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Solution (Exercise 1: Skewness and kurtosis).

(1)

(i)

(iii)

(i)

From Hélder’s inequality (Proposition 2.2.3 in the notes), Hélder’s inequality reads
E[XY[] <E[X]7]/"EX]7,

for every p € (1,00) and q such that p~! + q~! = 1, whenever all expectations are finite. Take Y =1 and
X = ZP almost surely, then
E[|Z]") <E[|Z|™]"/7;
Setting q := rp then yields E[|Z|P] <E [|Z|q]r/q, and it is easy to check that =1 +p~! = 1.
If X ~ N(u,0?), then (X — p)/o ~ N(0,1). We can then compute by direct integration against the

Gaussian density:
S L / e { v } dz =0
= X _— =0,
V2T Jr P 2

since the integrand is an odd function. Similarly, by integration by parts,

Lo S fes g e {5} v [t {5 )
R .= —— I ex —_ xr = T ex —_— I ex —_— xZ.
o Je OP 2 5v/2r PU 2] Tsvar et P 2

Denoting by 14, the kurtosis, we note that the previous equality can be rewrittent as I, = %Iﬁ. Continuing

the recursion backwards, this yields
I¢ =514 =531, =531,

with clearly Iy = 1, and therefore Iy = k = 3.
If X ~ Uy, then, E[X] = (b—a)/2 and V[X] = (b — a)?/12. Again, since the distribution of X is
symmetric around its mean, then the skewness is equal to zero (the function x +— 3 being odd). Regarding

the kurtosis, taking for simplicity a =0 and b =1, we can write

1
K= / zidr = =.
[0.1] 5

If X ~ E(N), then, by integration by parts,

1
E[X] = Aze Mdz = — [ze™] 0.50) +/ e Mdy = —
[0,00) >0 [0,00)
Likewise,
2
E[X?] =\ w2e Mdr = — [er_’\‘r] 0,00) T 2/ re Mdr = JE[X],
0,50) ’ [0.00) A
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and hence
VIX] = E[X?] — E[X]? = 2E[X] — B[X]? = & — — = —
A A2 N
Computations for the skewness and the skewness and the kurtosis are similar, and we obtain & = 2 and
K=9.
(v) See the IPython notebook.
s
Solution (Exercise 2: Convergence and Central Limit Theorem).
(i) Since X ~ Poisson()), we can compute directly
)\kef)\ Y )\kfl Y
E[X]:ZkT:e )\Zm:e e :)\,
k>0 k>1
Nee=A Ak Ak AF
E[X? =) & =e > k =e? k—1
X =D B =) =S D )(k—l)!+z(k—1)!
k>0 k>1 k>1 k>1
N /\k72 N /\kfl 9
=e A A ="+ A
Ny Tt A i N T
k>2 k>1

and therefore V(X)) = A.
1 n
(ii) Recall that S, = - ZXi' The sequence (Xy)ren’s is 4id and integrable, and therefore the weak law of

k=1
large numbers implies that (Sp,)nen converges to A in probability.

(iii) Let T, := exp(—S,). For any fized ¢ > 0,
P(|T,—e | <e)=Pe?—c<T,<e*+e)
=P(-In(e*+¢) < S, < —Infe™ —¢))
=P(A—In(l+ee) < S, <A—In(l—ee)),

which converges to 1 as n tends to infinity, since the sequence (Sy) converges in probability.
(iv) Let x > 0. The Central Limit Theorem implies that

LS, =A
lim

ntoo \/)\/777,

=Z ~N(0,1) in probability.

Therefore,

P(T <x):IP’(Sn>_1n(x)):]p(\/ﬁS%)\ > \/ﬁ—lnixf))\—/\)

If z < e then —In(z) — A > 0 and thus \/EL\/?_’\ diverges to +oo. Conversely if x > e~ then
V==X diverges to —oo. Hence,

VaN
“In(z) — A P(Z > +00) =0, ifa<e >,
ntoo n— oo \/X P(Z > _OO) — 1’ fo > €_>\.

Solution (Exercise 3: Convergence of random variables).

(i) Straightforward from the lecture notes.



STATISTICAL METHODS IN FINANCE 3

(i) We first prove the claim:

PY<z)=PY <z, X<z+e)+PY <z, X >zx+¢)
<PX<z4+e)+PY -X<z—-X,2—X < —¢)
SPX<z+e)+PY -X < —¢)
SPX<z+4+e)+PY -X<—)+PY -X >¢)
<P(X <z+e)+P(JY — X|>e¢).

We now move on to the general proof. We need to show pointwise convergence of the cdf at every point of

continuity. Let F be the limiting cdf, and x such a point. For any e > 0, the claim yields
P(X, <z)<PX <z+¢e)+P(|X, — X|>¢) and P(X <z-¢)<PX,<z)+P(X,—X|>e),
so that
PX <z—¢e)-P(|X, - X|>¢) <PX, <2) <P(X <z +4¢)+P(X, — X[ >e).
Taking the limit as n tends to infinity yields
Flx—¢)< TlllTrglO P(X, <z) < F(z+e¢),
and the result follows since x is a continuity point of F.
(iii) Let c be the constant to which the sequence converges in distribution, and fix € > 0. Then P(|X,, — c| >

e) =P(X,, ¢ B:(c)), where B:(c) denotes the ball of radius € centred at the point c. Therefore, convergence

in distribution implies that

lim P(|X,, — ¢ > ) <limsupP(|X,, — ¢ > ¢) < limsupP(X,, ¢ B:(c)) < P(c ¢ B:(c)) =0,

ntoo ntoo ntoo

which is exactly convergence in probability.

Solution (Exercise 4: Joint distributions).

(i) Denote by X = (X1,X5) and Y = (Y1,Y2). We can rewrite the definition of Y asY = pu+ XX, where

¥ g1p pPo1 7
0 g9

where we denote p:= /1 — p? € (0,1). Since both o1 and oo are strictly positive, the matriz 3 is invertible,

the matriz ¥ reads

and we can write X = LYY — u), where

)

-1 o1p 02p

(0.1) = [P 93P

0 il

)

The Jacobian then reads .

J(y1,y2) = |271| = —.
01020

The joint density of Y then reads

fy(y) = fx(x)|J(y)| = % exp {—xl;xz} J(y),
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where 7 = X"y, More explicitly, we can compute, from (ICT),

1 _ — _
o=t <y1 p_ Py M2)> and oy = T2
P o1 (o) 02

so that

s, o [L(m—m plya—p2)\* | (v2— =)’
Ty +$2 = | = - + | —
1% 01 g2 g9

L [n=m)? | pPlp—pa)® o (=) —p2) | oy (42— p2)’
2 2 + 2 —p + ( —-P ) 2
1—-p o o5 0102 b
_ 1 (1 —m1)* | (y2 — p2)? (y1 — 1) (y2 — p2)
= 2 2 + 2 —2p ]
1—p o o5 0102

and therefore

x%—&—m%

fy(y)=2ﬂexp{ 5 }J(y)
1 {_2( 1 {(yl—ul)Q (yz—ug)2_2p(y1—u1)(y2—uz)”

- 2wo109p P 1—p?) 2 + 2

o7 g5 0109
L ep - W)y ) for all y € R?
DR 2 ’ '

To compute the marginal densities of Y1 and Ya, we need to integrate out the joint density:

fY1(y1):/fY(ylay2)dy2
R
1 1 )2 )2 _ _
_ /exp{_ i {(yl 2#1) L (e Quz) _2p(y1 1) (y2 uz)”dyQ
2n0109p Jr 2(1-p? o3 o3 0102
1 22+ 22 —2p2129
- - d
27T01P/Rexp{ 2(1-p?) .

1 / (20 — p21)? + (1 — p2) 23
= — [ exp — dzo
2101p Jg 2(1-p?)

21

2
eXp{77} (22 — p21)? 1 4 1 (y1 — u)?
2mo1p /Rexp{ 2(1—p?) } 2T e exp{ 2} o1V2m exp{ 207 }

where we set z1 := (y1 — p2)/o1 and zo := (y2 — po)/o9 in the third line. Hence Y; is Gaussian with

mean py and variance o3. The marginal distribution of Y follows analogous computations. Regarding the
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conditional densities, we have, using the previous results,

fri,ve (Y1, 92)
vy, Wilye) = =2

t

fva(y2)
- exp{ig(lilﬂ) |:(y1;%/y01)2 4 (y2;§42)2 . 2p(y17u;1)((7y22*u2)}} 1
N 2wo109p 1
102pP o exp {

_ (y2—#2)2
20’5

+p —p

1 (y1 —p1)? | 5y — p2)? (y1 — p1)(y2 — p2)
02 203 0102

)

(y1 — ) (Y2 — p2)

)2
(y2 2#2) — 2poy
o

77—p2) {(yl — m)* + p*o}

1 1 N
= v S [ 0492 - i
{ y%—2(u1+§2)y1+/ﬁ+§3+2u1§2]}

T22(1-p?) {Zh — (m Jrﬂz)ﬂ } )

=)

with Yo := po1(ya — pe) /o2 and 1 := p1 + po1(ya — pe)/oa. Therefore Y1|Ya is also Gaussian with mean

w1 + ¥z and variance o3 (1 — p?).

In order to compute the correlation, we first compute, using the tower property for e

E[Y1,Y2] = E[E[V1Y3]Y2]]

ag ag
plm) i + % (05 + 13) = papz + poro2,
2

and we therefore deduce
Cov[Y,Ys] = E[Y1, Ys] — EME[Y2] = pape + poroa — pape = poyoa,

and
Cort[Y1, Ya] = Cov[¥1,¥a] _ P
VV1]V[Ys]

rpectations,

(i) Considering now the second problem, we can write the inverse transformation (Uy,Us) = o(X1,Xs) =

(p1((X1, X2), p2(X1, X2)), with

X12+X22}

1
5 and Us = pa(X1, X2) = — arctan

Uy =<P1(X17X2)=exp{— o

The Jacobian of ¢ now reads

az1 P1 812901

Jw((El,.’Eg) = a SD a (p
Xy 2 T2 2

x2+x2 x2+x2
xlexp{—122} xgexp{—122} 1 {
= = —exp
21

1 T2 1 Z1
27r33%+x% 27TJU%+$§

()

_x% + x%
(-
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The joint density can therefore be computed as

2 2 1 1 2 2
fx1 x, (21, 22) = fu,.u, <exp{—%1 ;IQ},%arctan <ii)> J(x1,22) = %exp{—xl;%}.

SZ'TLCG, fO?” any (.131,3?2) € R2)) thXz(xl)xQ) = le (xl)fX2($2); with
2
in(:ci):\/;TTexp{—x;}, fori=1,2,

then X1 and X5 are two independent centered Gaussian random variables with unit variance.

Exercise 1 (Log-normal distribution). The two questions below are independent. Consider the standard
Gaussian distribution X ~ AN(0,1), with density

V2T
(i) Compute E[X], V[X] and E [e**] for all u € R such that the expectation is well defined.

(ii) Define Y := exp{X}. Compute its density, expectation, variance and moment generating function.

fz) =

22
exp{2}7 for all x € R.

(iii) Does Y have a symmetric distribution? Compute its skewness to confirm your guess.

Solution (Log-normal distribution).

(i) The density being symmetric with respect to the origin, the expectation is null, and, using the Solution to
Ezercise 1, we have Iy = Iy = 1, so that V[X] = E[X?] — E[X]? = [ = 1. Now,

Dy (u) :=E[e"¥] = V%/]Re“’”exp{—xj}dx: \/12?/Rexp{—; (2 —2ux)}dx

(ii) Let Y = exp{X}. Then
E[Y]=E [eX] =0y (1) = e1/2, and E [YQ] ) [ezx] — Dy (2) = e,

and hence V[X] = ®x(2) — ®x(1)2. Furthermore, the moment generating function reads

S o [y e i P

Now, for u > 0, the integrand diverges at positive infinity, and hence the moment generating function is
not well defined on the positive half line. Obviously ®y(0) = 1. On the negative half line, y is well
defined, but no closed form is available.

(iii) The density of Y can be written as, for anyy > 0,

o 2
fy(y) = 0,P(Y <y) =0,P(X <log(y)) = éfx(bg(y)) _ log(y) } .

1
€ex —
yv2r P { 2



