Portfolio Optimisation: Shadow Prices and Fractional Brownian Motion

Christoph Czichowsky

Department of Mathematics London School of Economics and Political Science

London-Paris Workshop

based on joint work(s) with Walter Schachermayer

Outline

Stock price

Price

Christoph Czichowsky (LSE)

표 문 문

Bid-ask spread

Price

Christoph Czichowsky (LSE)

Overview and comparison

	frictionless markets	markets with transaction costs
trading	buy and sell at same price S_t	buy at higher ask price $(1+\lambda)S_t$
		sell at lower bid price $(1-\lambda)S_t$
"no arbitrage"	must be a semimartingale	can also be a non-semimartingale
price process	+ very handy	 more difficult to handle
critical	either exactly 1 or exactly 2	any value in $[1,\infty)$
Hölder	 seems restrictive from 	+ more robust
exponent	a statistical point of view	
optimal	+ nice results	 hard to compute even for standard
strategies	for standard utilities	utilities and semimartingales
trading	 typically infinite, 	+ automatically finite
volume	not possible in reality	
summary	+ typically very handy	 more difficult to handle
	 not always realistic 	+ more realistic

- ∢ ≣ →

2

Financial markets with transaction costs

- Fix a strictly positive càdlàg stochastic process S = (S_t)_{0≤t≤T}.
- A self-financing trading strategy under transaction costs λ ∈ (0, 1) is a predictable finite variation process φ = (φ⁰_t, φ¹_t)_{0≤t≤T} such that

$$darphi_t^0 \leq -(1+\lambda) \mathcal{S}_t (darphi_t^1)^+ + (1-\lambda) \mathcal{S}_t (darphi_t^1)^-$$
 .

• A self-financing strategy φ is admissible, if its liquidation value

$$V_t(\varphi) := \varphi_t^0 + (\varphi_t^1)^+ (1-\lambda)S_t - (\varphi_t^1)^- (1+\lambda)S_t$$

= $\varphi_0^0 + \varphi_0^1S_0 + \int_0^t \varphi_s^1 dS_s - \lambda \int_0^t S_s d|\varphi^1|_s - \lambda S_t|\varphi_t^1|$
 $\geq -M$

for some M > 0 simultaneously for all $t \in [0, T]$.

Denote by A^λ(x) the set of all self-financing and admissible trading strategies under transaction costs λ starting with (φ₀⁰, φ₀¹) = (x, 0).

5 N A 5 N

Utility maximisation under transaction costs

• Primal problem: find optimal trading strategy $\widehat{\varphi} = (\widehat{\varphi}^0, \widehat{\varphi}^1)$ to

maximise
$$E[U(V_T(\varphi))] := E\left[U\left(x + \int_0^T \varphi_u^1 dS_u - \lambda \int_0^T S_u d|\varphi^1|_u\right)\right]$$

• Dual problem: find optimal λ -consistent price system (\hat{Z}^0, \hat{Z}^1) , i.e. local martingales $(Z^0, Z^1) > 0$ such that $\tilde{S} := \frac{Z^1}{Z^0} \in [(1 - \lambda)S, (1 + \lambda)S]$, to

minimise
$$E\left[U^*\left(Z_T^0\right) + xZ_T^0\right]$$
.

- Lagrange duality: If $(\widehat{Z}^0, \widehat{Z}^1)$ exists, then $V_T(\widehat{\varphi}) = (U')^{-1}(\widehat{Z}^0_T)$.
- Technical point: Solution (\hat{Z}^0, \hat{Z}^1) to dual problem is, in general, only a limit of consistent price systems, i.e., an optional strong supermartingale.

r

◎ ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ のへの

Utility maximisation under transaction costs

• Primal problem: find optimal trading strategy $\widehat{\varphi} = (\widehat{\varphi}^0, \widehat{\varphi}^1)$ to

maximise
$$E[U(V_T(\varphi))] := E\left[U\left(x + \int_0^T \varphi_u^1 dS_u - \lambda \int_0^T S_u d|\varphi^1|_u\right)\right]$$

• Dual problem: find optimal λ -consistent price system $(\widehat{Z}^0, \widehat{Z}^1)$, i.e. local martingales $(Z^0, Z^1) > 0$ such that $\widetilde{S} := \frac{Z^1}{Z^0} \in [(1 - \lambda)S, (1 + \lambda)S]$, to

minimise
$$E\left[U^*\left(Z_T^0\right) + xZ_T^0\right]$$
.

- Lagrange duality: If $(\widehat{Z}^0, \widehat{Z}^1)$ exists, then $V_T(\widehat{\varphi}) = (U')^{-1}(\widehat{Z}^0_T)$.
- Technical point: Solution (\hat{Z}^0, \hat{Z}^1) to dual problem is, in general, only a limit of consistent price systems, i.e., an optional strong supermartingale.
- In principle, the above allows also to consider **non-semimartingales** for *S*.

r

■ ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ ○ ○ ○

Utility maximisation under transaction costs

• Primal problem: find optimal trading strategy $\widehat{\varphi} = (\widehat{\varphi}^0, \widehat{\varphi}^1)$ to

naximise
$$E[U(V_T(\varphi))] := E\left[U\left(x + \int_0^T \varphi_u^1 dS_u - \lambda \int_0^T S_u d|\varphi^1|_u\right)\right]$$

• Dual problem: find optimal λ -consistent price system $(\widehat{Z}^0, \widehat{Z}^1)$, i.e. local martingales $(Z^0, Z^1) > 0$ such that $\widetilde{S} := \frac{Z^1}{Z^0} \in [(1 - \lambda)S, (1 + \lambda)S]$, to

minimise
$$E\left[U^*\left(Z_T^0\right) + xZ_T^0\right]$$
.

- Lagrange duality: If $(\widehat{Z}^0, \widehat{Z}^1)$ exists, then $V_T(\widehat{\varphi}) = (U')^{-1}(\widehat{Z}^0_T)$.
- Technical point: Solution (\hat{Z}^0, \hat{Z}^1) to dual problem is, in general, only a limit of consistent price systems, i.e., an optional strong supermartingale.
- In principle, the above allows also to consider **non-semimartingales** for *S*.
- So what about concrete examples?

r

7 / 25

Fractional Brownian motion

- A "nice" class of Gaussian processes $B^H = (B^H_t)$ indexed by $H \in (0, 1)$.
- Mandelbrot: Natural model for stock prices.
- Critical Hölder exponent is $\frac{1}{H}$ and can therefore take any value in $(1,\infty)$.
- Prime example of non-semimartingales for $H \neq \frac{1}{2}$.
- For frictionless trading, fractional models like the fractional Black-Scholes model S = exp(B^H) admit "arbitrage"; see e.g. Rogers (1997), Cheridito (2003) for explicit constructions.
- Guasoni (2006): The fractional Black-Scholes model is arbitrage-free under transaction costs, as fractional Brownian motion $B^H = \log(S)$ is sticky.

No arbitrage under transaction costs

Christoph Czichowsky (LSE)

London, September 26, 2015 10 / 25

Shadow price (Jouini/Kallal, Cvitanić/Karatzas)

Christoph Czichowsky (LSE)

Shadow price

Definition

A semimartingale price process $\widehat{S} = (\widehat{S}_t)$ is a shadow price, if

- i) \widehat{S} is valued in the bid-ask spread $[(1 \lambda)S, (1 + \lambda)S]$.
- ii) The solution $\widehat{\psi}$ to the frictionless utility maximisation problem: to

maximise
$$E[U(V_T(\psi))] := E\left[U\left(x + \int_0^T \psi_s d\widehat{S}_s\right)\right]$$

exists.

iii) $\hat{\psi}$ is of finite variation and "admissible" under transaction costs. iv) $\{d\hat{\psi}^1 > 0\} \subseteq \{\widehat{S} = (1 + \lambda)S\}$ and $\{d\hat{\psi}^1 < 0\} \subseteq \{\widehat{S} = (1 - \lambda)S\}$. Then $\hat{\psi}$ coincides with the solution $\hat{\varphi}$ under transaction costs.

Existence of shadow prices?

- Cvitanić/Karatzas (1996): Existence in an Itô process setting, if the solution to the dual problem is a local martingale. Not clear under which conditions this is the case.
 - ► Kallsen/Muhle-Karbe (2011): finite probability space.
 - Explicit constructions for various concrete problems in the classical(!) Black-Scholes model; Kallsen/Muhle-Karbe (2009),...
 - Beyond the classical Black-Scholes model?
 - C./Deutsch/Forde/Zhang: Construction for geometric Ornstein-Uhlenbeck process.
 - No-shortselling (somewhat different problem); Loewenstein (2001), Benedetti/Campi/Kallsen/Muhle-Karbe (2011).
- No general results that apply to Cvitanić/Karatzas (1996) so far.
- Counter-examples in discrete time:
 - Benedetti/Campi/Kallsen/Muhle-Karbe (2011).
 - C./Muhle-Karbe/Schachermayer (2012).

Outline

Overview and comparison

3

→ 祠 ▶ → 国 ▶ → 国 ▶

Sufficient conditions

Theorem (C./Schachermayer/Yang)

Suppose that

- 0) $U: (0,\infty) \to \mathbb{R}$ satisfies $\limsup_{x \to \infty} \frac{xU'(x)}{U(x)} < 1.$
- i) S is continuous.
- ii) S satisfies (NUPBR) or, equivalently, admits an ELMD.

iii)
$$u(x) := \sup_{\varphi \in \mathcal{A}^{\lambda}(x)} E[U(V_T(\varphi))] < \infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ a shadow price process.

- Conditions can be verified without knowing the solution to the dual problem before; compare Cvitanić/Karatzas (1996).
- Quite sharp: There exist counter-examples, if i) or ii) are not satisfied.
- Condition ii), which implies that *S* is a **semimartingale**, **cannot** be replaced by the weaker condition that "*S* is sticky" typically used for fBm.

Example: S is continuous and sticky

• C./Schachermayer/Yang.

• S admits an unbounded increasing profit and hence no ELMM.

Christoph Czichowsky	(LSE)
----------------------	-------

Shadow prices and fBm

London, September 26, 2015

Example: S is continuous and sticky

• C./Schachermayer/Yang.

- S admits an unbounded increasing profit and hence no ELMM.
- No solution to any frictionless utility maximisation problem.

Example: S is continuous and sticky

• C./Schachermayer/Yang.

- S admits an unbounded increasing profit and hence no ELMM.
- No solution to any frictionless utility maximisation problem.
- However, S is **sticky** and S is arbitrage-free under transaction costs.

Example (cont.)

Proposition (C./Schachermayer/Yang)

There exists a non-decreasing function $\ell : [0, \infty) \to [0, \frac{1}{\lambda}]$ such that the optimal strategy $\widehat{\varphi} = (\widehat{\varphi}^0, \widehat{\varphi}^1)$ to

$$Eig[\logig(V_{ au}(arphi)ig)
ight]
ightarrow {
m max}!,\qquad arphi\in \mathcal{A}^{\lambda}(1),$$

is given by the smallest non-decreasing process $\widehat{\varphi}^1$ such that

i)
$$d\widehat{\varphi}_t^0 = -(1+\lambda)S_t d\widehat{\varphi}_t^1$$
 for all $t \ge 0$.
ii) $\frac{1}{\lambda} \ge \frac{\widehat{\varphi}_t^1 S_t}{\widehat{\varphi}_t^0 + \widehat{\varphi}_t^1 S_t} \ge \ell(w_0 + W_t - t)$ for all $t \ge 0$.

Moreover, there exists $\overline{w} \in (0,\infty)$ such that $\ell(w) = \frac{1}{\lambda}$ for all $w \ge \overline{w}$.

For $w_0 > \overline{w}$, we would therefore have

$$\widehat{S}_t = (1 + \lambda)S_t$$
 for all $t \leq \sigma := \inf\{s > 0 \mid w_0 + W_s - s < \overline{w}\}$

for any candidate shadow price and hence no shadow price exists.

Theorem (C./Schachermayer/Yang) *Suppose that*

0)
$$U: (0,\infty) \to \mathbb{R}$$
 satisfies $\limsup_{x \to \infty} \frac{xU'(x)}{U(x)} < 1.$

- i) S is continuous.
- ii) S satisfies no simple arbitrage (NSA).

iii)
$$u(x) := \sup_{\varphi \in \mathcal{A}^{\lambda}(x)} E[U(V_T(\varphi))] < \infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ a shadow price process.

• Is (NSA) satisfied for the fractional Black-Scholes model?

Theorem (C./Schachermayer/Yang) *Suppose that*

0)
$$U: (0,\infty) \to \mathbb{R}$$
 satisfies $\limsup_{x \to \infty} \frac{xU'(x)}{U(x)} < 1.$

- i) S is continuous.
- ii) S satisfies no simple arbitrage (NSA).

iii)
$$u(x) := \sup_{\varphi \in \mathcal{A}^{\lambda}(x)} E[U(V_T(\varphi))] < \infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ a shadow price process.

- Is (NSA) satisfied for the fractional Black-Scholes model?
- Bender (2012): For continuous S, (NSA) \iff (NOA) and (TWC).

Theorem (C./Schachermayer/Yang) *Suppose that*

0)
$$U: (0,\infty) \to \mathbb{R}$$
 satisfies $\limsup_{x \to \infty} \frac{xU'(x)}{U(x)} < 1.$

- i) S is continuous.
- ii) S satisfies no simple arbitrage (NSA).

iii)
$$u(x) := \sup_{\varphi \in \mathcal{A}^{\lambda}(x)} E[U(V_T(\varphi))] < \infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ a shadow price process.

- Is (NSA) satisfied for the fractional Black-Scholes model?
- Bender (2012): For continuous S, (NSA) \iff (NOA) and (TWC).
- Peyre (2015): $S = \exp(B^H)$ satisfies (TWC).

Theorem (C./Schachermayer/Yang) *Suppose that*

0)
$$U: (0,\infty) \to \mathbb{R}$$
 satisfies $\limsup_{x \to \infty} \frac{xU'(x)}{U(x)} < 1.$

- i) S is continuous.
- ii) S satisfies no simple arbitrage (NSA).

iii)
$$u(x) := \sup_{\varphi \in \mathcal{A}^{\lambda}(x)} E[U(V_T(\varphi))] < \infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ a shadow price process.

- Is (NSA) satisfied for the fractional Black-Scholes model?
- Bender (2012): For continuous S, (NSA) \iff (NOA) and (TWC).
- Peyre (2015): $S = \exp(B^H)$ satisfies (TWC).
- Condition iii) is satisfied for $U(x) = \frac{x^p}{p}$ with $p \in (-\infty, 0)$.

Theorem (C./Schachermayer)

Suppose that

- $0) \ \ U:\mathbb{R}\to\mathbb{R} \ \text{satisfies} \ \text{lim} \ \text{sup}_{x\to\infty}\frac{xU'(x)}{U(x)}<1 \ \text{and} \ \text{lim} \ \text{inf}_{x\to-\infty}\frac{xU'(x)}{U(x)}>1.$
- i) S is locally bounded.
- ii) S admits a λ' -consistent price system $(\overline{Z}^0, \overline{Z}^1)$ for $\lambda' \in [0, \lambda)$ such that

iii)
$$E[U^*(\bar{Z}^0_T)] < +\infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ is a shadow price.

Theorem (C./Schachermayer)

Suppose that

- $0) \ \ U:\mathbb{R}\to\mathbb{R} \ \text{satisfies} \ \text{lim} \ \text{sup}_{x\to\infty}\frac{xU'(x)}{U(x)}<1 \ \text{and} \ \text{lim} \ \text{inf}_{x\to-\infty}\frac{xU'(x)}{U(x)}>1.$
- i) S is locally bounded.
- ii) S admits a λ' -consistent price system $(\overline{Z}^0, \overline{Z}^1)$ for $\lambda' \in [0, \lambda)$ such that

iii)
$$E[U^*(\bar{Z}^0_T)] < +\infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ is a shadow price.

• Condition 0) implies that $\lim_{y\to\infty} \frac{U^*(y)}{y} = \infty$ and therefore allows to apply the **de la Vallée-Poussin criterion** for uniform integrability.

Theorem (C./Schachermayer)

Suppose that

- $0) \ \ U:\mathbb{R}\to\mathbb{R} \ \text{satisfies} \ \text{lim} \ \text{sup}_{x\to\infty}\frac{xU'(x)}{U(x)}<1 \ \text{and} \ \text{lim} \ \text{inf}_{x\to-\infty}\frac{xU'(x)}{U(x)}>1.$
- i) S is locally bounded.
- ii) S admits a λ' -consistent price system $(\overline{Z}^0, \overline{Z}^1)$ for $\lambda' \in [0, \lambda)$ such that

iii)
$$E[U^*(\bar{Z}^0_T)] < +\infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ is a shadow price.

- Condition 0) implies that $\lim_{y\to\infty} \frac{U^*(y)}{y} = \infty$ and therefore allows to apply the **de la Vallée-Poussin criterion** for uniform integrability.
- In principle, the above allows to consider **non-semimartingales** for *S*.

Theorem (C./Schachermayer)

Suppose that

- $0) \ \ U:\mathbb{R}\to\mathbb{R} \ \text{satisfies} \ \text{lim} \ \text{sup}_{x\to\infty}\frac{xU'(x)}{U(x)}<1 \ \text{and} \ \text{lim} \ \text{inf}_{x\to-\infty}\frac{xU'(x)}{U(x)}>1.$
- i) S is locally bounded.
- ii) S admits a λ' -consistent price system $(\overline{Z}^0, \overline{Z}^1)$ for $\lambda' \in [0, \lambda)$ such that

iii)
$$E[U^*(\bar{Z}^0_T)] < +\infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ is a shadow price.

- Condition 0) implies that $\lim_{y\to\infty} \frac{U^*(y)}{y} = \infty$ and therefore allows to apply the **de la Vallée-Poussin criterion** for uniform integrability.
- In principle, the above allows to consider **non-semimartingales** for *S*.
- For the fractional Black-Scholes model conditions i) and ii) are satisfied.

Theorem (C./Schachermayer)

Suppose that

- $0) \ \ U:\mathbb{R}\to\mathbb{R} \ \text{satisfies} \ \text{lim} \ \text{sup}_{x\to\infty}\frac{xU'(x)}{U(x)}<1 \ \text{and} \ \text{lim} \ \text{inf}_{x\to-\infty}\frac{xU'(x)}{U(x)}>1.$
- i) S is locally bounded.
- ii) S admits a λ' -consistent price system $(\overline{Z}^0, \overline{Z}^1)$ for $\lambda' \in [0, \lambda)$ such that

iii)
$$E[U^*(\bar{Z}^0_T)] < +\infty.$$

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ is a shadow price.

- Condition 0) implies that $\lim_{y\to\infty} \frac{U^*(y)}{y} = \infty$ and therefore allows to apply the **de la Vallée-Poussin criterion** for uniform integrability.
- In principle, the above allows to consider **non-semimartingales** for *S*.
- For the fractional Black-Scholes model conditions i) and ii) are satisfied.
- So what about iii) for $U(x) = 1 e^{-x}$? Hard to verify directly.

A DA DE SAR

Theorem (C./Schachermayer)

Suppose that

- 0) $U: \mathbb{R} \to \mathbb{R}$ is bounded from above and satisfies $\liminf_{x \to -\infty} \frac{xU'(x)}{U(x)} > 1$.
- i) S is continuous.
- ii) *S* is **sticky**.

Then
$$(\widehat{Z}^0,\widehat{Z}^1)$$
 is a local martingale and $\widehat{S}:=rac{\widehat{Z}^1}{\widehat{Z}^0}$ is a shadow price.

• Conditions i)-ii) are satisfied for the fractional Black-Scholes model.

- 3

通 ト イヨト イヨト

Theorem (C./Schachermayer)

Suppose that

- 0) $U: \mathbb{R} \to \mathbb{R}$ is bounded from above and satisfies $\liminf_{x \to -\infty} \frac{xU'(x)}{U(x)} > 1$.
- i) S is continuous.
- ii) *S* is **sticky**.

Then
$$(\widehat{Z}^0, \widehat{Z}^1)$$
 is a local martingale and $\widehat{S} := rac{\widehat{Z}^1}{\widehat{Z}^0}$ is a shadow price.

- Conditions i)-ii) are satisfied for the fractional Black-Scholes model.
- Proof combines arguments from convex duality with the stickiness condition.

Theorem (C./Schachermayer)

Suppose that

- 0) $U: \mathbb{R} \to \mathbb{R}$ is bounded from above and satisfies $\liminf_{x \to -\infty} \frac{xU'(x)}{U(x)} > 1$.
- i) S is continuous.
- ii) S is sticky.

Then $(\widehat{Z}^0, \widehat{Z}^1)$ is a local martingale and $\widehat{S} := \frac{\widehat{Z}^1}{\widehat{Z}^0}$ is a shadow price.

- Conditions i)-ii) are satisfied for the fractional Black-Scholes model.
- Proof combines arguments from convex duality with the stickiness condition.
- By the change of measure ^{dP_B}/_{dP} = ^{exp(B)}/_{E[exp(B)]} the above also gives the existence of exponential utility indifference prices for any claim B ∈ L[∞](P).

Outline

- Future goals:
 - Quantitative results for fractional models.
 - Understand impact of non-semimartingality on optimal strategy.
 - Utility-based pricing and hedging for fractional models.

- Future goals:
 - **Quantitative** results for fractional models.
 - Understand impact of non-semimartingality on optimal strategy.
 - Utility-based pricing and hedging for fractional models.
- For the fractional Black-Scholes model S = exp(B^H) the shadow price is
 1) an Itô process, i.e.

$$d\widehat{S}_t = \widehat{S}_t \left(\widehat{\mu}_t dt + \widehat{\sigma}_t dW_t\right),$$

- 2) evolving in the bid-ask spread $\widehat{S} \in [(1 \lambda)S, (1 + \lambda)S]$ such that
- 3) the optimal strategies coincide, i.e. $\widehat{\psi}=\widehat{arphi}$, and
- 4) $\{d\widehat{\varphi}^1 > 0\} \subseteq \{\widehat{S} = (1+\lambda)S\}$ and $\{d\widehat{\varphi}^1 < 0\} \subseteq \{\widehat{S} = (1-\lambda)S\}.$

- Future goals:
 - Quantitative results for fractional models.
 - Understand impact of non-semimartingality on optimal strategy.
 - Utility-based pricing and hedging for fractional models.
- For the fractional Black-Scholes model S = exp(B^H) the shadow price is
 1) an Itô process, i.e.

$$d\widehat{S}_t = \widehat{S}_t \left(\widehat{\mu}_t dt + \widehat{\sigma}_t dW_t\right),$$

- 2) evolving in the bid-ask spread $\widehat{S} \in [(1 \lambda)S, (1 + \lambda)S]$ such that
- 3) the optimal strategies coincide, i.e. $\widehat{\psi} = \widehat{\varphi}$, and
- 4) $\{d\widehat{\varphi}^1 > 0\} \subseteq \{\widehat{S} = (1+\lambda)S\}$ and $\{d\widehat{\varphi}^1 < 0\} \subseteq \{\widehat{S} = (1-\lambda)S\}.$
- Basic idea: Combine 1)-4) with results for utility maximisation for Itô processes to describe optimal strategy φ̂ = (φ̂⁰, φ̂¹) more explicitly.

■▶ ★ ■▶ ★ ■▶ = ■ - • • • • ●

- Future goals:
 - **Quantitative** results for fractional models.
 - Understand impact of non-semimartingality on optimal strategy.
 - Utility-based pricing and hedging for fractional models.
- For the fractional Black-Scholes model S = exp(B^H) the shadow price is
 1) an Itô process, i.e.

$$d\widehat{S}_t = \widehat{S}_t \left(\widehat{\mu}_t dt + \widehat{\sigma}_t dW_t\right),$$

- 2) evolving in the bid-ask spread $\widehat{S} \in [(1 \lambda)S, (1 + \lambda)S]$ such that
- 3) the optimal strategies coincide, i.e. $\widehat{\psi}=\widehat{\varphi},$ and
- 4) $\{d\widehat{\varphi}^1 > 0\} \subseteq \{\widehat{S} = (1+\lambda)S\}$ and $\{d\widehat{\varphi}^1 < 0\} \subseteq \{\widehat{S} = (1-\lambda)S\}.$
- Basic idea: Combine 1)-4) with results for utility maximisation for Itô processes to describe optimal strategy φ̂ = (φ̂⁰, φ̂¹) more explicitly.
- This then also gives results for **exponential utility indifference pricing** by comparing **two** shadow prices given by the Itô processes \hat{S}^B and \hat{S} .

- Future goals:
 - **Quantitative** results for fractional models.
 - Understand impact of non-semimartingality on optimal strategy.
 - Utility-based pricing and hedging for fractional models.
- For the fractional Black-Scholes model S = exp(B^H) the shadow price is
 1) an Itô process, i.e.

$$d\widehat{S}_t = \widehat{S}_t \left(\widehat{\mu}_t dt + \widehat{\sigma}_t dW_t\right),$$

- 2) evolving in the bid-ask spread $\widehat{S} \in [(1-\lambda)S, (1+\lambda)S]$ such that
- 3) the optimal strategies coincide, i.e. $\widehat{\psi}=\widehat{\varphi},$ and
- 4) $\{d\widehat{\varphi}^1 > 0\} \subseteq \{\widehat{S} = (1+\lambda)S\}$ and $\{d\widehat{\varphi}^1 < 0\} \subseteq \{\widehat{S} = (1-\lambda)S\}.$
- Basic idea: Combine 1)–4) with results for utility maximisation for Itô processes to describe optimal strategy φ̂ = (φ̂⁰, φ̂¹) more explicitly.
- This then also gives results for **exponential utility indifference pricing** by comparing **two** shadow prices given by the Itô processes \hat{S}^B and \hat{S} .
- Importance: Superreplication price is too high by face-lifting theorems.

() → 1

Summary

Sufficient conditions for existence of shadow prices:

- 1) S is continuous and satisfies (NSA) $U: (0,\infty) \to \mathbb{R}$. Quite sharp.
- 2) S is locally bounded and admits a $CPS^{\lambda'}(\overline{Z}^0, \overline{Z}^1)$ for $\lambda' \in [0, \lambda)$ satisfying $E[U^*(\overline{Z}^0_T)] < \infty$ for $U : \mathbb{R} \to \mathbb{R}$.
- 3) S is continuous and sticky for $U : \mathbb{R} \to \mathbb{R}$ bounded from above.

Counter-examples for $U: (0,\infty) \to \mathbb{R}$:

• S is continuous and sticky are **not** sufficient.

Fractional Brownian motion:

- Existence of shadow price for bounded power and exponential utility.
- Shadow price is Itô process.
- Exploit connection to frictionless markets to obtain quantitative results.

Thank you for your attention and for coming here on Saturday morning!

http://www.maths.lse.ac.uk/Personal/christoph

Talk based on

C. Czichowsky and W. Schachermayer.

Strong supermartingales and limits of non-negative martingales. *Preprint*, 2013. To appear in *The Annals of Probability*.

C. Czichowsky and W. Schachermayer.

Duality theory for portfolio optimisation under transaction costs. *Preprint*, 2014. To appear in *The Annals of Applied Probability*.

C. Czichowsky, W. Schachermayer, and J. Yang. Shadow prices for continuous price processes. *Preprint*, 2014. To appear in *Mathematical Finance*.

C. Czichowsky and W. Schachermayer.

Portfolio optimisation beyond semimartingales: shadow prices and fractional Brownian motion.

Preprint, 2015.