$
,
 $g(x) = x^{\alpha}L_g(x), \quad x \in (0, 1],$

where $L_g : (0,1] \to [0,\infty)$ is C^1 , slowly varying at $0 \bullet \text{Definition}$ and bounded away from 0. Moreover, there exists a constant C > 0 such that the derivative L'_g of L_g satisfies

$$|L'_g(x)| \le C(1+x^{-1}), \quad x \in (0,1].$$

Key assumptions

Assumption

II The function g is C^1 on $(0, \infty)$, so that its derivative g' is ultimately monotonic and satisfies $\int_1^\infty g'(x)^2 dx < \infty$.

III For some
$$eta \in ig(-\infty,-rac{1}{2}ig)$$
 ,

$$g(x) = \mathcal{O}(x^{\beta}), \quad x \to \infty.$$

Example

The function

$$g(x) = x^{\alpha} e^{-\lambda x}, \quad x \in (0,\infty),$$

for any $\alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right) \setminus \{0\}$ and $\lambda > 0$ satisfies these assumptions.

Stationarity and regularity of trajectories

Proposition

- 1. The process X is centered and covariance stationary.
- 2. For any $t \in \mathbb{R}$,

$${\sf E}[|X(s)-X(t)|^2] \sim {\sf E}[\sigma(0)^2]C_lpha|s-t|^{2lpha+1}L_g(|s-t|)^2$$

as s
$$ightarrow$$
 t, where $\mathcal{C}_lpha=rac{1}{2lpha+1}+\int_0^\infty \left((y+1)^lpha-y^lpha
ight)^2 dy.$

3. The process X has a modification with locally ϕ -Hölder continuous trajectories for any $\phi \in (0, \alpha + \frac{1}{2})$.

Remark

We refer to α as the roughness parameter of *X*.

Introduction

Hybrid scheme

Application to rough Bergomi model

Simulation of \mathcal{BSS} processes

We are interested in simulating discrete observations of the process

$$X(t):=\int_{-\infty}^t g(t-s)\sigma(s)\mathsf{d}W(s),\quad t\in\mathbb{R}.$$

If σ were deterministic, then X would be centered and Gaussian, making exact simulation possible.

- Computationally, exact simulation can be costly.
- Numerical evaluation of the covariance function of X might not be easy when g is singular, $\alpha < 0$.
- Moreover, this approach does not generalize to the case where σ is stochastic.

Thus, approximate simulation schemes seem unavoidable.

Approximation by Riemann sums

To approximate X(t), an obvious method would be to use Riemann sums:

$$X(t) = \sum_{k=1}^{\infty} \int_{t-\frac{k}{n}}^{t-\frac{k}{n}+\frac{1}{n}} g(t-s)\sigma(s) dW(s)$$
$$\approx \sum_{k=1}^{N_n} g\left(\frac{k}{n}\right)\sigma\left(t-\frac{k}{n}\right) \left(W\left(t-\frac{k}{n}+\frac{1}{n}\right)-W\left(t-\frac{k}{n}\right)\right),$$

where $N_n \to \infty$ as $n \to \infty$.

- This corresponds to approximating g by a step function.
- The scheme can be very inaccurate when g is singular, $\alpha < 0$.
- The first summands are the problematic ones, as g is evaluated near zero therein.

Hybrid scheme

We replace the first $\kappa \ge 1$ summands by random variables that provide a better approximation.

We use for $k = 1, \ldots, \kappa$,

$$g(t-s) \approx (t-s)^{lpha} L_g\left(rac{k}{n}
ight), \quad t-s \in \left[rac{k-1}{n}, rac{k}{n}
ight] \setminus \{0\},$$

motivated by the properties slowly varying functions, and define

$$\check{X}_n(t) := \sum_{k=1}^{\kappa} L_g\left(\frac{k}{n}\right) \sigma\left(t - \frac{k}{n}\right) \int_{t - \frac{k}{n}}^{t - \frac{k}{n} + \frac{1}{n}} (t - s)^{\alpha} dW(s).$$

We adopt the remaining summands from the Riemann sum, but we allow the point at which g is evaluated to be choosen freely within each discretization cell.

We define

$$\hat{X}_n(t) := \sum_{k=\kappa+1}^{N_n} g\left(\frac{b_k}{n}\right) \sigma\left(t - \frac{k}{n}\right) \left(W\left(t - \frac{k}{n} + \frac{1}{n}\right) - W\left(t - \frac{k}{n}\right)\right),$$

where $\mathbf{b} = \{b_k\}_{k=\kappa+1}^\infty$ is a sequence that must satisfy

$$b_k \in [k-1,k] \setminus \{0\}, \quad k \ge \kappa + 1,$$

but otherwise can be chosen freely.

Application to rough Bergomi model

Hybrid scheme

The hybrid scheme for X(t) is then given by

$$X(t) \approx X_n(t) := \check{X}_n(t) + \hat{X}_n(t).$$

Implementation

Remark

Define $\mathbf{b}_0 := \{k\}_{k=\kappa+1}^{\infty}$. Then in the case $\kappa = 0$ and $\mathbf{b} = \mathbf{b}_0$ we recover the approximation by Riemann sums.

Assumption

IV We have
$$N_n \sim n^{\gamma+1}$$
 as $n \to \infty$ for some $\gamma > 0$.

Asymptotics of the mean square error

Theorem

Suppose that
$$\gamma > -\frac{2\alpha+1}{2\beta+1}$$
 and that for some $\delta > 0$,

$$\mathsf{E}[|\sigma(s) - \sigma(0)|^2] = \mathcal{O}(s^{2\alpha+1+\delta}), \quad s \to 0+.$$

Then for all $t \in \mathbb{R}$,

$$\begin{split} \mathbf{E}[|X(t) - X_n(t)|^2] \\ &\sim J(\alpha, \kappa, \mathbf{b}) \mathbf{E}[\sigma(0)^2] n^{-(2\alpha+1)} L_g(1/n)^2, \quad n \to \infty, \end{split}$$

where

$$J(lpha,\kappa,\mathbf{b}):=\sum_{k=\kappa+1}^{\infty}\int_{k-1}^{k}(y^{lpha}-b_{k}^{lpha})^{2}dy<\infty.$$

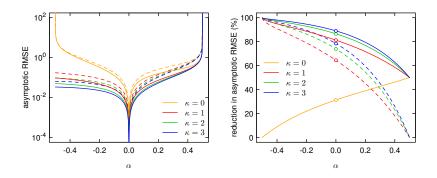
Asymptotic root mean square error

- The quantity $\sqrt{J(\alpha, \kappa, \mathbf{b})}$ can be seen as the asymptotic RMSE of the hybrid scheme.
- For any $\alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right) \setminus \{0\}$, we can find **b** that minimizes $\sqrt{J(\alpha, \kappa, \mathbf{b})}$. We denote the minimizer by \mathbf{b}^* .
- It is illuminating to assess the asymptotic improvement on the approximation by Riemann sums:

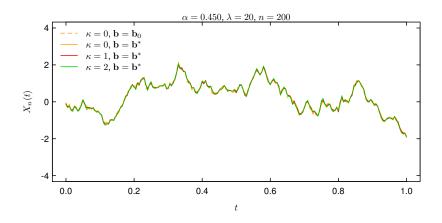
reduction in asymptotic RMSE

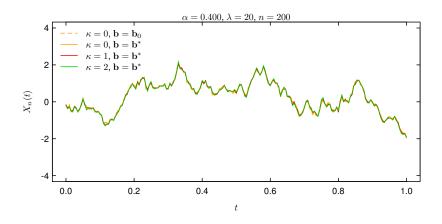
$$=rac{\sqrt{J(lpha,\kappa,\mathbf{b})}-\sqrt{J(lpha,\mathbf{0},\mathbf{b}_0)}}{\sqrt{J(lpha,\mathbf{0},\mathbf{b}_0)}}\cdot 100\%.$$

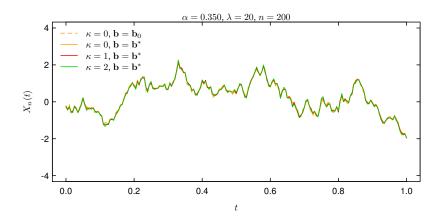
Asymptotic root mean square error

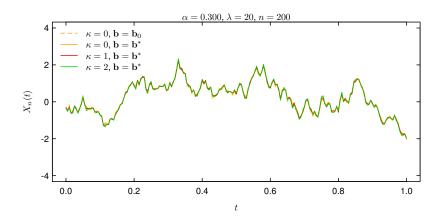


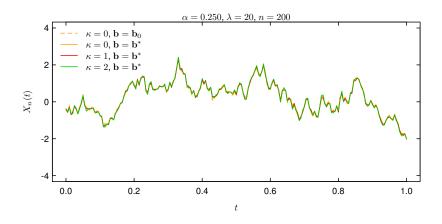
Solid line: $\mathbf{b} = \mathbf{b}^*$; dashed line: $\mathbf{b} = \mathbf{b}_0$.

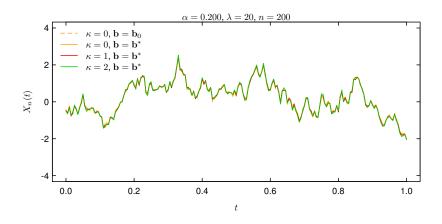


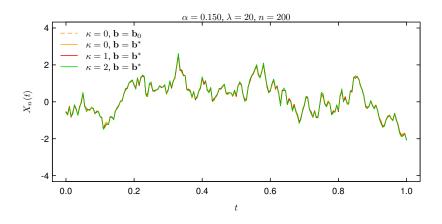


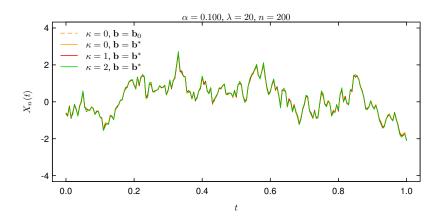


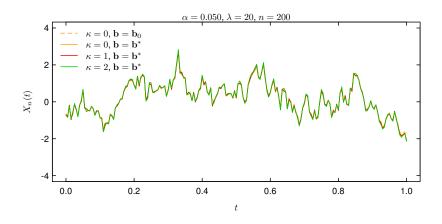


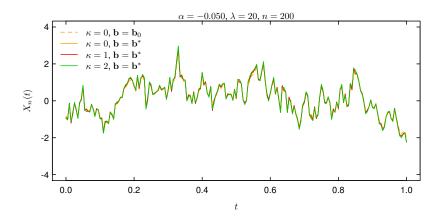


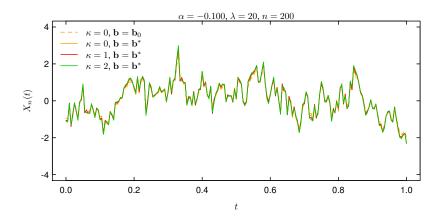


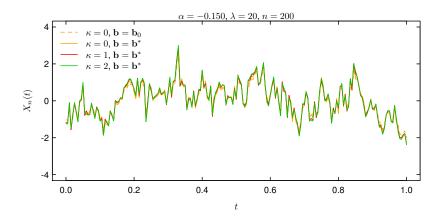


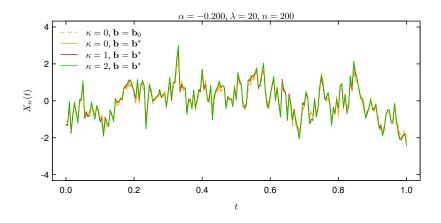


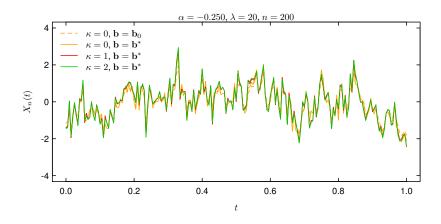


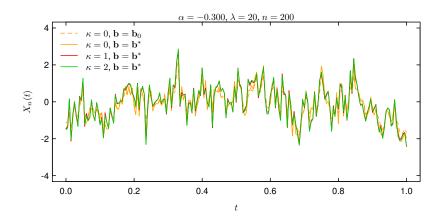


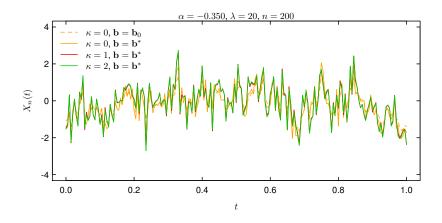


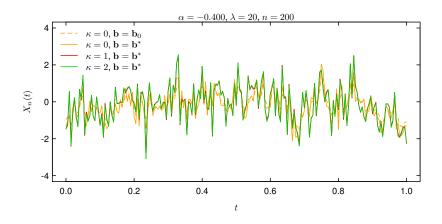


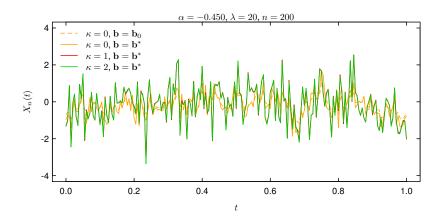


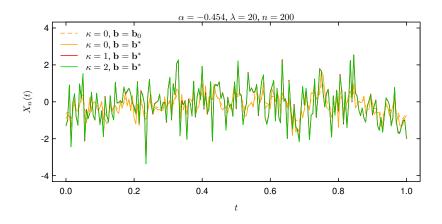


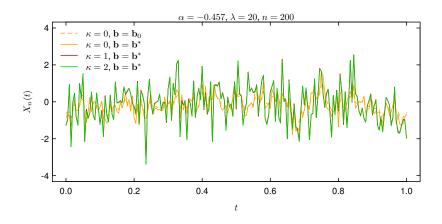


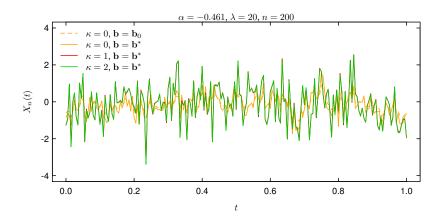


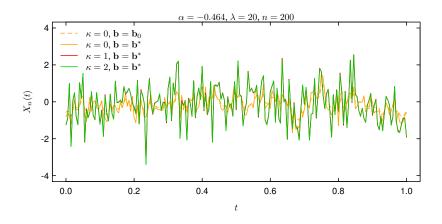




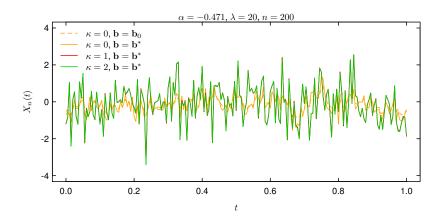


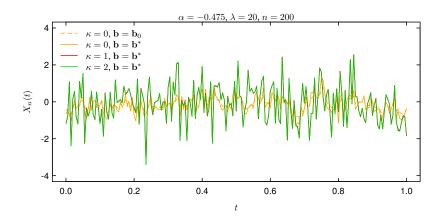


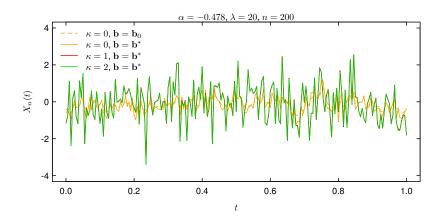


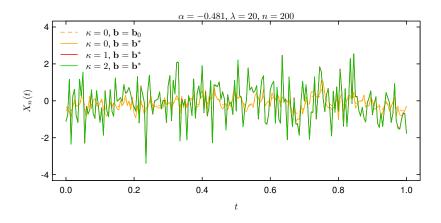


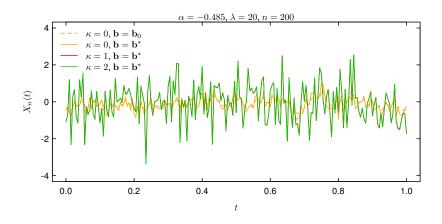


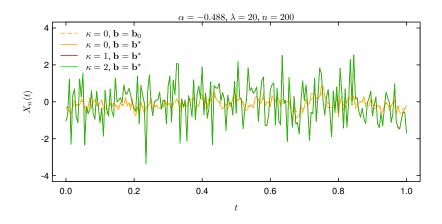


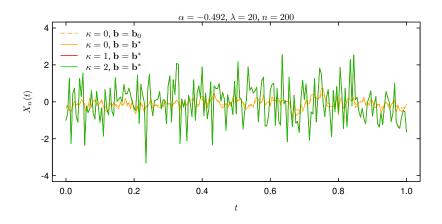


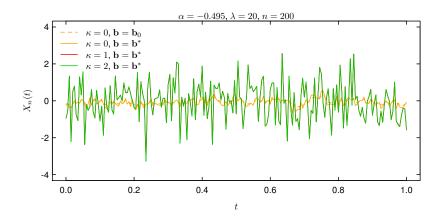


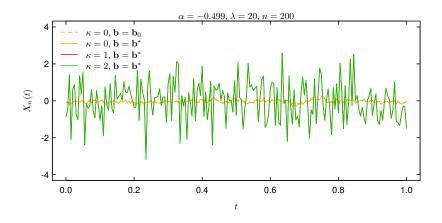












Introduction

Hybrid scheme

Application to rough Bergomi model

Rough Bergomi model

The rough Bergomi model (Bayer et al., 2015) is an SV model, where the log of spot variance follows a rough Gaussian process. More specifically, under an EMM, the stock price follows

$$S(t) := S(0) \exp\left(\int_0^t \sqrt{v(s)} \mathrm{d}B(s) - \frac{1}{2} \int_0^t v(s) \mathrm{d}s\right),$$

where

$$v(t) := \xi \exp\left(\eta \underbrace{\sqrt{2\alpha+1} \int_0^t (t-s)^\alpha \mathrm{d}W(s)}_{=:Y(t)} - \frac{\eta^2}{2} t^{2\alpha+1}\right),$$

with $S_0, \xi, \eta > 0$, $d\langle B, W \rangle_t = \rho dt$, and $\alpha \in \left(-\frac{1}{2}, 0\right)$.

Implied volatility smile

Bayer et al. (2015) have shown that the implied volatility smile $k \mapsto IV(k, T)$ corresponding to the call option price

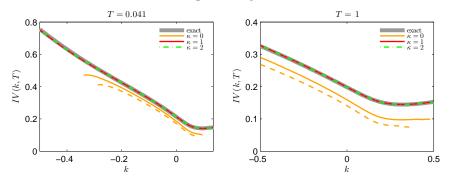
$$C(k,T) := \mathbf{E}[(S_T - S_0 e^k)^+]$$

fits nicely to empirical IV smiles when $\alpha \approx -0.4$.

To find the IV smile, Bayer et al. (2015) evaluate C(k, T) numerically by Monte Carlo, simulating (B, Y) using an exact scheme.

• This simulation step can be made more efficient — without sacrificing accuracy — by using a (modified) hybrid scheme to simulate *Y*.

IV smile using the hybrid scheme



Solid/patterned line: $\mathbf{b} = \mathbf{b}^*$; dashed line: $\mathbf{b} = \mathbf{b}_0$.

<i>S</i> (0)	ξ	η	α	ρ
1	0.235 ²	1.9	-0.43	-0.9

References

- O. E. Barndorff-Nielsen, F. E. Benth, and A. E. D. Veraart (2013): Modelling energy spot prices by volatility modulated Lévy-driven Volterra processes. *Bernoulli* 19(3), 803–845.
- O. E. Barndorff-Nielsen and J. Schmiegel (2009): Brownian semistationary processes and volatility/intermittency. In *Advanced financial modelling*, Volume 8 of *Radon Ser. Comput. Appl. Math.*, pp. 1–25. Berlin: Walter de Gruyter.

C. Bayer, P. K. Friz, and J. Gatheral (2015): Pricing under rough volatility. Preprint, http://ssrn.com/abstract=2554754.

M. Bennedsen (2015): Rough electricity: a new fractal multi-factor model of electricity spot prices. Preprint, http://ssrn.com/abstract=2636829.

M. Bennedsen, A. Lunde, and M. S. Pakkanen (2015): Hybrid scheme for Brownian semistationary processes. Preprint, http://arxiv.org/abs/arXiv:1507.03004.

J. Gatheral, T. Jaisson, and M. Rosenbaum (2014): Volatility is rough. Preprint, http://arxiv.org/abs/1410.3394.

Slow variation at zero

Definition

A function $L: (0,1] \rightarrow [0,\infty)$ is slowly varying at 0 if for any t > 0,

$$\lim_{x\to 0+}\frac{L(tx)}{L(x)}=1.$$

The intuition is that such a slowly varying function varies "less" than any power function "near" zero. Examples:

- If $\lim_{x\to 0+} L(x) \in (0,\infty)$ exists, then L is slowly varying.
- The function $L(x) = -\log x$ is slowly varying.

Back to assumptions

Implementation of the hybrid scheme

Outline of implementation

Generating $X_n(\frac{i}{n})$ for $i = 0, 1, ..., \lfloor nT \rfloor$ involves:

- 1. sampling $\lfloor nT \rfloor + N_n$ IID observations from a $\kappa + 1$ dimensional Gaussian distribution,
- 2. generating a discretization of σ using some appropriate scheme,
- 3. computing the observations by summation and discrete convolution (using FFT).
 - Glossing over the simulation of σ, the computational complexity of this procedure is O(N_n log N_n) = O(n^{1+γ} log n).
 - The computational complexity of an exact simulation in the Gaussian case would be $\mathcal{O}(n^3)$ (using Cholesky decomp.).