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Rough processes

• We are interested in efficient simulation methods for rough
processes.

• Here, by “rough” we mean that the trajectories are rougher
that those of Brownian motion. (roughly speaking. . . )

• Based on some empirical properties of realized volatility and
implied volatility surfaces, Gatheral et al. (2014) have
suggested that “volatility is rough”.

• Bayer et al. (2015) have introduced an option pricing model
with rough volatility — the so-called rough Bergomi model.

• Rough processes are also useful in the modeling of electricity
spot prices (Barndorff-Nielsen et al. 2013; Bennedsen 2015).
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Brownian semistationary processes

Definition (Barndorff-Nielsen and Schmiegel, 2007)

Let (Ω,F , {Ft}t∈R,P) be a filtered probability space supporting a
Brownian motion {W (t)}t∈R.

A Brownian semistationary (BSS) process {X (t)}t∈R is defined by

X (t) :=

∫ t

−∞
g(t − s)σ(s)dW (s),

where

• g : (0,∞)→ [0,∞) is a square-integrable kernel function,

• {σ(t)}t∈R is an adapted covariance-stationary volatility
process with locally bounded trajectories.
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The role of the kernel function

The kernel function g strongly influences the behavior of the BSS
process X :

• The behavior of g near zero influence the fine properties —
such as roughness — of X .

• The asymptotics of g near infinity determine long-term
behavior of X .

We consider kernel functions that satisfy:

g(x) ∝ xα, when x is near zero,

for some α ∈
(
−1

2 ,
1
2

)
\ {0}.
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Key assumptions

Assumption

I For some α ∈
(
−1

2 ,
1
2

)
\ {0},

g(x) = xαLg (x), x ∈ (0, 1],

where Lg : (0, 1]→ [0,∞) is C 1, slowly varying at 0 Definition

and bounded away from 0. Moreover, there exists a constant
C > 0 such that the derivative L′g of Lg satisfies

|L′g (x)| ≤ C (1 + x−1), x ∈ (0, 1].
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Key assumptions

Assumption

II The function g is C 1 on (0,∞), so that its derivative g ′ is
ultimately monotonic and satisfies

∫∞
1 g ′(x)2dx <∞.

III For some β ∈
(
−∞,−1

2

)
,

g(x) = O(xβ), x →∞.

Example

The function
g(x) = xαe−λx , x ∈ (0,∞),

for any α ∈
(
−1

2 ,
1
2

)
\ {0} and λ > 0 satisfies these assumptions.
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Stationarity and regularity of trajectories

Proposition

1. The process X is centered and covariance stationary.

2. For any t ∈ R,

E[|X (s)− X (t)|2] ∼ E[σ(0)2]Cα|s − t|2α+1Lg (|s − t|)2

as s → t, where Cα = 1
2α+1 +

∫∞
0

(
(y + 1)α − yα

)2
dy .

3. The process X has a modification with locally φ-Hölder
continuous trajectories for any φ ∈

(
0, α + 1

2

)
.

Remark

We refer to α as the roughness parameter of X .
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Simulation of BSS processes

We are interested in simulating discrete observations of the process

X (t) :=

∫ t

−∞
g(t − s)σ(s)dW (s), t ∈ R.

If σ were deterministic, then X would be centered and Gaussian,
making exact simulation possible.

• Computationally, exact simulation can be costly.

• Numerical evaluation of the covariance function of X might
not be easy when g is singular, α < 0.

• Moreover, this approach does not generalize to the case where
σ is stochastic.

Thus, approximate simulation schemes seem unavoidable.
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Approximation by Riemann sums

To approximate X (t), an obvious method would be to use
Riemann sums:

X (t) =
∞∑
k=1

∫ t− k
n

+ 1
n

t− k
n

g(t − s)σ(s)dW (s)

≈
Nn∑
k=1

g

(
k

n

)
σ

(
t − k

n

)(
W

(
t − k

n
+

1

n

)
−W

(
t − k

n

))
,

where Nn →∞ as n→∞.

• This corresponds to approximating g by a step function.

• The scheme can be very inaccurate when g is singular, α < 0.

• The first summands are the problematic ones, as g is
evaluated near zero therein.
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Hybrid scheme

We replace the first κ > 1 summands by random variables that
provide a better approximation.

We use for k = 1, . . . , κ,

g(t − s) ≈ (t − s)αLg

(
k

n

)
, t − s ∈

[
k − 1

n
,
k

n

]
\ {0},

motivated by the properties slowly varying functions, and define

X̌n(t) :=
κ∑

k=1

Lg

(
k

n

)
σ

(
t − k

n

)∫ t− k
n

+ 1
n

t− k
n

(t − s)αdW (s).
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Hybrid scheme

We adopt the remaining summands from the Riemann sum, but we
allow the point at which g is evaluated to be choosen freely within
each discretization cell.

We define

X̂n(t) :=
Nn∑

k=κ+1

g

(
bk
n

)
σ

(
t− k

n

)(
W

(
t− k

n
+

1

n

)
−W

(
t− k

n

))
,

where b = {bk}∞k=κ+1 is a sequence that must satisfy

bk ∈ [k − 1, k] \ {0}, k > κ+ 1,

but otherwise can be chosen freely.
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Hybrid scheme

The hybrid scheme for X (t) is then given by

X (t) ≈ Xn(t) := X̌n(t) + X̂n(t).

Implementation

Remark

Define b0 := {k}∞k=κ+1. Then in the case κ = 0 and b = b0 we
recover the approximation by Riemann sums.

Assumption

IV We have Nn ∼ nγ+1 as n→∞ for some γ > 0.
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Asymptotics of the mean square error

Theorem

Suppose that γ > −2α+1
2β+1 and that for some δ > 0,

E[|σ(s)− σ(0)|2] = O
(
s2α+1+δ

)
, s → 0 + .

Then for all t ∈ R,

E[|X (t)− Xn(t)|2]

∼ J(α, κ,b)E[σ(0)2]n−(2α+1)Lg (1/n)2, n→∞,

where

J(α, κ,b) :=
∞∑

k=κ+1

∫ k

k−1
(yα − bαk )2dy <∞.
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Asymptotic root mean square error

• The quantity
√

J(α, κ,b) can be seen as the asymptotic
RMSE of the hybrid scheme.

• For any α ∈
(
−1

2 ,
1
2

)
\ {0}, we can find b that minimizes√

J(α, κ,b). We denote the minimizer by b∗.

• It is illuminating to assess the asymptotic improvement on the
approximation by Riemann sums:

reduction in asymptotic RMSE

=

√
J(α, κ,b)−

√
J(α, 0,b0)√

J(α, 0,b0)
· 100%.
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Asymptotic root mean square error
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Simulated trajectories

t

X
n
(t
)

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4
κ = 0, b = b0

κ = 0, b = b∗

κ = 1, b = b∗

κ = 2, b = b∗

α = 0.450, λ = 20, n = 200

Using g(x) = cα,λx
αe−λx , with cα,λ such that

∫∞
0 g(x)2dx = 1.
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Simulated trajectories

t

X
n
(t
)

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4
κ = 0, b = b0

κ = 0, b = b∗

κ = 1, b = b∗

κ = 2, b = b∗

α = −0.499, λ = 20, n = 200

Using g(x) = cα,λx
αe−λx , with cα,λ such that

∫∞
0 g(x)2dx = 1.
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Rough Bergomi model

The rough Bergomi model (Bayer et al., 2015) is an SV model,
where the log of spot variance follows a rough Gaussian process.

More specifically, under an EMM, the stock price follows

S(t) := S(0) exp

(∫ t

0

√
v(s)dB(s)− 1

2

∫ t

0
v(s)ds

)
,

where

v(t) := ξ exp

(
η
√

2α + 1

∫ t

0
(t − s)αdW (s)︸ ︷︷ ︸

=:Y (t)

−η
2

2
t2α+1

)
,

with S0, ξ, η > 0, d〈B,W 〉t = ρdt, and α ∈
(
− 1

2 , 0
)
.
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Implied volatility smile

Bayer et al. (2015) have shown that the implied volatility smile
k 7→ IV (k ,T ) corresponding to the call option price

C (k,T ) := E[(ST − S0e
k)+]

fits nicely to empirical IV smiles when α ≈ −0.4.

To find the IV smile, Bayer et al. (2015) evaluate C (k ,T )
numerically by Monte Carlo, simulating (B,Y ) using an exact
scheme.

• This simulation step can be made more efficient — without
sacrificing accuracy — by using a (modified) hybrid scheme to
simulate Y .
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IV smile using the hybrid scheme
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Solid/patterned line: b = b∗; dashed line: b = b0.

S(0) ξ η α ρ

1 0.2352 1.9 −0.43 −0.9
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Slow variation at zero

Definition

A function L : (0, 1]→ [0,∞) is slowly varying at 0 if for any t > 0,

lim
x→0+

L(tx)

L(x)
= 1.

The intuition is that such a slowly varying function varies “less”
than any power function “near” zero. Examples:

• If limx→0+ L(x) ∈ (0,∞) exists, then L is slowly varying.

• The function L(x) = − log x is slowly varying.

Back to assumptions
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Implementation of the hybrid scheme

Outline of implementation

Generating Xn

(
i
n

)
for i = 0, 1, . . . , bnT c involves:

1. sampling bnT c+ Nn IID observations from a κ+ 1
dimensional Gaussian distribution,

2. generating a discretization of σ using some appropriate
scheme,

3. computing the observations by summation and discrete
convolution (using FFT).

• Glossing over the simulation of σ, the computational
complexity of this procedure is O(Nn logNn) = O(n1+γ log n).

• The computational complexity of an exact simulation in the
Gaussian case would be O(n3) (using Cholesky decomp.).

Back to hybrid scheme
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