
NUMERICAL METHODS IN FINANCE

Dr Antoine Jacquier
wwwf.imperial.ac.uk/~ajacquie/

Department of Mathematics

Imperial College London

Spring Term 2016-2017

MSc in Mathematics and Finance

This version: March 8, 2017

1

Contents

0.1 Some considerations on algorithms and convergence 8

0.2 A concise introduction to arbitrage and option pricing 10

0.2.1 European options . 12

0.2.2 American options . 13

0.2.3 Exotic options . 13

1 Lattice (tree) methods 14

1.1 Binomial trees . 14

1.1.1 One-period binomial tree . 14

1.1.2 Multi-period binomial tree . 16

1.1.3 From discrete to continuous time . 18

Kushner theorem for Markov chains . 18

Reconciling the discrete and continuous time 20

Examples of models . 21

Convergence of CRR to the Black-Scholes model 23

1.1.4 Adding dividends . 29

1.2 Trinomial trees . 29

Boyle model . 30

Kamrad-Ritchken model . 31

1.3 Overture on stability analysis . 33

2 Monte Carlo methods 35

2.1 Generating random variables . 35

2.1.1 Uniform random number generator . 35

Generating uniform random variables . 35

2.1.2 Normally distributed random variables and correlation 37

Convolution method . 37

Box-Muller method . 38

Correlated Gaussian random variables . 39

2

2.1.3 General methods . 41

2.2 Random paths simulation and option pricing . 42

2.2.1 Simulation and estimation error . 42

2.2.2 Variance reduction methods . 45

2.2.3 Option pricing . 48

2.2.4 Application: European down and out barrier option under Black-Scholes . . 49

2.2.5 Application: Bond pricing with the CIR model 49

3 Finite difference methods for PDEs 53

3.1 Reminder on PDEs and the Black-Scholes heat equation 53

3.1.1 Review of PDEs and their classification . 53

3.1.2 The Black-Scholes heat equation . 56

Derivation of the Black-Scholes PDE . 56

Reduction of the Black-Scholes PDE to the heat equation 57

Direct solution of the heat equation . 58

Separation of variables and Sturm-Liouville problems 59

3.2 Digression: why are we interested in PDEs? . 59

3.3 Discretisation schemes . 60

3.3.1 Explicit scheme . 62

3.3.2 Implicit scheme . 64

3.3.3 Crank-Nicolson scheme . 64

3.3.4 Generalisation to θ-schemes . 66

A critique of the Crank-Nicolson scheme . 67

3.3.5 Exponentially fitted schemes . 67

3.3.6 Multi-step schemes . 68

3.3.7 Non-uniform grids . 69

Direct approach . 69

Coordinate transformation . 69

3.3.8 Stability and convergence analysis . 70

A Fourier transform approach . 70

Application to θ-schemes . 75

3.3.9 Convergence analysis via matrices . 76

A crash course of matrix norms . 76

Convergence analysis . 78

3.4 PDEs for path-dependent options . 82

3.4.1 The American case: Problem class . 82

3.4.2 The Asian case . 82

3

3.5 Solving general second-order linear parabolic partial differential equations 83

3.5.1 Applications to θ-schemes . 84

3.6 Two-dimensional PDEs . 85

3.6.1 θ-schemes for the two-dimensional heat equation 86

Explicit scheme . 87

Implicit scheme . 87

Crank-Nicolson . 87

3.6.2 The ADI method . 88

3.7 Divergence: solving one-dimensional PDEs via eigenfunction expansions 90

3.8 Finite differences for PIDEs . 90

3.8.1 A quick review of SDE with jumps . 90

Poisson, Compound Poisson and Lévy processes 90

Stochastic differential equation with jumps 91

Lévy processes . 91

3.8.2 The pricing PIDE . 96

3.8.3 Finite differences . 97

Truncating the integral . 97

Finite difference schemes . 98

A working example: the CGMY model . 98

3.9 Numerical solution of systems of linear equations 98

3.9.1 Gaussian elimination . 98

3.9.2 LU decomposition . 100

Solving the system . 101

3.9.3 Cholesky decomposition . 102

3.9.4 Banded matrices . 102

3.9.5 Iterative methods . 103

Jacobi iteration . 104

Gauss-Seidel iteration . 107

Successive Over Relaxation method (SOR) 107

4 Fourier and integration methods 109

4.1 A primer on characteristic functions . 109

4.1.1 Fourier transforms and their inverses . 109

Reminder on Lp spaces . 109

Fourier transforms on Schwartz space . 109

Fourier transforms on L1(R) . 112

4.1.2 Characteristic functions . 114

4

4.1.3 Examples . 115

Black-Scholes . 115

Poisson processes . 115

Compound Poisson processes . 115

Affine processes . 116

4.2 Pricing using characteristic functions . 117

4.2.1 The Black-Scholes formula revisited . 117

4.2.2 Option pricing with characteristic functions 119

A note on bond pricing . 122

4.3 Pricing via saddlepoint approximation . 123

4.3.1 The Lugannani-Rice approximation . 123

The Gaussian base . 123

Non-Gaussian bases . 124

4.3.2 Pricing with the Lugannani-Rice approximation 124

4.4 Numerical integration and quadrature methods . 125

4.4.1 A primer on polynomial interpolation . 125

Lagrange polynomials . 125

Interpolation error . 127

Orthogonal polynomials . 129

Interpolation via splines . 133

4.4.2 Numerical integration via quadrature . 135

Newton-Cotes formulae . 135

Newton-Cotes integration error . 136

Gaussian quadratures . 138

Adaptive quadrature . 141

Numerical integration example . 141

4.4.3 Fast Fourier transform methods . 142

The FFT algorithm . 142

Application to option pricing . 143

4.4.4 Fractional FFT methods . 144

4.4.5 Sine / Cosine methods . 146

Description of the method . 146

Application to option pricing . 147

5 Model calibration 149

5.1 Solving non-linear equations . 150

5.1.1 Bisection method . 151

5

6

5.1.2 Newton-Raphson method . 151

5.1.3 The secant method . 153

5.1.4 The fixed-point algorithm . 153

5.2 Optimisation . 154

5.2.1 Unconstrained optimisation . 154

5.2.2 Line search methods . 157

5.2.3 Minimisation via the Newton method . 160

5.2.4 Constrained optimisation . 161

Lagrange multipliers . 161

General theory . 161

6 Linear programming and duality 163

6.1 Separation theorems . 163

6.2 Linear Programming Duality . 165

6.3 Application to the fundamental theorem of asset pricing 166

6.4 Application to arbitrage detection . 168

Application to Calls and Puts . 170

6.5 Numerical methods for LP problems . 171

6.5.1 The simplex method . 171

A Useful tools in probability theory and PDE 173

A.1 Essentials of probability theory . 173

A.1.1 PDF, CDF and characteristic functions . 173

A.1.2 Gaussian distribution . 174

A.1.3 Convergence of random variables . 174

Convergence in distribution . 174

Convergence in probability . 175

Almost sure convergence . 175

Convergence in mean . 176

Properties . 176

A.1.4 Central limit theorem and Berry-Esséen inequality 176

A.2 Useful tools in linear algebra . 177

A.3 Useful tools in analysis . 177

7

Notations and standard definitions

The notations below will be used throughout the notes. We also wish to emphasize some common

notational mistakes.

N integer numbers {0, 1, 2, . . .} (including 0)

N∗ non null integer numbers {1, 2, . . .}

Mm,n (R) set of m× n matrices with real elements

Mn (R) set of n× n matrices with real elements

Ao interior of a set A

A closure of a set A

N cumulative distribution function of the standard Gaussian distribution

X = (Xt)t≥0 ̸= Xt a process evolving in time, as opposed to Xt, which represents the (possibly

random) value of the process X at time t

f ̸= f(x) f represents a function and f(x) the value of the function f at the point x.

Equivalently the function f can be written as x 7→ f(x)

f̂ Fourier transform of a function f

f(x) = O (g(x)) (x→ ∞) there exist M,x0 > 0 such that |f(x)| ≤M |g(x)| for all x > x0

f(x) = O (g(x)) (x→ a) there exist M, δ > 0 such that |f(x)| ≤M |g(x)| for all |x− a| < δ

f(x) = o (g(x)) (x→ a) lim
x→a

f(x)

g(x)
= 0, where a ∈ R ∪ {±∞}

11{x∈A} indicator function equal to 1 if x ∈ A and zero otherwise

x ∧ y min(x, y)

a.s. almost surely

(x− y)+ max(0, x− y)

Introduction and preliminaries

0.1 Some considerations on algorithms and convergence

Before diving into the meanders of numerical methods for finance, let us recall some basic definitions

of algorithms and related numerical concepts.

Definition 0.1.1. An algorithm is a set of ordered instructions that will help construct the solution

to a mathematical problem.

The above definition is obviously very broad and applies to many different situations. In the

context we shall be interested in, an algorithm will deliver a sequence of values. We shall say that

the algorithm is convergent if the above sequence converges to the desired solution. As an example

one could think of the following problem: using the bisection method, solve the equation f(x) = 0

(for the unknown x) inside the interval [a, b], where f is a strictly increasing function on [a, b] such

that f(a)f(b) < 0. The bisection method constructs a sequence of couples (xn, yn)n≥0 in [a, b]

defined recursively by the following algorithm:

(xn+1, yn+1) :=



(
xn + yn

2
, yn

)
, if f

(
xn + yn

2

)
f(yn) < 0,(

xn,
xn + yn

2

)
, if f

(
xn + yn

2

)
f(yn) > 0,

(xn, yn) , if f (xn) f(yn) = 0,

for all n ≥ 0, where the algorithm is started at (x0, y0) := (a, b). The above example will clearly

stop in the third case, where an exact solution is found (either xn or yn). If no such solution is found,

the algorithm will never stop, and one hence needs a stopping criterion, namely the tolerance, i.e.

a strictly positive real number ε > 0 such that if there exists n ≥ 1 for which |f(yn)− f(xn)| < ε,

then the algorithm is interrupted. In that case we shall say that the approximate solution is
xn + yn

2
with an ε-tolerance.

More generally, we shall encounter several types of errors:

• the discretisation error, namely the error due to the approximation of a continuous-time

random variable by a discrete-time one;

8

0.1. Some considerations on algorithms and convergence 9

• the truncation error, for instance when computing
∫ b

a
f(x)dx instead of

∫∞
−∞ f(x)dx;

• the rounding error, when one truncates an exact number (with possibly an infinite number

of decimals) to a finite number of decimals: for instance 3.14 in place of π.

We shall finally distinguish well-conditioned from ill-conditioned problems depending on how sensi-

tive the solution of the problem is to a small perturbation of the initial data. Consider for instance

a function f : R → R with a continuous derivative. From real data we are however only able to

observe a noisy approximation fε, such that |fε(x)− f(x)| < ε for all real number x (with ε > 0).

Our problem is to determine the derivative f ′. Using the central difference approximation (which

we shall define and study in more details in Section 3.3)

f ′(x) ≈ fε(x+ h)− fε(x− h)

2h
,

for some small enough h > 0. However, one can prove that the equality∣∣∣∣f(x+ h)− f(x− h)

2h
− fε(x+ h)− fε(x− h)

2h

∣∣∣∣ = O
(ε
h

)
(0.1.1)

holds, so that the approximation error is of order ε/h. This implies that if h is too small compared

to ε, the error from the data will become too important. This is an example of an ill-posed problem.

The notion of well-posed problem was defined in 1902 by Jacques Hadamard [36] as a mathematical

model for which a solution exists, is unique and depends continuously on the data.

In mathematical finance, we shall be concerned—to some degree— with pricing financial deriva-

tives, i.e. evaluating quantities such as f(x) (x ∈ R) and the derivatives f ′(x), f ′′(x), . . . Since

most financial derivatives do not have a closed-form solution, we will have to construct approx-

imating sequences (fn(x), f
′
n(x), f

′′
n (x), . . .)n∈N. Now, suppose we are able to construct a family

of functions (fn)n∈N such that limn→∞ fn(x) = f(x) for all x ∈ R (i.e. the sequence (fn)n∈N

converges pointwise to f). Can we then conclude that the same holds for its derivatives? The

answer is negative in general. Let us recall some basic facts about convergence of functions. In the

following, A will be a subset of the real line, and f , (fn)n∈N real functions from A to R. All the

following extend naturally to Rd or Cd (d ≥ 1).

Definition 0.1.2. The sequence (fn)n∈N converges pointwise on A to the function f if lim
n↑∞

fn(x) =

f(x) for every x ∈ A.

Remark.

• Let (fn) be defined by fn : [0, 1] ∋ x 7→ max
(
0, n− n2

∣∣x− n−1
∣∣). The sequence converges

pointwise to f ≡ 0 even though it becomes unbounded as n tends to infinity.

• Consider the sequence (fn) defined on [0, 1] by fn(x) := xn. The sequence converges pointwise

to the Dirac function at 1. In this case, even if each fn is continuous, the limit is not.

0.2. A concise introduction to arbitrage and option pricing 10

In many cases this weak definition of pointwise convergence shall hence be insufficient and we

may require a stronger form of convergence, which we introduce now.

Definition 0.1.3. The sequence (fn)n∈N converges uniformly on A to the function f if for any

ε > 0, there exists n ∈ N such that for all n ≥ N , the bound |fn(x)− f(x)| holds for all x ∈ A.

We now state a fundamental result highlighting the importance of uniform continuity.

Theorem 0.1.4. Assume that each fn is continuously differentiable on A and that

(i) there exists a ∈ A for which (fn(a))n∈N converges;

(ii) the sequence (f ′n)n∈N converges uniformly on A.

Then the sequence (fn)n∈N converges uniformly to a function f on A and f ′(x) = lim
n→∞

f ′n(x) for

all x ∈ A.

Remark. For the record, in a 1821 publication [12], Augustin-Louis Cauchy asserted that the

pointwise limit of a sequence of functions is always continuous. This is of course false as we saw

before, and was pointed out by Joseph Fourier, Niels Henrik Abel and Gustav Dirichlet. However

only Karl Weierstrass in 1841 [63] published a rigorous definition of uniform convergence.

0.2 A concise introduction to arbitrage and option pricing

The fundamental model of mathematical finance consists of a probability space (Ω,F ,Q) on which

we define a random variable S. The most obvious example is when S takes values in R or R+

and represents the price of a stock (or an interest rate, the price of some commodity...) at some

given time, or when it is Rn-valued (n ∈ N) and accounts for the basket of share prices in an

index such as the S&P500. One can also think of it as an infinite-dimensional random variable

representing the whole path of a share price process between today and some future time, i.e.

S = (St)t≥0. A financial derivative written on the underlying random variable S can then be

thought of as a functional f(S). Financial derivatives are usually classified according to whether S

represents the value of the share price at some future time T > 0 (European options) or the whole

trajectory between today (time zero) and time T (American options). One of the fundamental

questions in mathematical finance is to evaluate such functionals, i.e. to determine at time zero

(inception of the contract) the expected value of f(S). Intuitively speaking we wish to answer the

following question: ‘how much are we willing to pay today (time zero) to receive f(S) at time T?’

The answer to this question lies in what is called absence of arbitrage, which we shall define now.

We consider a portfolio—or a trading strategy—as a random process (V θ
t)t≥0 consisting of some

positions in n stock prices S(1), . . . , S(n):

V θ
t =

n∑
i=1

θ
(i)
t S

(i)
t , for all t ≥ 0,

0.2. A concise introduction to arbitrage and option pricing 11

where θ
(i)
t represents the quantity of stock i in the portfolio at time t. We have written here V θ

t

to emphasise the fact that the strategy is fully determined by the (time-dependent) vector θ. In a

discrete-time setting, let us fix some time t > 0. At time t+1, the investor may want to rebalance

his portfolio, i.e. change its composition, and the value of the portfolio hence becomes

V θ
t+1 =

n∑
i=1

θ
(i)
t+1S

(i)
t+1.

If we assume that the investor does not invest nor withdraw any amount from his portfolio, then

we necessarily have
∑n

i=1 θ
(i)
t S

(i)
t+1 =

∑n
i=1 θ

(i)
t+1S

(i)
t+1. This can be written equivalently

V θ
t+1 − V θ

t =
n∑

i=1

θ
(i)
t

(
S
(i)
t+1 − S

(i)
t

)
,

and we shall call such a portfolio self-financing. We shall further call a trading strategy admissible

if it is self-financing and if V θ
t ≥ 0 for all t ≥ 0.

Definition 0.2.1. An arbitrage is an admissible trading strategy (or a portfolio) V θ =
(
V θ
t

)
t≥0

for which there exists some time T > 0 such that

V θ
0 = 0 a.s., V θ

T ≥ 0 a.s. and Q
(
V θ
T > 0

)
> 0.

Intuitively this means that one cannot make a sure profit out of nothing. In this definition

we have used a probability Q given ad hoc as an element of the probability space. However for

practical and theoretical reasons—which shall be made clear later in this course—we might want

to use other probabilities, which are equivalent (in some sense to be made precise). In the discrete-

time setting used above, we consider a family of random variables X := (Xt1 , . . . , Xtn , . . .) indexed

by time steps. Consider further the family of nested sets (Fn)n≥1 satisfying Fn ⊂ Fn+1 ⊂ F for

any n ≥ 1. We shall informally— and leave the rigorous definition for later—consider Fn as the

quantity of information available at time tn generated by the random variables Xt1 , . . . , Xtn .

Definition 0.2.2. We say that the family of random variables X = (Xt1 , . . . , Xtn , . . .) is a mar-

tingale if the equality E (Xtn |Fp) = Xtp holds for any 1 ≤ p ≤ n.

Example. If (Yn)n≥1 forms a family of independent identically distributed random variables such

that for any n ≥ 1, E(Yn|Fn) = 0 and (Fn)n≥1 is the related flow of information, then the family

(Xn)n≥1 defined by Xn :=
∑n

i=1 Yi is a martingale.

Definition 0.2.3. A probability measure P is a martingale measure equivalent to Q—and we

denote it by P ∼ Q— if discounted price processes are martingales under P.

Theorem 0.2.4 (Fundamental theorem of asset pricing). A model is said to be arbitrage-free—

i.e. there does not exist any admissible arbitrage strategy—if and only if there exists an equivalent

martingale measure P.

0.2. A concise introduction to arbitrage and option pricing 12

This fundamental theorem has the following immediate application in terms of pricing: under

absence of arbitrage, the price at time zero of a financial derivative is equal to the discounted

expectation of the final payoff f(X) under the martingale measure P, i.e. V0 = EP (f(X)).

0.2.1 European options

A European option is a financial contract, the payoff of which only depends on the final value (at

maturity) of an underlying asset S. The simplest example of a European option with strike K > 0

and maturity T > 0 is that of a Call option, where the payoff is given by f(S) = max (ST −K, 0),

where ST represents the time T value of the share price process S. This therefore corresponds

to the right—but not the obligation—to buy the asset S at time T at the price K. Indeed, the

buyer of the option would only exercise his right if the value ST of the stock price at maturity T

is greater to the strike K. In this case, his profit at maturity is ST −K. Similarly, the payoff of a

Put option is given by max (K − ST , 0).

The question of interest here is: how much is an investor willing to pay this option at time zero

(the inception of the contract)? The answer lies in the following theorem:

Theorem 0.2.5. Consider a European call option and a European put option, both written on

the share price S, with strike K and maturity T . Denote Ct and Pt their respective values at

time t ∈ [0, T]. Assume that there is no arbitrage opportunity and denote Bt,T the value at time

t ∈ [0, T] of a risk-free bond paying £1 at time T . The following properties hold:

(i) Put-Call parity: Ct − Pt = St −KBt,T ;

(ii) The Call option is a decreasing function of the strike;

(iii) Call and Put options are convex functions of the strike;

(iv) Call and Put options are increasing functions of the maturity.

Proof. Let us prove (i). Consider the two portfolios

•
(
Π1

t

)
t≥0

consists of a short position in a Call option and a long position in a stock price:

Π
(1)
t = St − Ct;

•
(
Π2

t

)
t≥0

consisting of a short position in a Put option and a long position in the a bond

paying K at time T : Π
(2)
t = KBt,T − Pt.

At maturity T , either the stock price ST is above the strike K (and hence (ST −K)+ = ST −K

and (K − ST)+ = 0) or it is below, and therefore (ST −K)+ = 0 and (K − ST)+ = K − ST .

In the first case, we have Π1
T = K = Π2

T . In the second case, we have Π1
T = ST = Π2

T . In

both cases, the two portfolios have the same value at maturity. By a no-arbitrage argument, they

0.2. A concise introduction to arbitrage and option pricing 13

must therefore be equal at all time t ∈ [0, T], and the statement is proved. The other statements

follow similarly, and are left as an exercise. Let us just recall that a function f : R → R is

convex on an interval [a, b] if and only if for any (x, y) ∈ [a, b]2 and λ ∈ [0, 1], the inequality

f (λx+ (1− λ) y) ≤ λf(x) + (1− λ) f(y) holds.

0.2.2 American options

When buying an American option maturing at time T > 0, a financial agent has the right—but

not the obligation—to exercise the option at any time between the inception of the contract and

the maturity. The payoff f(S) of the American option is therefore a function of the whole path

of the process, i.e. S = (St)0≤t≤T . Since they give additional rights to the bearer of the option,

American options are always (but not necessarily strictly) more expensive than their European

counterparts.

0.2.3 Exotic options

Options have been created in order to answer growing needs on financial markets. The specificities

of each deal has led to an increasing number of option types, and we just mention here a few that

have become rather standard. A European barrier option is like a European call or put option,

but the option can only be exercised if the share price process has remained within (or exited) a

predefined range between the inception and the maturity of a contract. To be more specific, let

K > 0 denote the strike price and B > 0 the—contractually agreed—barrier. Consider the case

where S0 > B. The payoff of a down-and-in European (call) barrier option reads (ST −K)+ 11{τ<T},

where τ := inf{t ∈ [0, T] : St < B} represents the first time the share price falls below the barrier.

Similarly, a down-and-out option has the payoff is (ST −K)+ 11{τ>T}. We can define analogously

up-and-out or up-and-in options. Asian options have also become popular since their creation

in 1987 in Tokyo. Their payoff depends on the whole path of the process S on [0, T]. Standard

examples are (continuously monitored) Asian calls on the arithmetic average, where the payoff

reads
(

1
T

∫ T

0
Stdt−K

)
+

or (discretely monitored) Asian calls on the arithmetic average, with

payoff
(
1
n

∑n
i=1 Sti −K

)
+
for some contractually specified dates 0 ≤ t1 < . . . < tn ≤ T . These are

standard options on a single stock used every day. Options on several stocks—Basket options—are

designed in the same way, for instance, a European call option on the mean of two stock prices S1

and S2 with strike K > 0 and maturity T > 0 pays
(
1
2

(
S2
T + S2

T

)
−K

)
+

at maturity. We shall

see other types of options in this course and will add details as we need them.

Chapter 1

Lattice (tree) methods

In this chapter we shall present a discrete-time method for option pricing. This setting will allow

us to introduce the concepts of no-arbitrage and risk-neutral expectation presented in Section 0.2

in a more rigorous way.

1.1 Binomial trees

1.1.1 One-period binomial tree

We fist consider the simple one-period case. Let S denote a stock price, whose value at time t0 ≥ 0

is S0 > 0. At time t1 > t0, the process can take two possible values:

S1 =

 uS0, with probability p,

dS0, with probability 1− p,

where 0 < d < u and p ∈ (0, 1). Another way to understand this is to write S1 = XS0, where

X is a Bernoulli random variable that takes the value u with probability p and the value d with

probability 1− p. We assume that a financial agent can invest (at time t = 0) in both the asset S

and in a risk-free bond, i.e. borrow or sell money with a (non random) interest rate equal to

r ≥ 0 over the period [t0, t1]. We are now interested in determining the price C0 at time t0

of a European Call option with strike K > 0 and maturity t1. At time t1, the two possible

payoffs—corresponding to the two different states of the world—are C
(u)
1 := (uS0 −K)+ and

C
(d)
1 := (dS0 −K)+. By a simple no-arbitrage argument, one may be tempted to value it at the

price C0 =
Ep (C1)

1 + r
=

1

1 + r

(
pC

(u)
1 + (1− p)C

(d)
1

)
. However, this is in general false, since the

probability p has been chosen from the investor’s point of view, and does not necessary reflect the

market’s point of view. It turns out that this very probability p, called the historical (or physical)

probability, does not appear at all in the pricing formula, as the following theorem shows.

14

1.1. Binomial trees 15

Theorem 1.1.1. In the absence of arbitrage opportunities, the price at time t0 of a European call

option written on S, with strike K and maturity t1 is worth

C0 =
πC

(u)
1 + (1− π)C

(d)
1

1 + r
, (1.1.1)

where π :=
1 + r − d

u− d
.

Proof. The following proof is based on the concept of the pricing by replication, i.e. we want to

construct a portfolio consisting of shares and risk-free bonds that exactly replicates— has the same

payoff as—the option we wish to evaluate. Consider a portfolio Π consisting of an amount ∆0 of

shares and with the notional ϕ invested in the risk-free bond. The value at time t0 of the portfolio

is therefore Π0 = ∆0S0 + ϕ. At time t1, it is worth

Π1 = ∆0S1 + (1 + r)ϕ =

 ∆0uS0 + (1 + r)ϕ, with probability p,

∆0dS0 + (1 + r)ϕ, with probability 1− p.

Since our portfolio Π has to replicate the option, it therefore needs to have the same payoff. This

implies the following system of equations: ∆0uS0 + (1 + r)ϕ = C
(u)
1

∆0dS0 + (1 + r)ϕ = C
(d)
1 ,

which we can solve explicitly as

∆0 =
C

(u)
1 − C

(d)
1

(u− d)S0
, and ϕ =

1

1 + r

uC
(d)
1 − dC

(u)
1

(u− d)
.

By absence of arbitrage, since our portfolio Π and the Call option have the same value at maturity

(same payoff), then they necessarily have the same value at inception of the contract, i.e. at time

t0, so that C0 = Π0. Define now π :=
1 + r − d

u− d
and the theorem follows.

Remark 1.1.2.

(i) The historical probability p does not appear in the final formula.

(ii) If the quantity π lies between zero and one, then we could interpret it as a (new) proba-

bility under which the option value at time t0 is the expected value of its payoff at matu-

rity t1. In fact we can show (see Exercise 1) that absence of arbitrage implies the inequalities

d < 1 + r < u and hence π ∈ (0, 1). From Theorem 1.1.1 the call price at time zero there-

fore reads C0 = (1 + r)
−1 Eπ (C1). This probability π is called the risk-neutral probability,

under which option prices are martingales.

(iii) Beyond absence of arbitrage, the replication strategy holds because the market is complete,

which means that we are able to fully replicate the option using only traded assets (here

simply shares and bonds). When this is not the case, markets are said to be incomplete and

1.1. Binomial trees 16

the risk-neutral probability might not be uniquely defined any more. We shall see such an

example of incomplete market in Section 1.2 below.

(iv) Note that the proof of the theorem does not rely on the particular form of the payoff of the

call option. The same result therefore carries out to Put options and other European options.

Exercise 1. Show that the absence of arbitrage opportunities implies d < 1 + r < u, and hence

π ∈ (0, 1). Construct an arbitrage when this inequality does not hold.

Solution. Assume for instance that 1 + r ≤ d. At time zero, borrow an amount S0 and buy the

stock price with this money. At maturity T , pay back the amount you owe (i.e. S0 (1 + r)) and

sell the asset. The net profit / loss is therefore equal to ST − S0 (1 + r) > ST − dS0. Since this

quantity is strictly positive, this means an arbitrage opportunity exists.

Exercise 2. Show that under the risk-neutral probability π, the expected return of the option is

equal to the risk-free interest rate r.

1.1.2 Multi-period binomial tree

We now extend the one-period binomial tree approach developed above to the multi-period case.

Let N be a strictly positive integer representing the number of periods, and let 0 = t0 < t1 < . . . <

tN = T denote the discretisation time steps. We shall consider that the time increment tn− tn−1 is

the same for any n = 1, . . . , N , and we denote it τ . Between two consecutive nodes of the tree, the

stock price can either jump up by a percentage u with probability p or jump down by a percentage

d with probability 1− p, as in the following figure:

S0
2 = u2S0

S0
1 = uS0

88qqqqqqqqqq

&&MM
MMM

MMM
MM

S0

##H
HH

HH
HH

HH

;;vvvvvvvvv
S1
2 = S0

S1
1 = dS0

88qqqqqqqqqq

&&MM
MMM

MMM
MM

S2
2 = d2S0

Figure 1.1: Three-period symmetric and recombining binomial tree.

1.1. Binomial trees 17

It is straightforward to see that at any time tn (n = 0, . . . , N), the process S takes values

in the set
{
un−kdkS0

}
k=0,...,n

, and we use the notation Sk
n := un−kdkS0, where the subscript n

represents the time tn and the superscript k accounts for the state. In particular, out of all the

possible paths, only

(
n

k

)
:=

n!

k!(n− k)!
lead to the value un−kdkS0, so that

P
(
Sn = Sk

n

)
=

(
n

k

)
pn−k (1− p)

k
, for all k = 0, . . . , n.

As in the one-period case, we are interested in finding the price at time t0 of a European option V .

As mentioned in Remark 1.1.2 in the one-period case, the proof of the option price does not rely

on the particular form of the payoff, so that V can be a Put, a Call or any other European option.

Similar to the notation Sk
n, we shall use V

k
n to denote the value of the option in state k at time tn.

Remark 1.1.3. In the one-period binomial tree above, we have implicitly assume that the time

increment was one year. Discrete compounding corresponds to the case where interest rate r

corresponds to a given time period, say 1 month (1/12 year). In this case, investing an amount B

at time zero yields B
(
1 +

r

12

)12
one year later. More generally, if n ≥ 1 is the number of

compounding periods, then investing B at time zero yields B
(
1 + r

n

)n
one year later. Continuously

compounding corresponds to the case where n tends to infinity. Since limn→∞
(
1 + r

n

)n
= er, we

can directly generalise this and hence the interest over a period of time t is worth ert.

Theorem 1.1.4. In the absence of arbitrage opportunities, the price V0 at time t0 of the European

option written on S reads

V0 = R−N
N∑

k=0

(
N

k

)
πN−k (1− π)

k
V k
N , (1.1.2)

where again π :=
R− d

u− d
and R := exp (rT/N).

Remark 1.1.5. From a computational point of view, this formula may not be optimal. Indeed

one has to evaluate terms such as n!. When n is not even too large, this will create an overflow. For

instance, for n = 20, we already have n! = 2432902008176640000. Computing the tree backward

from the terminal value one step at a time will remain robust as n goes large, since no such number

will need to be computed.

Proof. The proof follows a backward induction scheme. For any n = 0, . . . , N and k = 0, . . . , n,

we use the same notation V k
n as for the stock price to denote the value at time tn of the option

in state k. Consider the next-to-final time tN−1, when the stock price takes values in the set{
Sk
N−1 = uN−1−kdkS0

}
k=0,...,N−1

. At maturity tN , the stock price can either go up or go down,

and we can therefore apply the one-period binomial Theorem 1.1.1 to obtain

V k
N−1 =

πV k
N + (1− π)V k+1

N

R
, for all k = 0, . . . , N − 1.

1.1. Binomial trees 18

At time tN−2, we can apply the same argument and we obtain

V k
N−2 =

πV k
N−1 + (1− π)V k+1

N−1

R
=
π2V k

N + 2π (1− π)V k+1
N + (1− π)

2
V k+2
N

R2
, for k = 0, . . . , N−2.

The theorem then follows by backward induction.

Exercise 3. Consider a European call option V with strike K > 0, written on an underlying

asset S. In the multi-period binomial model with N periods, determine the integer N0 such that

the value of the European call option at time t0 is worth

R−N
N0∑
k=0

(
N

k

)
πN−k (1− π)

k (
Sk
N −K

)
,

where the risk-neutral probability π is given in Theorem 1.1.4. Prove that this is also equal to

S0B

(
N0, N,

(1− π) d

R

)
− K

RN
B
(
N0, N, (1− π)

)
, (1.1.3)

where B(·, n, p) represents the cumulative distribution function of a Binomial random variable with

probability of success at each trial p and number of trials n.

Solution. In the sum in Theorem 1.1.4, the payoff V k
N :=

(
Sk
N −K

)
+

will be non null as soon as

Sk
N = uN−kdkS0 ≥ K. Define N0 := min

{
sup

{
0 ≤ k : uN−kdkS0 ≥ K

}
, N
}
. Now,

uN−kdkS0 ≥ K if and only if k ≤ N log(u)− log(K/S0)

log(u)− log(d)
,

and hence N0 is the smaller between the largest integer smaller than the right-hand side of the

second inequality and N . Recall that for a Binomial random variable Y with parameters n ∈ N∗

and p ∈ [0, 1], we have P(Y = k) =

(
n

k

)
pk (1− p)

n−k
, for any k ∈ {0, . . . , n}. Furthermore,

E(Y) = np and V(Y) = np (1− p).

1.1.3 From discrete to continuous time

We have constructed above a discrete-time process describing the evolution of the stock price. It

is natural then to wonder how this construction behaves as the time increment tends to zero: for

a partition 0 = t0 < . . . < tN = T of the interval [0, T] where T is a fixed maturity, we wish to

study the structure of the tree as N tends to infinity. The purpose of this section is to compute

such a limit and to understand its implication on European option prices.

Kushner theorem for Markov chains

We begin by the definition of a Markov chain.

Definition 1.1.6. Let (Ω,F ,P) be a given probability space. A sequence of random variables

(Xn)n≥1 on Ω is called a (discrete time) Markov chain if

P (Xn+1 = x|X1 = x1, . . . , Xn = xn) = P (Xn+1 = x|Xn = xn) , for all n ≥ 1.

1.1. Binomial trees 19

Furthermore it is called a time-homogeneous (or stationary) Markov chain if

P (Xn+1 = x|Xn = y) = P (Xn = x|Xn−1 = y) , for all n ≥ 1, x, y ∈ Ω.

Remark 1.1.7. We used the notation Sk
n in the previous section to denote the value of the stock

price at the node (n, k) ∈ [0, N] × [0, n]. For a maturity T > 0 and a total number of nodes

N > 0, we define the time increment τ := T/N . We shall from now on slightly change the notation

and define Sτ
n as the value of the stock price at node n, i.e. at time nτ , for n = 0, . . . , N . For

each n ∈ [0, N], Sτ
n is therefore a random variable taking value in

{
ukdn−kS0

}
k=0,...,n

. With this

notation, the family of random variables (Sτ
n)n∈[0,N] is a Markov chain.

In order to understand the following, we need to define a Brownian motion (in R):

Definition 1.1.8. A one-dimensional standard Brownian motion (Wt)t≥0 is a continuous-time

family of random variables (namely a stochastic process) satisfying

(i) W0 = 0 almost surely;

(ii) the paths of the process are almost surely continuous;

(iii) (Wt)t≥0 has independent increments: for any 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2,Wt1−Ws1 andWt2−Ws2

are independent;

(iv) for any 0 ≤ s ≤ t, Wt −Ws is normally distributed as N (0, t− s).

Consider now a continuous-time process (Xt)t≥0 satisfying the stochastic differential equation

dXt = b (Xt) dt+ σ (Xt) dWt, X0 = x0 ∈ R, (1.1.4)

where (Wt)t≥0 is a standard Brownian motion and b and σ smooth functions defined on R.

Remark 1.1.9. We shall not delve into the exact meaning of such a representation for now.

Note however that this is the canonical representation for a continuous-time diffusion process. By

diffusion, we mean a time-evolving random process with continuous paths. On a small time interval

[t, t+ τ] (for some t, τ ≥ 0), we can represent (1.1.4) as

Xt+τ = Xt + b(Xt)τ + σ(Xt)
√
τZ,

where Z is a Gaussian random variable with zero mean and unit variance. From this representa-

tion, we clearly see that the process (Xt)t≥0 evolves according to a drift b(·) with some random

(Gaussian) perturbations amplified by a diffusion coefficient function σ(·). Note that from this

discrete-time representation, the following two identities are immediate:

Et (Xt+τ) = Xt + b(Xt)τ and Vt (Xt+τ) = σ(Xt)
2τ,

where Et represents the expectation conditional to the information flow up to time t.

1.1. Binomial trees 20

For any τ > 0, let (Xτ
n)n≥1 be a Markov chain, and denote the increments ∆Xτ

n := Xτ
n+1−Xτ

n .

We shall say that the family of Markov chains (Xτ
n)

τ>0
n≥1 is locally consistent with the continuous-

time diffusion (Xt)t≥0 if it satisfies the following three conditions:

E (∆Xτ
n |Xτ

n) = b (Xτ
n) τ + o(τ),

V (∆Xτ
n |Xτ

n) = σ (Xτ
n)

2
τ + o(τ),

lim
τ→0

sup
n≥1

|∆Xτ
n | = 0.

The following theorem is a particular case of a more general result proved by Kushner [51], and

we shall omit its proof for brevity.

Theorem 1.1.10. Assume that the two functions b and σ are bounded, and that the family of

Markov chains (Xτ
n)

τ>0
n≥1 is locally consistent with the diffusion (Xt)t≥0 defined in (1.1.4). Then

the process X̃τ
t := Xτ

[t/τ] converges in law to the diffusion (Xt)t≥0.

Reconciling the discrete and continuous time

In the previous sections, we have shown how to construct the so-called risk-neutral probability

in a multi-period tree. However, we have not said anything about the upward and downward

amplitudes u and d of the jumps. Let us first introduce one of the canonical models in finance.

Definition 1.1.11. Let Z be a Gaussian random variable with mean zero and unit variance and

let σ be a strictly positive real number. If the stock price process S satisfies

St+τ = St exp

((
r − 1

2
σ2

)
τ + σ

√
τZ

)
,

for any t, τ ≥ 0, with S0 > 0 and where r ≥ 0 represents the risk-free interest rate, we say that the

stock price follows the Black-Scholes model.

The following lemma gives us the mean and the variance of such dynamics. (Recall that the

notation Et stands for the expectation conditional on the filtration at time t ≥ 0, see Appendix A.1).

Lemma 1.1.12. In the Black-Scholes model, the stock price is lognormally distributed and

Et (St+τ) = Ste
rτ and Et

(
S2
t+τ

)
= S2

t e
(2r+σ2)τ . (1.1.5)

Proof. Exercise.

We now wish to construct a binomial tree such that the limit of the process as the time increment

tends to zero corresponds to this diffusion model. An amount B invested in a risk-free asset at

time t yields at time t + τ the amount (1 + rτ)B. At time t + 2τ , this is worth (1 + rτ)
2
B, and

so on. Repeat this n times (n ≥ 1) on time periods τ̃ /n, and let n tends to infinity:

lim
n→∞

(
1 +

rτ̃

n

)n

B = erτ̃B.

1.1. Binomial trees 21

Consider now the binomial tree between two time nodes t and t + τ . The expectation and

variance of the asset price process read

Et (St+τ) = St

(
pu+ (1− p) d

)
and Et

(
S2
t+τ

)
= S2

t

(
pu2 + (1− p) d2

)
. (1.1.6)

With Theorem 1.1.10 in mind, we equate the expectations and the variances in the continuous

and in the discrete time settings in (1.1.5) and (1.1.6), divide respectively by St and S
2
t , so that

pu+ (1− p) d = erτ (1.1.7)

pu2 + (1− p) d2 = e(2r+σ2)τ . (1.1.8)

There are two equations and three unknowns, p, u and d. From the first equation, we deduce

p =
erτ − d

u− d
, which is the risk-neutral probability determined in Theorem 1.1.4. We therefore need

an additional condition to properly determine the upward and downward amplitudes u and d.

There are different possible choices, each of which shall determine a specific model. We list them

here as a general overview, and each case will be treated separately in the forthcoming sections.

(i) Condition ud = 1: this corresponds to the figure 1.1 of a recombining tree. This model was

proposed by Cox, Ross and Rubinstein in [18].

(ii) p =
1

2
: Jarrow-Rudd model.

(iii) Tian model: pu3 + (1− p) d3 = exp
(
3
(
r + σ2

)
τ
)
.

Examples of models

The Cox-Ross-Rubinstein model

As mentioned above, the Cox-Ross-Rubinstein model, first developed in [18], corresponds to a

recombining tree, i.e. imposing the condition ud = 1. Under this condition, the binomial model

characterised by (1.1.7) and (1.1.8) is defined uniquely, as shown in the following proposition.

Proposition 1.1.13. The unique solutions to the two equations (1.1.7) and (1.1.8) are

u =
exp (−rτ)

2

(
1 + ξ2 +

√
(1 + ξ2)

2 − 4e2rτ
)
,

d =
exp (−rτ)

2

(
1 + ξ2 −

√
(1 + ξ2)

2 − 4e2rτ
)
,

where we define ξ2 := exp
((

2r + σ2
)
τ
)
.

Proof. From the definition of ξ and (1.1.8), we can write

ξ2 = e(2r+σ2)τ = p
(
u2 − d2

)
+ d2 =

erτ − d

u− d
(u+ d) (u− d) + d2 = erτu− 1 +

erτ

u
,

which implies that erτu2 −
(
1 + ξ2

)
u + erτ = 0. This is a second-order polynomial in u. Its

determinant
(
1 + ξ2

)2 − 4e2rτ is strictly positive since r ≥ 0 and σ > 0. A straightforward

1.1. Binomial trees 22

manipulation of (1.1.8) shows that the same holds if we consider it as a polynomial in d instead of

u. Since we want d < u, the theorem follows.

Note in particular that the double inequality d < 1 < u holds. To be historically precise,

Cox, Ross and Rubinstein proposed to take u = exp(σ
√
τ) and d = u−1, but did not prove

Proposition 1.1.13, i.e. only proposed a truncated (to order
√
τ) version of log(u) and log(d).

Corollary 1.1.14. Up to order O(τ3/2), a Taylor expansion in τ gives

log(u) = σ
√
τ+O

(
τ3/2

)
, log(d) = −σ

√
τ+O

(
τ3/2

)
, p =

erτ − d

u− d
=

1

2
+

(
r − 1

2σ
2
)√

τ

2σ
+O(τ).

With such a choice, Equations (1.1.7) and (1.1.8) are satisfied up to order O
(
τ2
)
.

Note that we could also write it in the following way:

u = 1 + σ
√
τ +

1

2
σ2τ +O

(
τ3/2

)
and d = 1− σ

√
τ +

1

2
σ2τ +O

(
τ3/2

)
Proof. As the time increment τ tends to zero, we have the Taylor expansions

1 + ξ2

2erτ
= 1 +

1

2
σ2τ +O

(
τ2
)

and

√(
1 + ξ2

2erτ

)2

− 1 = σ
√
τ +O

(
τ3/2

)
,

from which the expansions given in the corollary follow.

The Jarrow-Rudd model: The extra condition in the Jarrow-Rudd model is p = 1
2 . This

corresponds to approximating the Brownian motion by a random walk, i.e. an incremental process

which can only move by one unit up or down between to time steps. Matching the first two

moments give (we leave the proof as an exercise)

Proposition 1.1.15. Under the condition p = 1/2, the unique solutions to (1.1.7) and (1.1.8) are

u = erτ
(
1 +

√
eσ2τ − 1

)
and d = erτ

(
1−

√
eσ2τ − 1

)
,

and Equations (1.1.7) and (1.1.8) are satisfied up to order O
(
τ2
)
.

The actual parameters proposed by Jarrow and Rudd are

u = exp

((
r − 1

2
σ2τ

)
+ σ

√
τ

)
and d = exp

((
r − 1

2
σ2τ

)
− σ

√
τ

)
,

that is, the two moment equalities (1.1.7) and (1.1.8) are satisfied up to order O(τ2).

The Tian model: The Tian model adds the third moment matching as additional constraint,

pu3 + (1− p) d3 = exp
(
3
(
r + σ2

)
τ
)
, so that we obtain

Proposition 1.1.16. Under the Tian condition, the unique solutions to (1.1.7) and (1.1.8) are

u =
ϕτe

rτ

2

(
1 + ϕτ +

√
ϕ2τ + 2ϕτ − 3

)
and d =

ϕτe
rτ

2

(
1 + ϕτ −

√
ϕ2τ + 2ϕτ − 3

)
,

where ϕτ := eσ
2τ . Ignoring terms of orders O

(
τ3/2

)
in (1.1.7) and in (1.1.8), p = 1

4 (2− 3σ
√
τ).

Remark 1.1.17. The Tian tree is not symmetric since ud = ϕ2τe
2rτ is different from one.

1.1. Binomial trees 23

Convergence of CRR to the Black-Scholes model

In this section, we would like to see what happens to the multi-period binomial model developed in

Section 1.1.2 when the time increment τ tends to zero. Put differently, we want to understand in

what sense the discrete-time framework of the binomial model converges to some continuous-time

model. As we mentioned above, Theorem 1.1.4 is not specific to a European call option, and we

therefore consider here a European option V on the underlying asset S with maturity T > 0 and

having some payoff f(ST) at maturity. We first prove the convergence in law of the discrete-time

approximation to the continuous-time Black-Scholes model.

Theorem 1.1.18. The discrete-time approximation of the stock price process in the (CRR) bino-

mial tree converges in law to the Black-Scholes model when the time increment τ = T/N tends to

zero (equivalently, as N tends to infinity).

Proof. Without loss of generality, we may assume that the initial value S0 of the stock price is

equal to one. Let now λ be a real number, and write

E
(
eiλ log(SN)

)
= E

(
exp

(
iλ log

N−1∏
n=0

Sn+1

Sn

))

=
(
E
(
eiλ log(Z)

))N
=
(
peiλ log(u) + (1− p) eiλ log(d)

)N
=
(
peiλσ

√
τ+O(τ3/2) + (1− p) e−iλσ

√
τ+O(τ3/2)

)N
,

where Z is a Bernoulli random variable taking values in {d, u} representing the returns of the

stock price process between two time steps. In the second line, we appealed to the independence

property of the increments of the stock price, and Corollary 1.1.14 is used in the third line. Let

now τ = T/N and let N tend to infinity, Corollary 1.1.14 then implies

lim
N→∞

E
(
eiλ log(SN)

)
= exp

((
r − σ2

2

)
iλT − λ2σ2T

2

)
,

so that we have the convergence of the characteristic functions and the theorem follows from the

results in Appendix A.1.3.

Remark 1.1.19.

(i) We only proved the convergence in law for the Cox-Ross-Rubinstein tree. A generalisation of

this result can be found in Proposition 1.2.6 below.

(ii) The convergence in law (weak convergence) of the stock price implies the convergence of

European option prices with continuous and bounded payoffs such as Put option prices, but

not Call options, see Appendix A.1.3. Convergence of European Call options however follows

by Call-Put parity. We shall give a direct proof of the convergence of the option pricing

formula (1.1.2) later, in Theorem 1.1.21.

1.1. Binomial trees 24

(iii) With n steps, Corollary 1.1.14 implies that the range of possible values for the stock price

process is [dnS0, u
nS0] =

[
S0e

−σ
√
nT , S0e

σ
√
nT
]
, and the grid becomes dense in the two-

dimensional subspace [0, T]× (0,∞) as the number of steps increases to infinity.

Theorem 1.1.20. As the time increment τ tends to zero, the moment matching conditions (1.1.7)

and (1.1.8) imply that the option price converges to the solution of the so-called Black-Scholes

partial differential equation

∂tV + rSt∂SV +
σ2

2
S2
t ∂

2
SSV − rVt = 0, (1.1.9)

with boundary (payoff) condition VT = f(ST).

Proof. Let V (x, t) denote the value of the option price with at time t where the underlying stock

price is worth x. Consider the backward scheme where the option price V (x, t) at some time t

is given in terms of the option prices V (ux, t + τ) and V (dx, t + τ) at time t + τ , depending on

whether the stock price has moved up or down:

V (x, t) = e−rτ
(
pV (ux, t+ τ) + (1− p)V (dx, t+ τ)

)
. (1.1.10)

In the Cox-Ross-Rubinstein tree model, we take u = exp(σ
√
τ) and d = exp(−σ

√
τ). Furthermore,

a Taylor series expansion at the point (x, t) gives

V
(
xeσ

√
τ , t+ τ

)
= V (x, t) +

(
eσ

√
τ − 1

)
x
∂V

∂x
+ τ

∂V

∂t
+
x2

2

(
eσ

√
τ − 1

)2 ∂2V
∂x2

+ o (τ) ,

= V (x, t) +

(
σ
√
τ +

1

2
σ2τ

)
x
∂V

∂x
+ τ

∂V

∂t
+
σ2x2τ

2

∂2V

∂x2
+ o (τ) ,

where all the derivatives of the function C are evaluated at the point (x, t). In the first line, we

have used the fact that o

((
e2σ

√
τ − 1

)2)
= o(τ). In the second line, we have performed a Taylor

series expansion of
(
eσ

√
τ − 1

)
for small τ . We have only expanded up to first order in τ . This

is justified by the fact that the expressions for u and d are also of order 1 from Corollary 1.1.14.

Likewise, the cross derivative
∂2

∂x∂t
has been omitted. Similarly, we have

V
(
xe−σ

√
τ , t+ τ

)
= V (x, t)−

(
σ
√
τ − 1

2
σ2τ

)
x
∂V

∂x
+ τ

∂V

∂t
+
σ2x2τ

2

∂2V

∂x2
+ o (τ) .

If we now plug these two expansions back into (1.1.10) and omit the o() terms, we obtain

(erτ − 1)V =

(
(2p− 1)xσ

√
τ +

σ2xτ

2

)
∂V

∂x
+ τ

∂V

∂t
+
σ2x2τ

2

∂2V

∂x2
+ o(τ).

From Corollary 1.1.14, we know that p = 1
2 +

1
2σ

(
r − 1

2σ
2
)√

τ +O(τ). Therefore we obtain (after

dividing by τ)

rV = rx
∂V

∂x
+
∂V

∂t
+
σ2x2

2

∂V 2

∂x2
+ o(1).

Taking the limit as τ tends to zero, and applying the boundary conditions, the theorem follows.

1.1. Binomial trees 25

We have seen (Theorem 1.1.18) how the stock price converges in law when the time increment

tends to zero and how European Call options converge to the solution of some partial differential

equation with suitable boundary conditions. We shall see in Chapter 3 how to solve (numerically)

such an equation. The purpose of the following theorem is to provide a simple and elegant pricing

formula that corresponds to the formula (1.1.2) when the number of steps tends to infinity.

Theorem 1.1.21. When the increment τ tends to zero, the pricing formula (1.1.2) converges to

V0 = S0N (d+)−Ke−rTN (d−) ,

where

d± :=
log (S0/K) +

(
r ± 1

2σ
2
)
T

σ
√
T

,

and where N represents the cumulative distribution function of the standard Gaussian random

variable with zero mean and unit variance.

Proof. Recall the option pricing formula in the binomial tree with N nodes (Equation (1.1.3)):

S0B

(
N0, N,

(1− π) d

R

)
− K

RN
B
(
N0, N, (1− π)

)
, (1.1.11)

where B(·, n, p) is the cumulative distribution function of a Binomial random variable B(n, p). In

view of the formula in the theorem, it is clear that it is sufficient to prove that

lim
N→∞

B

(
N0, N,

(1− π) d

R

)
= N (d+) and lim

N→∞
B
(
N0, N, (1− π)

)
= N (d−) .

By Exercise 3 we know that there exists α ∈ [0, 1) such that N0 = N log(u)−log(K/S0)
log(u)−log(d) − α.

Let (Xi)i≥1 be a sequence of independent random Bernoulli random variables with parameter

π̃. We know that Xn :=
∑n

i=1Xi follows B (n, π̃), and hence E
(
Xn

)
= nπ̃ < ∞ and V

(
Xn

)
=

nπ̃ (1− π̃) <∞. From Berry-Esséen inequality (see Theorem A.1.10) in the appendix, there exists

a strictly positive constant C—universal and therefore independent of n—such that

sup
x

∣∣∣∣∣P
(

Xn − nπ̃√
nπ̃ (1− π̃)

≤ x

)
−N (x)

∣∣∣∣∣ ≤ Cρ√
n
, (1.1.12)

where

ρ := E

(
|X1 − π̃|3

(π̃ (1− π̃))
3/2

)
=
π̃ (1− π̃)

(
π̃2 + (1− π̃)

2
)

(π̃ (1− π̃))
3/2

=
π̃2 + (1− π̃)

2√
π̃ (1− π̃)

.

Let us now go back to the expression (1.1.11) and let us focus on the first probability. The random

variable Xn is a Binomial random variable with parameters n = N and π̃ =
(1− π) d

R
, and let

x =
N0 − nπ̃√
nπ̃ (1− π̃)

in (1.1.12). In the CRR formula, let τ := T/N denote the time increment, so

that Corollary 1.1.14 implies

π̃ =
1

2
− 1

2

(
σ +

r − 1
2σ

2

σ

)√
τ +O(τ),

1.1. Binomial trees 26

which converges to 1/2 as N tends to infinity (equivalently as τ tends to zero). Therefore the

right-hand side in (1.1.12) tends to zero as the time increment becomes smaller. We conclude that

lim
N→∞

P
(
XN ≤ x

)
= lim

N→∞
N

(
x−Nπ̃√
Nπ̃ (1− π̃)

)
, for any x ∈ R,

and hence

lim
N→∞

B

(
N0, N,

(1− π) d

1 + r

)
= lim

N→∞
N

(
N0 −Nπ̃√
Nπ̃ (1− π̃)

)
.

Taking now N0 and the definition of π̃ as above and making use of Corollary 1.1.14, we obtain the

following Taylor series expansion as τ tends to zero:

Nπ̃ =
T

2σ
√
τ

(
r − σ2

2

)
+
T

2τ
+O(1),

N0 =
1

2σ
√
τ
log(S0/K) +

T

2τ
+O(1),

Nπ̃ (1− π̃) =
T

4τ
+O(1),

from which we deduce

N0 −Nπ̃√
Nπ̃ (1− π̃)

=
1

σ
√
T

(
log

(
S0

K

)
+

(
r +

σ2

2

)
T

)
+O

(√
τ
)
,

which converges to d+ given in the theorem as τ tends to zero, and the continuity of the map N

finishes the proof. The proof of the other probability is analogous and left as an exercise.

Example (Numerical example and convergence). We consider here a European call option price

written on the underlying stock price worth 100 at inception of the contract, with maturity T = 1.1

year and strike price K = 95. We assume that the continuous interest rate is r = 3% and that

the volatility of the returns is σ = 20%. To value such an option in a multi-period Cox-Ross-

Rubinstein binomial tree, we consider N nodes, so that the time increment τ is equal to T/N .

The price as the number of nodes tends to infinity is given by Theorem 1.1.21 and is equal to

12.6931. We are interested here in the convergence of the CRR model as the number of nodes

grows large. Figure 1.2 provides us with a numerical example of the convergence of the tree to

the Black-Scholes price given in Theorem 1.1.21, as a function of the number of nodes N . The

corresponding MATLAB code is as follows:

Black-Scholes Call option formula

function C=bscall(S0,K, r, σ, T)

d1 =
(
log(S0/K) +

(
r + 1

2σ
2
)
T
)
/
(
σ
√
T
)

d2 =
(
log(S0/K) +

(
r − 1

2σ
2
)
T
)
/
(
σ
√
T
)

C = S0N (d1)−Ke−rTN (d2);

1.1. Binomial trees 27

0 1000 2000 3000 4000 5000
12.686

12.688

12.69

12.692

12.694

12.696

12.698

12.7

12.702

12.704

12.706

0 500 1000 1500 2000
9.92

9.925

9.93

9.935

9.94

9.945

9.95

9.955

9.96

9.965

Figure 1.2: Convergence of the CRR price to Black-Scholes as a function of the number of nodes N .

K = 95 in the left figure and the right figure is the at-the-money case K = 100. The dotted plot

considers only odd numbers of steps whereas the crossed one considers even numbers of steps only.

Binomial tree call option pricing formula

function price = BinEuroCall(S0,K, r, σ, T, n)

δT = T/n; u = eσ
√
δT ; d = 1/u; p = (erδT − d)/(u− d);

lattice = zeros(n+1,n+1);

for i=0:n

lattice(i+1,n+1) = max
(
0, uidn−iS0 −K

)
;

end;

for k=n-1:-1:0

for i=0:k

lattice(i+1,k+1) = p*lattice(i+2,k+2)+(1-p)*lattice(i+1,k+2);

end;

end;

price = e−rT lattice(1,1);

1.1. Binomial trees 28

Output of the left graph on Figure 1.2

S0 = 100; K = 95; r = 0.03; σ = 0.2; T = 1.1;

n = 100; % minimum number of time steps

n = 5000; % maximum number of time steps

δn = 20;

BS = bscall(S0,K, r, σ, T);

BinomPrices = zeros(1,length([n : δn : n]));

for n = [n : δn : n]

BinomPrices(temp) = BinEuroCall(S0,K, r, σ, T, n);

end;

plot([n : δn : n], BinomPrices); hold on;

plot([n : δn : n], ones(1,length([n : δn : n]))*BS);

Remark 1.1.22. When the stock price is lognormally distributed with constant mean and constant

variance, Theorem 1.1.21 gives a closed-form solution to the European call option pricing problem.

In order to understand the (local) behaviour of option prices, sensitivity measures known as Greeks

are used as fundamental tools. They are defined as follows:

∆ :=
∂V

∂S0
, Γ :=

∂2V

∂S2
0

, ρ :=
∂V

∂r
, Θ :=

∂V

∂T
, υ :=

∂V

∂σ
. (1.1.13)

As we shall see later, they are also fundamental tools for hedging purposes, i.e. to protect oneself

against moves in the underlying variables (S, r, σ).

Exercise 4. Consider a European call option with maturity T > 0 and strike K > 0 evaluated

at time zero, written on a stock price process (St)t≥0 following the Black-Scholes model (see

Definition 1.1.11). Derive closed-form formulae for

• a European Put option with the same characteristics as the Call;

• the Greeks of the Call, defined in Remark 1.1.22.

The identity (to prove) S0N ′(d+) = Ke−rTN ′(d−) might be helpful.

Solution. The Put option price at time zero is

P = Ke−rTN (−d−)− S0N (−d+),

and the Greeks read

∆ = N (d+), υ = S0

√
TN ′(d+),

ρ = KT e−rTN (d−), Γ =
N ′(d+)

σS0

√
T
,

Θ = −σS0N ′(d+)

2
√
T

− rKe−rTN (d−).

1.2. Trinomial trees 29

Exercise 5. Consider a European call option with maturity T > 0 and strike K > 0 evaluated

at time zero, written on a stock price process (St)t≥0 following the Black-Scholes model (Defini-

tion 1.1.11). Consider the following values: S0 = 100, r = 0 and σ = 25%. Plot the convergence

of the CRR tree when K < 90, K = 100 and K = 110. Plot also the convergence of the tree for

even and odd increasing number of time steps. Comment the obtained results.

1.1.4 Adding dividends

The model we have assumed so far is a very simple model describing the evolution of an asset price.

In practice, asset prices distribute dividends to shareholders. A consequence of this is that once

the dividend is paid, the value of the stock price drops by the amount of the dividend. We shall

see here how such a feature can be implemented in a binomial tree. There are two possible ways

to take dividends into account. On the one hand one may consider that dividends are distributed

continuously, so that the stock price does not suffer a sudden drop at some future time, but rather

diffuses in time with a drift where r is replaced by r− q (in the Black-Scholes model for instance).

Note however that the discounting factor e−rτ remains the same since it only depends on risk-free

bond prices, and not on the stock price. On the other hand, one may think of the dividends

as distributed at some (fixed) future times. Two different models can be considered. Assume

first that the dividend distributed between ti−1 and ti is proportional to the value of the stock

price at time ti, i.e. is worth αSi for some α > 0. At time ti the stock price is therefore worth

(1− α)ujdi−jS0 instead of ujdi−jS0 in the original (without dividend) binomial tree. It is easy

to see that the recombining properties of the tree are preserved. If the dividend between ti−1 and

ti is not proportional to the stock price but rather is a fixed amount of cash, say D > 0, then the

stock price at time ti is worth u
jdi−jS0 −D and the tree is not recombining any more.

1.2 Trinomial trees

A natural extension of the two-node (binomial) scheme above is to consider an l-node model. A

popular one is l = 3, called the trinomial model, represented on Figure 1.3. Between two nodes i

and i + 1, the ratio Si+1/Si takes values in {d,m, u}, where d < m < u, with probability by πd,

πm and πu. We would like to prove a theorem similar to the binomial case, namely

Conjecture 1.2.1. Consider a European option V written on the underlying stock price S and with

payoff VT (ST) at maturity T . Let R := erT be the discounting factor In the absence of arbitrage

opportunities, the one-period option pricing formula in the trinomial tree is

V0 =
πuVT (uS0) + πmVT (mS0) + πdVT (dS0)

R
.

1.2. Trinomial trees 30

S0
2 = u2S0

S0
1 = uS0

77ppppppppppp

''NN
NNN

NNN
NNN

// S1
2 = umS0

S0

::vvvvvvvvvv

$$H
HHH

HHH
HHH

// S0
1 = mS0

77ppppppppppp

''NN
NNN

NNN
NNN

// S3
2 = m2S0

S2
1 = dS0

77ppppppppppp

''NN
NNN

NNN
NNN

// S5
2 = mdS0

S6
2 = d2S0

Figure 1.3: Two-period recombining trinomial tree.

However we cannot proceed as in the binomial tree case, i.e. construct a hedging portfolio with

stocks and bonds that will replicate the option. In fact, if the stock price under consideration is a

true martingale under some probability measure—i.e. E(ST |Ft) = St for all 0 ≤ t ≤ T , where Ft

represents the information available at time t ((Ft)t≥0 is called the filtration) —we know that any

contingent claim can be valued using this very probability measure. As in the binomial scheme,

we look at the first two moment matching conditions:

πuu+ πmm+ πdd = erτ ,

πuu
2 + πmm

2 + πdd
2 = e(2r+σ2)τ .

Together with the constraints πu+πm+πd = 1 and πu, πd, πm > 0, we obtain an ill-posed system of

three equations with six unknown variables. Two popular models have however emerged, proposing

additional constraints on the parameters in order to ensure the local consistency of the tree to the

Black-Scholes model: the Boyle model and the Kamrad-Ritchken model.

Boyle model

It was developed by Phelim Boyle in 1986 [8]. The three additional conditions are m = 1, ud = 1

and u = exp (λσ
√
τ), where λ > 0 is a free parameter, called the stretch parameter. Note that the

corresponding tree is recombining (ud = m2).

Exercise 6. Let W := exp
((

2r + σ2
)
τ
)
. Show that the corresponding risk-neutral probabilities

are given by

πu =
(W −R)u− (R− 1)

(u− 1) (u2 − 1)
, πd =

(W −R)u2 − (R− 1)u3

(u− 1) (u2 − 1)
, and πm = 1− πu − πd.

1.2. Trinomial trees 31

What happens when λ = 1? Compute the limits of πu and πd as λ tends to infinity. What can

you conclude from it?

Exercise 7. The Boyle model with λ =
√
3 is called the Hull-White model (see [42]). Show that

the risk-neutral probabilities read

πu =
1

6
+

√
τ

3

r − 1
2σ

2

2σ
, πd =

1

6
−
√
τ

3

r − 1
2σ

2

2σ
, and πm =

2

3

up to order O(τ), for small enough τ .

Kamrad-Ritchken model

Under the risk-neutral measure, the random variable log(St+τ/St) is Gaussian with mean (r− 1
2σ

2)τ

and variance σ2τ , i.e. log(St+τ) = log(St) + ξ, where ξ ∼ N ((r − 1
2σ

2)τ, σ2τ). The Kamrad-

Ritchken [46] symmetric trinomial tree approximates the random variable ξ by a discrete random

variable ξ̃ with the following distribution:

ξ̃ :=


λσ

√
τ , with probability πu,

0, with probability πm,

−λσ
√
τ , with probability πd,

where σ > 0 and λ ≥ 1. Omitting terms of order higher (or equal) than O
(
τ2
)
, we obtain the

risk-neutral probabilities

πu =
1

2λ2
+
r − 1

2σ
2

2λσ

√
τ , πd =

1

2λ2
−
r − 1

2σ
2

2λσ

√
τ , and πm = 1− 1

λ2
. (1.2.1)

Note that λ < 1 implies πm < 0, which explains the condition λ ≥ 1. In the case λ = 1, we have

πm = 0 and hence the trinomial tree reduces to a simple binomial tree.

Remark 1.2.2. As in the binomial model, we can show that the option pricing formula in Theo-

rem 1.2.1 (extended to n nodes) converges to the Black-Scholes partial differential equation as the

number of nodes tend to infinity, with an error of order O(τ). Note further that the flexibility in

the choice of λ implies different values for the three probabilities {πd, πm, πu}. This corresponds

to the fact that there exists, not one, but an infinity of equivalent martingale measures under

which the stock price is a martingale. This corresponds to an incomplete market, as opposed to a

complete one as in the binomial case, where only one such probability measure exists.

Remark 1.2.3. From a numerical point of view, it is easy to show that for a tree with n steps,

the binomial scheme requires n(n + 1)/2 additions and n(n + 1) multiplications, whereas the

trinomial scheme requires 2n2 additions and 3n2 multiplications, so that the trinomial scheme is

more demanding. When comparing a trinomial scheme with n steps to a binomial tree with 2n

steps, it is however clear that the trinomial scheme requires less computational effort; Kamrad and

Rithcken [46] have shown that it also performs better.

1.2. Trinomial trees 32

Remark 1.2.4. One may wonder whether there is an optimal choice of the parameter λ. It has

to be chosen so that the convergence to the Black-Scholes (continuous-time) model is maximised.

Remark 1.2.5. In practice, binomial trees remain popular, sometimes over trinomial trees. This

is due to the fact that the convergence is already fast enough for binomial trees, and hence the

additional complexity of trinomial schemes is not always necessary for vanilla products. However

this may not be true any longer for exotic options.

In Theorem 1.1.18, we proved that the CRR binomial tree converges in law to the Black-

Scholes model as the time step tends to zero. The following proposition generalised this result and

emphasises the order needed in the approximations of the probabilities and amplitudes.

Proposition 1.2.6. Consider a multinomial tree with N ≥ 2 branching possibilities, and denote

(pi)1≤i≤N the probabilities associated to the amplitudes (ξi)1≤i≤N , such that for any i = 1, . . . , N ,

the following Taylor series expansions hold around τ = 0:

pi = pi,0 + pi,1
√
τ + pi,2τ + o(τ),

ξi = 1 + ξi,1
√
τ + ξi,2τ + o(τ).

Then the first two moment-matching equations

N∑
i=1

piξi = erτ and

N∑
i=1

piξ
2
i = e(2r+σ2)τ .

are equivalent to the convergence in law (as τ tends to zero) of the tree to the Black-Scholes model.

Proof. From the proof of Theorem 1.1.18, convergence in law will be obtained as soon as the

following equality holds:

N∑
i=1

pie
iλ log(ξi) = 1 +

(
iλ

(
r − σ2

2

)
− λ2σ2

2

)
τ + o(τ). (1.2.2)

From the assumptions on the form of the series expansion for pi and ξi, the following constraints

are immediate:
N∑
i=1

pi,0 = 1 and
N∑
i=1

pi,1 =
N∑
i=1

pi,2 = 0.

Now we have, for any i = 1, . . . , N ,

eiλ log(ξi) = exp

{
iλ

(
ξ1,i

√
τ + ξ2,iτ −

1

2
ξ2i,1τ

)
+ o(τ)

}
= 1 + iλξi,1

√
τ +

(
iλ

(
ξi,2 −

ξ2i,1
2

)
− λ2

2
ξ2i,1

)
τ + o(τ).

Therefore the local consistency equality (1.2.2) holds if and only if each powers of τ exactly match:
N∑
i=1

pi,0ξi,1 = 0,

N∑
i=1

pi,0

(
iλ

(
ξi,2 −

ξ2i,1
2

)
− λ2

2
ξ2i,1

)
+ iλ

N∑
i=1

pi,1ξi,1 = iλ

(
r − σ2

2

)
− λ2σ2

2
,

1.3. Overture on stability analysis 33

which in turn is equivalent to

N∑
i=1

pi,0ξi,1 = 0,

N∑
i=1

pi,0

(
ξi,2 −

ξ2i,1
2

)
+

N∑
i=1

pi,1ξi,1 = r − σ2

2
,

N∑
i=1

pi,0ξ
2
i,1 = σ2,

and using the third equality in the second one, we finally obtain

N∑
i=1

pi,0ξi,1 = 0,

N∑
i=1

pi,0ξi,2 +
N∑
i=1

pi,1ξi,1 = r,

N∑
i=1

pi,0ξ
2
i,1 = σ2.

(1.2.3)

Consider now the two moment matching equations

N∑
i=1

piξi = erτ and
N∑
i=1

piξ
2
i = e(2r+σ2)τ .

Equating powers of τ gives the following set of equations:

N∑
i=1

pi,0ξi,1 = 0,

N∑
i=1

(pi,0ξi,2 + pi,1ξi,1) = r,

2
N∑
i=1

pi,0ξi,1 = 0,

N∑
i=1

[
2pi,1ξi,1 + pi,0

(
ξ2i,1 + 2ξi,2

)]
= 2r + σ2,

which is clearly equivalent to (1.2.3), and the proposition follows.

1.3 Overture on stability analysis

We give here a slightly different approach to trees, that will serve as a first introduction to stability

analysis, which we shall study more in details in Section 3.3.8. Consider the Black-Scholes model

for the stock price S defined in Definition 1.1.11. For any t ≥ 0, define the logarithm of the

stock price Xt := log(St). Along a recombining (ud = 1) and symmetric (m = 1) trinomial tree,

consider a node at time t, where the log-stock price is equal to Xt. At the next time step t + τ ,

we have Xt+τ ∈
{
Xu

t+τ , X
d
t+τ , X

m
t+τ

}
, where Xu

t+τ = log(uSt/St) = log(u) =: δx, X
d
t+τ = −δx and

Xm
t+τ = 0. Therefore u = eδx . Over a short period of time τ , it is easy to show that

Et(Xt+τ) = ντ, and Vt(Xt+τ) = σ2τ + ν2τ2,

1.3. Overture on stability analysis 34

where ν := r − σ2

2
. The moment matching conditions hence become

(πu − πd)δx = ντ,

(πu + πd)δ
2
x = σ2τ + ν2τ2,

πu + πd + πm = 1,

with obvious unique solution

πu = α

(
1 +

ν2τ

σ2
+
νδx
σ2

)
,

πm = 1− 2α

(
1 +

ν2τ

σ2

)
,

πd = α

(
1 +

ν2τ

σ2
− νδx

σ2

)
,

where α :=
σ2τ

2δ2x
. Although πu is always strictly positive, the probability πd may be negative. We

therefore need to impose some conditions on the ratio τ/δx. Suppose indeed that ν and σ are fixed,

and a specified time increment τ is given. Then if one takes the space increment δx larger than

ντ + σ2/ν, the probability πd becomes negative and the tree is not properly defined any more.

Note further that the tree is binomial in the case α = 1/2, i.e. σ2τ = δ2x.

Chapter 2

Monte Carlo methods

In Section 0.2, we showed that pricing a European option was tantamount to computing a condi-

tional expectation. More precisely, we outlined the fact that—under some conditions—there exists

a probability measure under which the value of a European contract today was worth the (dis-

counted) value of its final payoff. In Chapter 1, we made this even more precise in a discrete-time

setting for binomial and trinomial trees. This indeed turn out to be the fundamental ingredient

of the backward scheme for multinomial trees. Monte Carlo methods are based on a similar idea.

Consider a European option, the payoff of which at maturity T > 0 is given by f(ST), where f is a

function from : R+ to R+ and (St)t≥0 represents the stock price process. No-arbitrage theory tells

us that the value today of such a contract is—barring the discounting factor—E (f(ST)). If we

are able to determine the distribution of the random variable ST , then the computation becomes

straightforward. Monte Carlo methods provide a tool to simulate such a distribution starting from

the (known) initial value S0.

2.1 Generating random variables

2.1.1 Uniform random number generator

Generating uniform random variables

The canonical random variable used for simulation purposes is the uniform random variable. Let

a < b be two real numbers and consider a random variable U[a,b] distributed uniformly on the

closed interval [a, b]. This means that its density reads fU[a,b]
(x) = (b− a)

−1
, for all x ∈ [a, b] and

is null outside this interval. A straightforward scaling shows that the equality (in law) U[a,b] =

a + (b− a)U[0,1] always holds and hence it is sufficient to consider a = 0 and b = 1. Many

algorithms exist to generate a random number on the interval [0, 1]. A popular (and robust) one is

called the Linear Congruential Generator. Let m > 0, a > 0 and n0 ∈ {1, . . . ,m− 1} be integers

35

2.1. Generating random variables 36

such that a and m have no common factors, and define the sequence (ni)i∈N recursively by

ni = ani−1 [m], for all i ≥ 1,

where [m] means that the equality is taken modulo m. It is clear that for any i ≥ 1, ni lies in the

set {1, 2, . . . ,m− 1}, and that the sequence (ni) is periodic with period smaller (or equal) than

m − 1. We shall say that the sequence has full period if its period is exactly equal to m − 1. It

can be shown that the sequence has a full period if and only if m is a prime number, am−1 − 1

is divisible by m and for any j = 1, . . . ,m − 2, aj − 1 is not divisible by m. Let us now define

xi := ni/m for any i ≥ 0. Then clearly xi ∈ (0, 1) for all i ≥ 0. The sequence (xi)i≥0 is called a

pseudo-U[0,1] random number sequence if and only if the sequence (ni)i≥0 has full period. We can

alternatively define the random sequence (xi)i≥1 recursively by

xi+1 = axi − ⌊axi⌋, with x0 ∈ (0, 1), (2.1.1)

where ⌊x⌋ denotes the largest integer smaller than x.

Remark 2.1.1. The general formulation of a linear congruential generator is actually ni =

(ani−1 + b) [m], for all i ≥ 1, where b is also an integer, and where m is not necessarily a

prime number. Knuth [49] gave conditions under the generalised linear congruential generator in

order to obtain a sequence with full period. As shown in [55], taking b = 0 does not entail much

loss of generality, but does make the computations faster. This explains why we consider it to be

null here, as is usually done in practice.

The table below shows some popular examples of couples (a,m) used in practice.

Modulus m Multiplier a Reference

231 − 1 16807 Lewis, Goodman, Miller (1969)

231 − 1 39373 Fishman, Moore (1986)

231 − 1 742938285 Fishman, Moore (1986)

2147483399 40692 L’Ecuyer (1988)

Remark 2.1.2. Microsoft Visual Basic (see http://support.microsoft.com/kb/231847) uses a

linear congruential generator for the random sequence (ni)i≥1 defined recursively by the relation

ni+1 = ani + b [m], with n0 = 327680, a = 1140671485, b = 12820163 and m = 224.

Remark 2.1.3. In order to implement the linear congruential algorithm, one has to make sure that

the numbers computed falls with the precision of the computer. In order to generate the random

numbers, one has to compute axi in(2.1.1). Given the large value of a used in practice (see the

table above), this product might go beyond the computer precision. We shall not investigate this

issue, but we refer the interested reader to [34, pages 44-46] for more details.

2.1. Generating random variables 37

Remark 2.1.4. Even though linear congruential generators are widely used today, one has to

be aware of their limitations. In particular a common feature to every such algorithm is the

so-called lattice structure. Consider a sequence of numbers (x1, x2, . . . , xp) generated by linear

congruence, where p indicates the period. Figure 2.1 represents all the overlapping pairs (xi, xi+1)

for i = 1, . . . , p− 1 in the unit square. This effect is called the lattice structure and Marsaglia [55]

has precisely characterised the subspace of the unit hypercube in Rd, covered by all the d-uples

(xi, . . . , xi+d) for i = 1, . . . , p− d.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2.1: Evidence of lattice structure on the square. Left: a = 6, m = 11 and the period is 10.

Right: a = 1277, m = 131072 and the period is 32768. On the right-hand side, we have zoomed

on the smaller square ((0, 0), (0.5, 0.5)).

2.1.2 Normally distributed random variables and correlation

Let us now consider a Gaussian random variable X with mean µ ∈ R and variance σ2 > 0, i.e.

X ∼ N
(
µ, σ2

)
. Recall that the corresponding density reads

f(x) =
1

σ
√
2π

exp

(
− (x− µ)

2

2σ2

)
, for all x ∈ R.

We now wish to construct an algorithm capable of generating samples from this distribution. As

in the uniform case, using the straightforward scaling property N
(
µ, σ2

) ∆
=µ+ σN (0, 1) we may

reduce our study to the case µ = 0 and σ = 1.

Convolution method

From the central limit theorem (see Appendix A.1.4), a Gaussian random variable with zero mean

and unit variance can easily be approximated by summing (and norming) many independent uni-

form random variables. Note however that the central limit theorem ensures convergence in distri-

bution, but not almost sure convergence (see Appendix A.1). Also, from a computational point of

2.1. Generating random variables 38

view, the convolution method above requires the simulation of many (iid) uniform random variables

in order to achieve accurate convergence.

Exercise 8. Let (Xi)i≥1 be a sequence of iid uniform random variables on the interval [−1, 1].

Define the sequence (Zn)i≥1 as in (A.1.1). Compute the expectations and variances of Xn and Zn

for any n ≥ 1 and plot the density of the Gaussian approximation Zn for different values of n.

Box-Muller method

As pointed out above, the convolution method may require a large number of uniform random

variables to compute in order to achieve accurate precision. The Box-Muller method—stated in

the following proposition—only requires the evaluation of two such random variables.

Proposition 2.1.5. Let X1 and X2 be two independent uniform random variables on (0, 1). Define

Z1 :=
√
−2 log (X1) cos (2πX2) and Z2 :=

√
−2 log (X1) sin (2πX2) .

Then Z1 and Z2 are two independent Gaussian random variables with zero mean and unit variance.

Proof. We shall use the notations x := (x1, x2) ∈ R2 and z := (z1, z2) ∈ R2 throughout this proof.

Define the function h : (x) ∈ [0, 1]2 7→
(√

−2 log (x1) cos (2πx2) ,
√
−2 log (x1) sin (2πx2)

)
. Its

inverse h−1 =
(
h−1
1 , h−1

2

)
has the representation

h−1(z) =

(
exp

(
−z

2
1 + z22
2

)
,
1

2π
atan

(
z2
z1

))
, for any (z1, z2) ∈ R2 \ {(0, 0)},

and h−1(0) = (1, 0). For fixed z2 ̸= 0 and z1 = 0, the second component is understood as the limit

as z1 tends to zero. The Jacobian matrix then reads

J =

∂z1h−1
1 ∂z2h

−1
1

∂z1h
−1
2 ∂z2h

−1
2

 (z1, z2) =

−z1 exp
(
−z

2
1 + z22
2

)
−z2 exp

(
−z

2
1 + z22
2

)
− 1

2π

z2
z21 + z22

1

2π

z1
z21 + z22

 ,

(recall that atan(x)′ = (1 + x2)−1), and its determinant simplifies to

det(J) =
1

2π
exp

(
−z

2
1 + z22
2

)
.

Let f be the density of the couple (X1, X2) (i.e. f ≡ 1). For any subset B ⊂ R2, we have

P (z ∈ B) = P (h(x) ∈ B) = P
(
x ∈ h−1(B)

)
=

∫
h−1(B)

f(x)dx =

∫
B

f(h−1 (z)) |det(J)| dz

=

∫
B

1

2π
exp

(
−z

2
1 + z22
2

)
dz1dz2,

which is the cumulative distribution function of two independent Gaussian random variables.

2.1. Generating random variables 39

Correlated Gaussian random variables

The Box-Muller method above gives us a way to construct two independent Gaussian random

variables X1 and X2 (say with zero mean and unit variance). We now wish to generate a third

Gaussian random variable, which is correlated with X1. Recall that the covariance and the corre-

lation between two random variables X and Y are defined by

cov(X,Y) := E(XY)− E(X)E(Y) and ρ(X,Y) :=
cov(X,Y)√
V(X)V(Y)

.

The following exercise (to do) shows how to construct such a correlated random variable.

Exercise 9. Let X1 and X2 be two independent Gaussian random variables with mean µ1 and µ2,

and variance σ2
1 and σ2

2 . Define the random variable X3 = ρX1 +
√
1− ρ2X2 for some ρ ∈ [−1, 1].

Determine the distribution of X3 and its correlation with X1 and X2.

Solution. It is well known that the sum of two independent Gaussian random variables is Gaus-

sian, so that X3 is Gaussian. By linearity of the expectation operator, we have E (X3) = ρE (X1)+√
1− ρ2E (X2) = ρ2µ1 +

(
1− ρ2

)
µ2. Since the two random variables X1 and X2 are indepen-

dent, the variance of any linear combination is the linear sum of the variances, i.e. V (X3) =

ρ2V (X1) +
(
1− ρ2

)
V (X2) = ρ2σ2

1 +
(
1− ρ2

)
σ2
2. Similar computations show that the correlation

between X3 and X1 (respectively between X3 and X2) is ρ1,3 = ρ (respectively ρ2,3 =
√
1− ρ2).

Assume now that we are able to generate n ≥ 1 independent Gaussian random variables with

null mean and unit variance. We will present generic methods to do so in the next section. Let

us call X := (X1, . . . , Xn)
T ∈ Rn such a vector. We wish to construct a new vector Y ∈ Rn of

Gaussian random variable with variance-covariance matrix Σ = (σij) ∈ Mn(R), i.e. such that

σij := cov(Yi, Yj) for any 1 ≤ i, j ≤ n. The following properties are immediate:

• the matrix Σ is symmetric, i.e. ΣT = Σ;

• σii = 1 for any 1 ≤ i ≤ n (normalisation);

• the matrix Σ is positive semi-definite, i.e. xTΣx ≥ 0, for any x ∈ Rn.

Let us first note that the random variable X := α1X1 + . . .+ αnXn is Gaussian with expectation

zero and variance V
(
X
)
= α2

1 + . . .+ α2
n. Let A be a matrix in Mn(R) and define Y := ATX,

Lemma 2.1.6. The vector Y is Gaussian with variance-covariance matrix Σ = ATA.

Proof. Let us denote A = (αi,j)1≤i,j≤n. For i = 1, . . . , n, since Yi =
∑n

k=1 αkiXk it is clear that

2.1. Generating random variables 40

Yi is Gaussian with mean zero and variance
∑n

k=1 α
2
ki. For any 1 ≤ i, j ≤ n, we also have

cov (Yi, Yj) = E (YiYj)− E (Yi)E (Yj)

E

[(
n∑

k=1

αkiXk

)(
n∑

l=1

αljXl

)]
− E

(
n∑

k=1

αkiXk

)
E

(
n∑

k=1

αkjXk

)

=

n∑
k=1

αkiαkj ,

where we have used the independence properties of vector X and the fact that its expectation is

the zero vector. This sum corresponds exactly to the (i, j) element of the n× n matrix ATA, and

hence the lemma follows.

Conversely, this lemma implies that if we want to generate a vector Y ∈ Rn of Gaussian random

variable with variance-covariance matrix Σ ∈ Mn(R), then it suffices to determine the matrix A

such that Σ = ATA. The following theorem gives the solution to the problem.

Theorem 2.1.7. Let Σ ∈ Mn(R) be a symmetric positive definite matrix. Then there exists an

upper triangular matrix A ∈ Mn(R) such that Σ = ATA.

Proof. Let Σ be as in the theorem. From linear algebra, we know that there exists an upper

triangular matrix U ∈ Mn(R) and a diagonal matrix D ∈ Mn(R) such that the so-called LU

decomposition Σ = UTDU holds. We can rewrite this as

Σ =
(
UT

√
D
)(√

DU
)
=
(√

DU
)T (√

DU
)
,

and the theorem follows with A =
√
DU.

We now give an algorithm to compute the square-root of a symmetric positive definite ma-

trix Σ = (σij). Let us define the matrix L ∈ Mn(R) by the following steps:

(i) start with the first column: l11 :=
√
σ11 and li1 := σi1/l11 for all i = 2, . . . , n;

(ii) consider now the j-th column: ljj :=
(
σjj −

∑j−1
k=1 l

2
jk

)1/2
and lij := l−1

jj

(
σij −

∑j−1
k=1 likljk

)
for any i = j + 1, . . . , n and j = 2, . . . , n− 1;

(iii) compute finally the last element in the last column: lnn :=
(
σnn −

∑j−1
k=1 l

2
nk

)1/2
;

(iv) take the transpose A := LT.

Exercise 10. Prove that the above algorithm outputs the correct matrix Σ.

Solution. It follows from the explicit computation of the elements of the matrix Σ from the prod-

uct UTDU.

2.1. Generating random variables 41

2.1.3 General methods

We have seen above how to generate Gaussian random variables from uniformly distributed random

variables. These methods were specific to the Gaussian case, and we now wish to provide tools

valid for any distribution. Let U be uniformly distributed on the interval [0, 1] and assume that we

wish to generate the random variable X with cumulant distribution function F : A→ [0, 1], where

A represents the support of the distribution (i.e. the range of possible values the random variable

can take). We are looking for a mapping f : [0, 1] → A satisfying the equality f(U) = X, i.e.

P (f(U) ≤ x) = F (x), for all x ∈ A. (2.1.2)

If the mapping f is bijective and increasing, then P (f(U) ≤ x) = P
(
U ≤ f−1(x)

)
= f−1(x). This

expression suggests to take f−1 ≡ F as a candidate. Let us distinguish the following cases:

(i) if the cdf F is continuous and strictly increasing, then the inverse mapping F−1 exists, and

one simply takes f ≡ F−1;

(ii) if the cdf F is continuous but not injective, then we can not necessarily define its inverse

F−1. However, since a cumulant distribution function is always right-continuous (see Ap-

pendix A.1.1), we may define the generalised inverse F−1 : y ∈ [0, 1] 7→ inf {x ∈ A : F (x) = y},

and the relation (2.1.2) is clearly satisfied;

(iii) if the function F is discontinuous, i.e. the random variable X is discrete, we may represent

it as F (x) =
∑

n≥1:x≤xn
P (xn), where {x1, . . . , xm, . . .} is the set of possible outcomes of X.

The generalised inverse can not be defined as in (ii). However, we may define it as F−1(y) :=

inf {x : F (x) ≥ y}. The right-continuity of cumulative distribution functions ensures the

existence of such an inverse and we leave it to the reader to check that the equality (2.1.2)

is satisfied.

Remark 2.1.8. Consider the case where the cumulative distribution function F : R → [0, 1] is

constant on some interval [a, b] and strictly increasing on R \ [a, b]. Then we have P (a ≤ X ≤ b) =

F (b)− F (a) = 0.

Example. We have seen in the sections above how to generate Gaussian distributed samples

using the convolution or the Box-Muller method. We apply here the inverse transform method to

generate sample of a Gaussian random variable with zero mean and unit variance. We know that

its cumulative distribution function is given by

N (x) =
1√
2π

∫ x

−∞
exp

(
−u

2

2

)
du, for any x ∈ R.

Since the function N is clearly smooth and bijective on the whole real line, the inverse map-

ping function is simply given by f ≡ N−1. From a computational point of view, though, one

2.2. Random paths simulation and option pricing 42

has to be able to compute this inverse. We shall not push the analysis further here but note

that there are fortunately many algorithms and approximate formulae to compute such an in-

verse function, most notably Peter John Acklam’s, available (in many computing languages) at

home.online.no/∼pjacklam/notes/invnorm.

Exercise 11. Let U be a uniform distribution on the interval [0, 1]. Determine the mapping f

such that f(U) = X, where the random variable X is given by the following.

(i) X is exponentially distributed with mean λ, to that F (x) = 1− ex/λ for all x ≥ 0.

(ii) F (x) =
2

π
asin

(√
x
)
, for any x ∈ [0, 1].

Solution.

(i) f(u) = −λ log(u);

(ii) This example corresponds to the so-called Arcsine law and the cumulative distribution func-

tion F corresponds to the distribution of the time at which a standard Brownian motion

attains its maximum over the time interval [0, 1]. In this case f(u) =
1

2
(1− cos(πU)).

Exercise 12. Let U be a uniform distribution on the interval [0, 1]. Recall that a random variable

N is Poisson distributed with parameter λ > 0 if and only if the equality P (N = n) = e−λ λn

n!

holds for any integer n ≥ 0. Let (Ti)i≥1 be a sequence of iid exponential random variables with

parameter λ > 0. Define the (continuous-time) family of random variables (Nt)t≥0 by

Nt :=
∑
n≥1

n11{T1+...+Tn≤t<T1+...+Tn+1}, for any t ≥ 0.

(i) Prove that the family (Nt)t≥0 follows a Poisson distribution with parameter λt.

(ii) Construct an algorithm to generate such a Poisson random variable.

Remark 2.1.9. Note that this method requires the exact same number of uniform random vari-

ables than the output random variables one wishes to generate.

2.2 Random paths simulation and option pricing

2.2.1 Simulation and estimation error

This section is a first brief encounter with the simulation of random paths. In Section 1.1.3, we

have introduced the Black-Scholes model (see Definition 1.1.11). In this model, the stock price

dynamics (St)t≥0 is such that at any time t ≥ 0, the random variable St is lognormally distributed:

St = S0 exp

((
r − σ2

2

)
t+ σ

√
tZ

)
, (2.2.1)

http://home.online.no/~pjacklam/notes/invnorm

2.2. Random paths simulation and option pricing 43

where Z is a standard Gaussian random variable. We have in particular presented a way to

discretise this continuous path by a discrete-time tree. Using the tools developed in Section 2.1,

we are now able to either simulate many instances of St directly from (2.2.1) or draw paths of this

process between zero and t by splitting this time interval as [0, t] = [t0, t1] ∪ . . . ∪ [tm−1, tm], for

some m ≥ 2. Between two dates ti−1 and ti (i = 1, . . . ,m), we have indeed

Sti = Sti−1 exp

((
r − σ2

2

)
(ti − ti−1) + σ

√
ti − ti−1Zi

)
,

where all the Gaussian random variables (Zi)0≤i≤m are independent. Let us now consider the

following problem: given such a simulation scheme, estimate the expected value θ := E(ST) of

the random variable ST at time T > 0. Consider a vector ST :=
(
Si
T

)
1≤i≤n

of independent and

identically distributed random variables with the same distribution as ST , and define

θ̂ (ST) :=
1

n

n∑
i=1

Si
T .

Straightforward computations show that E
(
θ̂ (ST)

)
= E(ST) and V

(
θ̂ (ST)

)
= n−1V(ST), so

that the estimator θ̂ (ST) is unbiased. Furthermore, by the central limit theorem, we know that

θ̂ (ST)− θ

σ̂n/
√
n

converges in law to N (0, 1). (2.2.2)

Here the quantity σ̂ could be taken as V (ST), but this quantity is in general unknown, so that we

consider instead its unbiased estimator

σ̂n :=

√√√√ 1

n− 1

n∑
i=1

(
Si
T − θ̂ (ST)

)2
.

Note that (2.2.2) tells us that our estimator error θ̂ (ST)− θ is distributed as a Gaussian random

variable with mean zero and variance σ̂2
n/n.

Digression

In mathematical finance, many (continuous-time) models are represented via the theory of stochas-

tic differential equations (SDEs). In the Black-Scholes case, the logarithm of the stock price dy-

namics is the unique solution to the SDE

dXt =

(
r − σ2

2

)
dt+ σdWt, X0 = x ∈ R,

where (Wt)t≥0 is a standard Brownian motion, as defined in Definition 1.1.8. In this example, the

instantaneous volatility σ is constant. Empirical studies have shown that this is not a realistic

feature, and stochastic volatility has to be taken into account. A widely used stochastic volatility

model is the so-called Heston model [40], where the log stock price process is the unique solution

2.2. Random paths simulation and option pricing 44

Figure 2.2: We plot here twenty Black-Scholes paths, where the time interval [0, 1] has been split

respectively into ten, one hundred and one thousand subintervals.

to

dXt =

(
r − Vt

2

)
dt+

√
VtdWt, X0 = x ∈ R,

dVt = κ (θ − Vt) dt+ ξ
√
VtdBt, V0 = v0 > 0,

where κ > 0 is called the mean-reversion speed, θ > 0, the long-term variance, ξ > 0 the volatility of

volatility, and where the two Brownian motions (Wt)t≥0 and (Bt)t≥0 are correlated with correlation

parameter ρ ∈ [−1, 1]. Simulating such a model can be done as follows:

(i) on a small time interval [t, t+∆] discretise the two SDEs as

Xt+∆ −Xt =

(
r − Vt

2

)
∆+

√
∆VtZ

(1)
t ,

Vt+∆ − Vt = κ (θ − Vt)∆ + ξ
√

∆VtZ
(2)
t ,

where for any t ≥ 0, Z
(1)
t and Z

(2)
t are Gaussian with zero mean and unit variance (but

correlated with correlation ρ);

(ii) At some time t ≥ 0, simulate the two-dimensional Gaussian random variable
(
Z

(1)
t , Z

(2)
t

)
.

Since the values of Xt and Vt are known, we can deduce the values of Xt+∆ and Vt+∆;

2.2. Random paths simulation and option pricing 45

(iii) iterate this procedure.

When following these steps, several problems may arise, in particular a large negative value of

Z
(2)
t can lead to a negative value of Vt+δt , and hence taking its square-root is not allowed. This

seemingly simple simulation question is in fact a difficult problem and finer results are needed.

We shall not however study them here, but refer the interested reader to [34] for complete and

thorough results and to [66] for the particular case of the Heston model.

2.2.2 Variance reduction methods

In Section 2.2.1 we have shown that the variance of the error arising from estimating an expectation–

and hence option prices—was or order 1/n, where n is the number of simulations. Variance reduc-

tions methods are a tool developed to decrease this variance while keeping the estimator unbiased.

This implies that, for a given number of simulations, the estimator will be more robust. There are

essentially three types of variance reduction methods and we shall only concentrate on the first

two, leaving the third one for a more advanced course on Monte Carlo methods:

(i) Antithetic variables;

(ii) Control variables;

(iii) Importance sampling.

The method of antithetic variables is based on the following idea: if the random variable U is

uniformly distributed on the closed interval [0, 1], then so is 1 − U . If one simulates a random

path based on U , one might observe large—though rare—movements of U . Simulating the path

both with U and with 1 − U clearly compensates such large positive occurrences. We shall say

that the pair (U, 1 − U) is antithetic. Let now f be a monotone function. The transformation

method derived in Section 2.1.3 implies that the random variables f−1(U) and f−1(1−U) form an

antithetic pair as well. In particular, in the standard Gaussian case, Z and −Z form an antithetic

pair. We leave this proof as a guided exercise:

Exercise 13. Let X be a random variable with finite mean µ ∈ R, finite variance σ2 and let n ∈ N.

Define a family
(
Xi, X̃i

)
i=1,...,n

of iid pairs, where all the Xi and X̃i have the same distribution

as X. Note that for fixed i = 1, . . . , n, the random variables Xi and X̃i may not be—and in general

will not be—independent. Consider the two estimators

θ̂n :=
1

2n

2n∑
i=1

Xi and θ̃n :=
n∑

i=1

(
Xi + X̃i

2n

)
.

• Using the central limit theorem, determine the estimation error in both the standard case

and the antithetic case.

2.2. Random paths simulation and option pricing 46

• Give a condition on the covariance cov
(
Xi, X̃i

)
so that the antithetic method reduces the

variance of the estimator.

Solution. The following quantity are immediate from the definitions of the estimators θ̃n and θ̂n:

E
(
θ̂n

)
= µ, V

(
θ̂n

)
=
σ2

2n
,

E
(
θ̃n

)
= µ, V

(
θ̃n

)
=

1

n
V

(
Xi + X̃i

2

)
=:

σ̃2

n
.

The central limit theorem therefore implies that

θ̂n − µ

σ/
√
2n

converges in distribution to N (0, 1);

θ̃n − µ

σ̃/
√
n

converges in distribution to N (0, 1).

Note that we can replace σ̃ by the standard deviation of the n-sample
{

X1+X̃1

2 , . . . , Xn+X̃n

2

}
, and

we denote it s̃n. For any α ∈ (0, 1), this provides a (1− α)-confidence interval of the form[
µ−

s̃xα/2√
n
, µ+

s̃xα/2√
n

]
,

where xα/2 is the unique solution to the equation N
(
xα/2

)
= 1− α/2.

We now wish to find a condition that ensures that the new estimator θ̃n has a lower variance

than the original one θ̂n, i.e.

1

n
V

(
Xi + X̃i

2

)
= V

(
θ̃n

)
< V

(
θ̂n

)
=

1

2n
V (Xi) ,

which is tantamount to V
(
Xi + X̃i

)
< 2V (Xi). Since

V
(
Xi + X̃i

)
= V (Xi) + V

(
X̃i

)
+ 2cov

(
Xi, X̃i

)
= 2V (Xi) + 2cov

(
Xi, X̃i

)
,

the variance of the new estimator will be reduced as soon as cov
(
Xi, X̃i

)
< 0.

The method of control variates builds upon the antithetic variable methodology. In order to

estimate θ := E(g(X)), where the function g : R → R represents the payoff function, the antithetic

variables method suggests to use
1

2
(E(g(X)) + E(g(Y))) instead where X and Y are negatively

correlated. Consider the same structure as before, i.e. we observe (generate) a sample (Xi)1≤i≤n

of iid random variables with the same distribution as X, where E(g(X)) <∞. Let us now assume

that we can find a functional f : R → R sufficiently close (in some sense to be made precise)

to g and such that the quantity E (f(Y)) can be computed easily, and assume further that we

have another sample (Yi)1≤i≤n of random variables such that the pairs (g(Xi), f(Yi)) form an iid

sequence. Consider now the new random variable

θ̂βi := g(Xi) + β
(
f(Yi)− E (f(Yi))

)
,

2.2. Random paths simulation and option pricing 47

where β is some real number. Compute now the sample mean

θ̂β(n) :=
1

n

n∑
i=1

θ̂βi .

The control variate estimator θ̂β(n) is unbiased (E(θ̂β(n)) = E(g(X))) and its variance reads

V
(
θ̂β(n)

)
=

1

n

(
V (g(X)) + β2V (f(Y)) + 2β cov (f(Y), g(X))

)
.

Note in particular that

V
(
θ̂β(n)

)
< V

(
θ̂0(n)

)
if and only if β2V (f(Y)) < −2β cov (f(Y), g(X)) ,

i.e. the control variate estimator is more robust than the ordinary sample mean V
(
θ̂0(n)

)
as soon

as the inequality on the right-hand side is satisfied. The function β 7→ V
(
θ̂β(n)

)
is a quadratic with

strictly positive dominant coefficient and hence its unique minimum is attained at

β∗ := argmin
(
V
(
θ̂β(n)

))
= −cov (f(Y), g(X))

V (f(Y))
;

therefore the estimator and its variance read

θ̂β
∗

(n) = g(X)− cov (f(Y), g(X))

V (f(Y))
(f(Y)− E (f(Y))) ,

V
(
θ̂β

∗

(n)

)
= V (g(X))− cov (f(Y), g(X))

2

V (f(Y))
= V (g(X))

(
1− ρ (f(Y), g(X))

2
)
.

The last equality above clearly implies that the higher the correlation between the two payoffs

f(Y) and g(X), the lower the variance of the estimator, and hence the more robust the estimator.

One may however question this approach since the optimal coefficient β∗ requires the knowledge

of the covariance between f(Y) and g(X). In practice, one usually replace the optimal coefficient

by its sample mean estimate

β̂n :=

∑n
i=1

(
g(Xi)− n−1

∑n
j=1 g(Xj)

)(
f(Yi)− n−1

∑n
j=1 f(Yj)

)
∑n

i=1

(
g(Xi)− n−1

∑n
j=1 g(Xj)

)2 .

The strong law of large numbers clearly implies that β̂n converges to β∗ as n tends to infinity.

Note that this estimate is nothing else but the slope of the least-square regression of the scatter

plot (g(Xi), f(Yi)).

We now build upon the previous method to study Importance sampling. Consider as before a

random variable X, assumed to have a density f (we assume for simplicity that the support of the

distribution is the whole real line). We wish to estimate θ := Ef [h(X)], for some function h, which

we assume to be positive. The standard Monte Carlo estimate reads θ̂n := n−1
∑n

i=1 h(Xi), where

the family (Xi)1≤i≤n is independent and identically distributed as X. Let now g be a strictly

positive function. We have

θ = Ef [h(X)] =

∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)
g(x)dx =: Eg

[
h(X)

f(X)

g(X)

]
.

2.2. Random paths simulation and option pricing 48

The two functions f and g are said to be mutually equivalent. We then define the g-estimator θ̂gn by

θ̂gn :=
1

n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)
.

It is clear that this estimator is unbiased. Let us assume for simplicity that θ = 0 (if it is not, then

one can subtract θ2 everywhere in the computations below). We then have

Vg
[
θ̂gn

]
= Eg

(1

n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)

)2
 =

1

n
Eg

[(
h(X)

f(X)

g(X)

)2
]
.

We therefore obtain

Vf
[
θ̂n

]
− Vg

[
θ̂gn

]
=

∫
h2(x)

(
1− f(x)

g(x)

)
f(x)dx.

Since we wish to have a lower variance, we need to choose g such that g(x) > f(x), when h2(x)f(x) is large,

g(x) < f(x), when h2(x)f(x) is small.

Example. Consider the integral I :=
∫ 1

0

(
1− x2

)1/2
dx. A simple change of variables x 7→ cos(z)

implies that I = π/4. We wish to determine a method to approximate accurately π. Note

that we can rewrite the integral as I = E [h(U)], where U is uniformly distributed on [0, 1] and

h : x 7→
√
1− x2. The standard Monte Carlo estimator is θ̂ := n−1

∑n
i=1 h(Ui), where the family

(Ui)1≤i≤n is iid with common distribution U . Consider now the approximation of the ideal density

g̃(x) :=
h(x)f(x)

θ̂
=

nh(x)∑n
i=1 h(Xi)

,

since f ≡ 1. However, the function g̃ does not integrate to 1, so it is not a proper density function.

On each interval Jk :=
[
k−1
n , kn

]
, for k = 1, . . . , n, define the midpoint mk := (2k − 1)/n, and

ξk :=
h(mk)∑n
j=1 h(mj)

.

it is clear that all the ξk are non negative and sum up to one. Hence they correspond to the

probabilities of sampling from the interval Jk. Define now the function g(x) := nξk11{x∈Jk} for any

x ∈ [0, 1]. Compute now the variance of the g-estimator and study (numerically) the convergence

differences between this estimator and the standard Monte Carlo estimator.

2.2.3 Option pricing

Recall now that by Theorem 0.2.4: under absence of arbitrage, the value of an option is equal to

the discounted expectation of its terminal payoff, where the expectation is taken under the risk-

neutral probability. Consider first the case of a European call option in the Black-Scholes model.

In Section 2.2.1, we have seen how to generate random paths in the Black-Scholes model and have

provided a way to estimate the expectation of a random variable. We hence leave it as an exercise:

2.2. Random paths simulation and option pricing 49

Exercise 14. Let (St)t≥0 follow the Black-Scholes model with r = 5%, σ = 20% and S0 = 100.

Consider further a European call option with maturity T = 1 year and strike K = 100, and denote

C0(K) its value (to be determined) at inception. Determine a Monte-Carlo procedure to estimate

the value C0(K) of this call option. Use MATLAB to output the following graph:

• with 10 time subintervals, show the convergence of the estimator with respect to the number

of simulated paths;

• with 1000 paths, show the convergence of the estimator with respect to the number of time

subintervals;

• with 1000 paths and 100 time subintervals, plot the functionK 7→ C0(K) forK = 20, . . . , 150.

2.2.4 Application: European down and out barrier option under Black-

Scholes

We consider now a more elaborate example, which may reveal some flaws of basic Monte Carlo

schemes. We wish to determine the value of a down-and-out European barrier put option and the

corresponding call option. The option (with strike K, maturity T and barrier B) is written on

the underlying stock price (St)t≥0, which follows the Black-Scholes model (Definition 1.1.11). The

payoff of the put and the call respectively read

(K − ST)+ 11{inf{St,t∈[0,T]}>B} and (ST −K)+ 11{inf{St,t∈[0,T]}>B}.

The simple (without variance reduction methods) Monte Carlo scheme is straightforward to imple-

ment. Indeed, we simply need to draw paths according to the simulation scheme presented above.

Out of all these paths, we only keep those that have not dropped below the barrier B at some

time between the inception and the maturity. It is clear that the level of the barrier must be set

above the initial stock price S0, otherwise the option is always knocked-out. The plot 2.3 below

numerically illustrates the convergence of the Monte Carlo method.

2.2.5 Application: Bond pricing with the CIR model

In this example, we would like to highlight some technical difficulties that may arise in the simula-

tion of locally degenerated processes. Let (Xt)t≥0 be a stochastic process satisfying the following

stochastic differential equation:

dXt = κ (θ −Xt) dt+ σ
√
XtdWt, with X0 > 0, (2.2.3)

where κ, θ and σ are strictly positive constants, and W is a standard Brownian motion. This

process is known in the probability literature as the Feller process. In finance, it has been (and

2.2. Random paths simulation and option pricing 50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

Figure 2.3: Convergence of the European down-and-out put option in the Black-Scholes model

under Monte Carlo simulations with 20 time steps. The dotted line corresponds to the standard

European Put option price. The barrier is equal to 10 for the solid line and to 60 for the dashed

line. The other parameters are: S0 = 90, K = 100, T = 1 year, r = 10% and σ = 20%. The

horizontal axis corresponds to the number of simulations.

2.2. Random paths simulation and option pricing 51

still is) used as a standalone interest rate process called the Cox-Ingersoll-Ross process [17]. It is

also the basis of the Heston stochastic volatility model [40], where X represents the instantaneous

volatility of a stock price process (St)t≥0 satisfying the SDE dSt/St = rdt+
√
XtdZt with S0 > 0

and Z is another Brownian motion, which may be correlated with W . One can show that the

conditional expectation and variance of Xt read

E(Xt|X0) = θ + (X0 − θ)e−κt and V(Xt|X0) =
σ2

κ
r0e

−κt
(
1− e−κt

)
+
σ2θ

2κ

(
1− e−κt

)2
,

so that θ represents its long term mean and κ a mean-reversion strength. Let us start with a brutal

discretisation of the SDE (2.2.3). Between two times t and t+∆t, we have

Xt+∆t −Xt = κ(θ −Xt)∆t + σ
√
∆t

√
Xtñ, (2.2.4)

where ñ ∼ N (0, 1). For a given Xt > 0, since the Gaussian component ñ can take arbitrary large

values, it can clearly happen that Xt+∆t becomes strictly negative. In that case, how does one

proceed to the next step, i.e. how does one handle the term
√
Xt+∆t? Before actually tackling

this issue, one should ask whether the SDE (2.2.3) really makes sense and what happens to the

process when it hits the boundary zero. The following proposition answers this question:

Proposition 2.2.1. When 2κθ ≥ σ2 the process (Xt)t≥0 never reaches zero almost surely. If this

condition is violated, then the origin is accessible and strongly reflecting.

The proof of this proposition is outside the scope of these lecture notes, but the interested reader

can consult [45, Chapter 15, Section 6] for precise details. The notions of accessible and strongly

reflecting have a precise mathematical meaning, but they essentially imply that when 2κθ < σ2,

the process can touch the origin, in which case it immediately bounces back to the strictly positive

halfspace R∗
+. In particular, the proposition says that the process is well defined and cannot

‘become negative’ at any point in time. The condition 2κθ ≥ σ2 is commonly referred to as the

Feller condition.

Let us now return to the simulation of the Feller diffusion given by (2.2.3). For any t > 0, the

law of the random variable Xt given X0 is known exactly as a non-central chi-square distribution:

Proposition 2.2.2. Let χν,λ be a non-central chi-square random variable with ν > 0 degrees of

freedom and non-centrality parameter λ > 0, i.e. with cumulative distribution function:

P(χν,λ ≤ x) = e−λ/2
∑
n≥0

(λ/2)n

n!2n+ν/2Γ(n+ ν/2)

∫ x

0

zn−1+ν/2e−z/2dz.

Define the two following quantities:

d :=
4κθ

σ2
and ζt :=

4κe−κt

σ2 (1− e−κt)
.

Then conditional on X0, the random variable Xt is distributed as
χν,λ

ζt
e−κt.

2.2. Random paths simulation and option pricing 52

One could therefore sample the law of Xt from the chi-square distribution. However, this is

quite time-consuming, and we shall not dive into this part here. Going back to the Euler scheme

in (2.2.4), one solution suggested in the literature [48] is to replace the term
√
Xt by

√
|Xt|.

Another suggestion would be to replace it by
√
max(Xt, 0). The latter scheme means that if for

some t ≥ 0, Xt becomes negative, then the remaining process between t and t + ∆t becomes

deterministic with an upward drift equal to κθ. Many other refinements have been proposed

and we refer the interested reader to [2]. By no-arbitrage arguments, the price at time zero of a

zero-coupon bond Bt with maturity t ≥ 0 reads

Bt = E
[
exp

(
−
∫ t

0

rsds

)]
.

One can show (see [17]) that the price has the exact closed-form solution Bt = exp (mt + ntr0),

where γ := 1
2

√
κ2 + 2σ2 and

mt :=
2κθ

σ2
log

(
γeκt/2

γ cosh(γt) + κ sinh(γt)/2

)
and nt :=

sinh(γt)

γ cosh(γt) + κ sinh(γt)/2
.

Exercise 15. Implement an Euler scheme for the Feller diffusion (2.2.3) and plot the convergence

of the price of the bond as the number of paths / time steps become large. One can take the

following values for the parameters: κ = 2.1, θ = 0.09, v0 = 0.07, σ = 0.1 and t = 2.

Chapter 3

Finite difference methods for

PDEs

3.1 Reminder on PDEs and the Black-Scholes heat equation

3.1.1 Review of PDEs and their classification

A partial differential equation (PDE) is a functional equation that contains both a function and

some of its derivatives. As opposed to an ordinary differential equation (ODE) in which the function

to determine depends on one variable, the unknown function in a PDE depends on several variables.

In mathematical finance, these variables are usually the time t and a state variable x that lies in

some subset of Rn (n ≥ 1). For a given function f : R → R, we shall use interchangeably the

notations
∂f

∂x
and ∂xf to denote the derivative with respect to the (one-dimensional) variable x.

Let now Ω be a subset of Rn, u = (u1, . . . , um) a multidimensional function from Ω to Rm. For

α = (α1, . . . , αn) ∈ (N ∪ {0})n, with |α| = α1 + . . .+ αn, we denote by Dαu the partial derivative

Dαu :=
∂|α|u

∂α1
x1 · · · ∂αn

xn

=

(
∂|α|u1

∂xα1
1 · · · ∂αn

xn

, . . . ,
∂|α|um

∂xα1
1 · · · ∂αn

xn

)
,

and for any k ≥ 1, Dku := {Dαu : |α| = k} the set of all partial derivatives of order k. For example,

when |α| = 1, Du represents the gradient matrix

Du =


∂x1u1 . . . ∂xnu1

...
. . .

...

∂x1um . . . ∂xnum

 .

For a given integer k ∈ N, Dku represents the tensor of all partial derivatives of order k, namely

the collection of all partial derivatives Dαu such that |α| = k. We now let F be a function from

53

3.1. Reminder on PDEs and the Black-Scholes heat equation 54

Rnkm × Rnk−1m × . . .× Rm × Ω → Rq, and consider the following equation:

F
(
Dku,Dk−1u, . . . ,Du, u, x

)
= 0. (3.1.1)

where the higher-order term in Dku is not null.

Definition 3.1.1. The equation (3.1.1) is called a partial differential equation in u of order k.

For a given open subset Ω ∈ Rn, let u : Ω → Rm be a k-times differentiable function. It is a

solution of (3.1.1) if it satisfies F
(
Dku(x),Dk−1u(x), . . . ,Du(x),u(x), x

)
= 0, for all x ∈ Ω.

Remark 3.1.2. There is in general no guarantee that a solution to a given PDE of the form (3.1.1)

will exist. The PDE (∂xu)
2 + 1 = 0, with m = n = 1 has no real solution, for instance.

Definition 3.1.3. The PDE in (3.1.1) is called

(i) linear if it can be written as
∑k

i=0 αi(x)D
iu(x) = f(x) for some functions ai (i ≤ k) and some

function f . It is further called homogeneous if f ≡ 0;

(ii) semilinear if it can be written as αk(x)D
ku(x) + α0

(
Dk−1u(x), . . . ,Du(x),u(x), x

)
= 0;

(iii) quasilinear if it has the form

αk

(
Dk−1u(x), . . . ,Du(x), u(x), x

)
Dku(x) + α0

(
Dk−1u(x), . . . ,Du(x), u(x), x

)
= 0;

(iv) fully non-linear if it is not quasi-linear.

Example. Check the following examples (with m = 1; ∆ denotes here the Laplace operator):

• F ≡ ∂xu+ x∂yu is linear of order one;

• F ≡ ∂xu+ u∂yu is not linear of order one;

• F ≡ ∂tu− ∂xx + 1 is linear inhomogeneous of order two;

• F ≡ ∂tu− ∂xxtu+ u∂xu+ 1 is nonlinear inhomogeneous of order three;

• the heat equation on Rn: F ≡ ∂tu−∆u;

• the eikonal equation on Rn: F ≡ |Du| − 1;

• the wave equation on Rn: F ≡ ∂ttu−∆u.

Among all PDEs, we shall be interested in inhomogeneous linear second-order PDEs in the case

m = 1, namely equations of the form Lf = 0, where the operator L has the following form:

L := a11∂xx + 2a12∂xy + a22∂yy + a1∂x + a2∂y + a0. (3.1.2)

The following proposition serves as a definition of the type of a PDE.

3.1. Reminder on PDEs and the Black-Scholes heat equation 55

Proposition 3.1.4. The operator L in (3.1.2) can be reduced to one of the following three forms:

• Elliptic form: if a212 < a11a22, then L = ∂xx + ∂yy + L1;

• Hyperbolic form: if a212 > a11a22, then L = ∂xx − ∂yy + L1;

• Parabolic form: if a212 = a11a22, then L = ∂xx + L1,

where L1 is an operator of order at most one.

Proof. Without loss of generality, we consider a0 = a1 = a2 = 0 (otherwise add a quadratic term

of the form αxx
2 + αyy

2 + βxx+ βy, where αx, αy, βx, βy are constant). Assuming that a11 ̸= 0

(and in that case normalising a11 = 1), and denoting ã12 := a12/a11 and likewise for the other

parameters, we can write

L = (∂x + ã12∂y)
2
+
(
ã22 − ã212

)
∂yy.

In the elliptic case a212 < a11a22 (equivalently ã212 < ã22), the quantity β :=
(
ã22 − ã212

)1/2
is well

defined and non zero. With the new variables γ := x+ ã12y and ξ := βy, the operator L reads

L = ∂γγ + ∂ξξ
(
Laplace operator on R2

)
.

The other cases (hyperbolic and parabolic) are treated similarly.

Remark 3.1.5. In the above proposition / definition, we have assumed the coefficients of the

operator L in (3.1.2) to be constant. We could make them functions of (x, y), and the definitions

would remain the same, namely the operator L is locally elliptic at the point (x, y) if a12(x, y)
2 <

a11(x, y)a22(x, y), and is elliptic everywhere if the inequality holds for all (x, y).

Example.

• Laplace equation on Rn, ∆f = 0, is a linear elliptic PDE: a11 = a22 = 1;

• Heat equation on Rn, ∂tf −∆f = 0, is a linear parabolic PDE: a11 = a22 = −1, a1 = 1;

• Wave equation on R, ∂ttf − ∂xxf = 0, is a linear hyperbolic PDE: a11 = −a22 = 1;

• Eikonal equation on Rn, |∇u| = 1, is a non-linear first-order PDE.

Partial differential equations are normally defined together with boundary conditions. The

classical types of boundary conditions are the Dirichlet boundary conditions, i.e. u(x) is specified

when x lies at the boundary ∂Ω of the domain, the Neumann condition when the derivative of u

is set on ∂Ω, and mixed boundary conditions, which are a combination of Dirichlet and Neumann

conditions.

3.1. Reminder on PDEs and the Black-Scholes heat equation 56

3.1.2 The Black-Scholes heat equation

The aim of this section is to present the canonical financial model, namely the Black-Scholes-

Merton model, and to use it as a backbone to introduce the different numerical methods we shall

see in this course. This model was introduced in 1973 by Fischer Black and Myron Scholes [7] and

by Robert Merton [56] to represent the dynamics of an asset price. Merton and Scholes were later

(1997) awarded the Nobel Prize in Economics for this result1.

Derivation of the Black-Scholes PDE

This paragraph is intended to provide a rigorous derivation of the so-called Black-Scholes partial

differential equation, but may be omitted in a first reading. Let (Wt)t≥0 be a Brownian motion

and S := (St)t≥0 the asset price process. This model assumes the following dynamics under the

so-called historical (observed) probability measure Q:

dSt

St
= µdt+ σdWt, with S0 > 0, (3.1.3)

where µ ∈ R is called the drift and σ > 0 is the instantaneous volatility. The question we are

interested in here is the following: assuming (3.1.3), what is the value today (at time t = 0) of

a European option with payoff f(ST) at maturity T > 0? For clarity, we shall denote Vt the

value at time t ∈ [0, T] of such a financial derivative. The first step is to obtain a probabilistic

representation for the option price. As discussed before, under absence of arbitrage there exists a

probability P under which we can write

V0 = D0,TEP [f (S)] ,

where (D0,t)t≥0 represents the discount factor process satisfying the stochastic differential equation

dD0,t−−rtD0,tdt, D0,0 = 1, with (rt)t≥0 denoting the instantaneous risk-free rate. An application

of Itô’s lemma yields that the option price satisfies the stochastic differential equation

dVt =

(
µSt∂SVt + ∂tVt +

σ2

2
S2
t ∂

2
SSVt

)
dt+ σSt∂SVtdWt, (3.1.4)

at any time t between inception and maturity with appropriate boundary conditions. Consider

now a portfolio Π consisting at time t of a long position in the option V and a long position in ∆t

shares S, i.e. Πt = Vt + ∆tSt. On a small time interval [t, t + dt], the profit and loss of such a

portfolio is dΠt = dVt +∆tdSt. Using (3.1.4), we obtain

dΠt =

{
µ (∆t + ∂SVt)St + ∂tVt +

σ2

2
S2
t ∂

2
SSVt

}
dt+ (∆ + ∂SVt)σStdWt.

This expression makes it clear that the only way to eliminate the risk—solely present in the form

of the Brownian perturbations—is to set ∆t = −∂SVt. This is called delta hedging. Now, since we

1Black (1938-1995) did not get the Nobel prize as the latter is not awarded posthumously

3.1. Reminder on PDEs and the Black-Scholes heat equation 57

assume absence of arbitrage, the returns of the portfolio Πt over the period [t, t+dt] are necessarily

equal to the risk-free rate rt. Otherwise (assume the returns are higher than the risk-free one), it is

possible to construct an arbitrage, for instance by borrowing money at time t to buy the portfolio,

invest it at rate rt and sell it at time t+ dt. This implies dΠt = rΠtdt and hence

∂tVt + rS∂SVt +
σ2

2
S2∂2SSVt = rVt.

This equation is called the Black-Scholes differential equation, associated with the boundary con-

dition given by the payoff VT = f(ST). We have already proved, in Theorem 1.1.20 in Chapter 1

that the European call price converges to the (unique) solution of this partial differential equation

in a binomial tree model when the time increment tends to zero.

Reduction of the Black-Scholes PDE to the heat equation

Before trying to solve a partial differential equation, it may sound sensible to simplify it. Recall

the Black-Scholes parabolic PDE:

∂tVt + rS∂SVt +
σ2

2
S2∂2SSVt = rVt, (3.1.5)

with boundary condition VT (S) (for instance for a European call option with maturity T > 0

and strike K > 0, we have VT (S) = (ST −K)+ := max (ST −K, 0)). Define τ := T − t and the

function gτ (S) := Vt(S), then ∂tVt(S) = −∂τgτ (S) and hence

−∂τgτ + rS∂Sgτ +
σ2

2
S2∂2SSgτ = rgτ ,

with boundary condition g0(S). Define now the function f by fτ (S) := erτgτ (S), and we obtain

−∂τfτ + rS∂Sfτ +
σ2

2
S2∂2SSfτ = 0,

with boundary condition f0(S). Consider a further transformation x := log(S) and the function

ψτ (x) := fτ (S). Since S∂Sfτ (S) = ∂xψτ (x) and S
2∂2SSfτ (S) = ∂2xxψτ (x)− ∂xψτ (x), we obtain

− ∂τψτ +

(
r − σ2

2

)
∂xψτ +

σ2

2
∂2xxψτ = 0, (3.1.6)

with boundary condition ψ0(x). Finally, define the function ϕτ via ψτ (x) =: eαx+βτϕτ (x), so that

∂xψτ (x) = (αϕτ (x) + ∂xϕτ (x)) e
αx+βτ ,

∂2xxψτ (x) =
(
α2ϕτ (x) + 2α∂xϕτ (x) + ∂2xxϕτ (x)

)
eαx+βτ ,

∂τψτ (x) = (βϕτ (x) + ∂τϕτ (x)) e
αx+βτ .

With the parameters

α := − 1

σ2

(
r − σ2

2

)
and β := − 1

2σ2

(
r − σ2

2

)2

,

3.1. Reminder on PDEs and the Black-Scholes heat equation 58

Equation (3.1.6) becomes the so-called heat equation

∂τϕτ (x) =
σ2

2
∂2xxϕτ (x), (3.1.7)

for all real number x with (Dirichlet) boundary condition ϕ0(x) = e−αxψ0(x).

Direct solution of the heat equation

In the following sections, we shall use the heat equation as the fundamental example when deriving

finite-difference algorithms. In this very particular case though, one can determine an exact solution

using Fourier transform methods. Let us rewrite the problem: we wish to solve the parabolic PDE

∂τϕτ (x) = 1
2σ

2∂2xxϕτ (x), for x ∈ R with boundary condition ϕ0(x) = f(x) for some function f .

Define the Fourier transform ϕ̂τ of the function ϕτ by

ϕ̂τ (z) :=
1

2π

∫
R
eizxϕτ (x)dx, for any z ∈ R.

A double integration by parts shows that

∂̂xxϕτ (z) =
1

2π

∫
R
eizx∂xxϕτ (x)dx

=
1

2π

[
eizx∂xϕτ (x)

]
R − iz

2π

∫
R
eizx∂xϕτ (x)dx

=
1

2π

[
eizx∂xϕτ (x)

]
R − iz

2π

[
eizxϕτ (x)

]
R − z2

2π

∫
R
eizxϕτ (x)dx

= −z2ϕ̂τ (z),

where we have made the standing assumption that the functions ϕτ and ∂xϕτ converge to zero at

infinity. We also have ∂̂τϕ(z) = ∂τ ϕ̂τ (z) by Fubini’s theorem (see Theorem A.3.1 in Appendix A.3).

The heat equation therefore becomes ∂τ ϕ̂τ (z) +
1
2σ

2z2ϕ̂τ (z) = 0 in the Fourier variable z, with

boundary condition ϕ̂0(z) = f̂(z). Standard results from ODE theory imply that

ϕ̂τ (z) = f̂(z) exp

(
−σ

2z2τ

2

)
,

and hence, inverting the Fourier transform leads to

ϕτ (x) =

∫
R
e−ixzϕ̂τ (z)dz =

∫
R
e−ixz f̂(z)e−

1
2σ

2z2τdz

=

∫
R
e−ixz

(
1

2π

∫
R
eizξf(ξ)dξ

)
e−

1
2σ

2z2τdz

=
1

2π

∫
R
f(ξ)

(∫
R
eiz(ξ−x)e−

1
2σ

2z2τdz

)
dξ

=
1

σ
√
2πτ

∫
R
f(ξ) exp

(
− (x− ξ)

2

2σ2τ

)
dξ,

the third line follows by Fubini’s theorem, and the last line relies on the following equality:

ê−αz2

∣∣∣
ω
:=

1

2π

∫
R
e−αz2+iωzdz =

1

2
√
πα

exp

(
−ω

2

4α

)
,

3.2. Digression: why are we interested in PDEs? 59

with ω := x − ξ and α := σ2τ/2. The left-hand side represents the Fourier transform of e−αz2

evaluated at ω.

Separation of variables and Sturm-Liouville problems

We now briefly present a classical technique to solve some partial differential equations. We

consider again the (parabolic) heat equation (3.1.7) with natural Dirichlet boundary condition

ϕ0(x) = f(x), augmented with space boundary conditions of Dirichlet type ϕτ (0) = ϕτ (x) for

some x > 0. In particular, we seek a solution of the form

ϕτ (x) = φ(τ)ψ(x),

motivating the terminology ‘separation of variables’. Plugging this into the heat equation yields

2φ′(τ)

σ2φ(τ)
=
σ2

2

ψ′′(x)

ψ(x)
= −λ,

and yields the system of ordinary differential equations

ψ′′(x) + λψ(x) = 0, for x ∈ (0, x),

φ′(τ) + λ̃φ(τ) = 0, for τ > 0,

where λ̃ := λσ2/2, with boundary conditions φ(0) = f(x)/ψ(x) and ψ(0) = ψ(x) = 0. The second

ODE is simple and its solution is equal to φn(τ) = αn exp(−λ̃nτ). The first ODE, for ψ gives rise

to a classical Sturm-Liouville problem, with eigenvalues and eigenvectors given by

λn =

√
nπ

x
and ψn(x) = sin(λnx) for n ≥ 1,

so that the general solution

ϕτ (x) =
∑
n≥1

φn(τ)ψn(x) =
∑
n≥1

αn sin(λnx) exp

{
−σ

2λn
2

τ

}
,

and the constant αn is computed using the boundary condition.

3.2 Digression: why are we interested in PDEs?

Option pricing problems can be solved in many ways, in particular by diffusing a random process

either along a tree or according to some simulation algorithm, and then evaluate the financial

derivative backward. The underlying structure is a probability space and the tools are borrowed

from probability theory. Let us (temporarily) forget about finance and switch to physics. In the

1940s, Richard Feynman2 and Mark Kac3 (both in Cornell University, but respectively in the

Physics and in the Mathematics Departments), established a link between stochastic processes

2http://turnbull.mcs.st-and.ac.uk/ history/Biographies/Feynman.html
3http://www-history.mcs.st-andrews.ac.uk/Biographies/Kac.html

http://turnbull.mcs.st-and.ac.uk/~history/Biographies/Feynman.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Kac.html

3.3. Discretisation schemes 60

and parabolic partial differential equations, originally with a view towards solutions of the heat

equation and the Schrödinger equation. We now state the so-called Feynman-Kac representation

theorem that makes this link precise.

Assumption 3.2.1. For any t ≥ 0, the functions µ(·, t) and σ(·, t) are globally Lipschitz, with at

most linear growth, i.e. there exists a strictly positive constant C such that

|µ(x, t))− µ(y, t))|+ |σ(x, t))− σ(y, t))| ≤ C|x− y|, for any (x, y) ∈ R2,

|µ(t, x)|+ |σ(t, x)| ≤ C|x|, for any x ∈ R.

Theorem 3.2.2 (Feynmac-Kac theorem). Consider the parabolic partial differential equation

∂tu+ µ(x, t)∂xu+
σ2(x, t)

2
∂xxu− ru = 0, (3.2.1)

for all (x, t) ∈ R × [0, T), with boundary condition u(T, x) = ϕ(x), where ϕ is continuous and

satisfies ϕ(x) = O(|x|) as |x| tends to infinity. Then, under Assumption 3.2.1, the representa-

tion u(t, x) = Ex,t(ϕ(XT)) holds, where (Xt)t≥0 is the unique strong solution of the stochastic

differential equation dXs = µ(s,Xs)ds+ σ(s,Xs)dWs starting at Xt = x.

An immediate corollary is of fundamental importance here:

Corollary 3.2.3. Under the assumptions of Theorem 3.2.2, Equation (3.2.1) has a unique solution

given by u(t, x) = Ex,t(ϕ(XT)).

Note that, modulo a change of variable τ := T − t, the PDE here reduces to the heat equa-

tion (3.1.7) simply by taking r = 0, µ ≡ 0 and σ constant. More general versions of the theorem

exist, and a precise and rigorous justification is outside the scope of these lectures. It however

motivates the study of partial differential equations that we shall deal with now.

3.3 Discretisation schemes

We now focus on building up accurate numerical schemes to solve the partial differential equation

∂τu(τ, x) =
σ2

2
∂2xxu(τ, x), (3.3.1)

for τ > 0 and x in some interval [xL, xU] ∈ R, with (Dirichlet) boundary conditions u(0, x) = f(x)

(payoff at maturity), u(τ, xL) = fL(τ) and u(τ, xU) = fU (τ). The last two boundary conditions

allow one to compute the prices of options such as up-and-out or down-and-out options as presented

in Section 0.2.3. The two state-boundary points xL and xU may be infinite. The idea of finite-

difference methods is to approximate each derivative by its first or second-order approximation,

and then run a recursive algorithm starting from the time-boundary point. Before making this

3.3. Discretisation schemes 61

more precise, let us recall some basic facts on Taylor series. Let g : R → R be a three times

continuously differentiable function. For any x ∈ R, a Taylor expansion gives (with ε > 0)

g(x+ ε) = g(x) + εg′(x) +
ε2

2
g′′(x) +

ε3

6
g′′′(x) +O

(
ε4
)
, (3.3.2)

g(x− ε) = g(x)− εg′(x) +
ε2

2
g′′(x)− ε3

6
g′′′(x) +O

(
ε4
)
. (3.3.3)

Subtracting (3.3.3) from (3.3.2) gives

g′(x) =
g(x+ ε)− g(x− ε)

2ε
+O

(
ε2
)
. (3.3.4)

The expression 1
2ε [g(x+ ε)− g(x− ε)] is therefore an approximation of the derivative g′(x) with

an error of order ε2. This is called a central difference approximation of g′ at the point x. Note

that Equations (3.3.2) and (3.3.3), taken separately, give the following approximations:

g′(x) =
g(x+ ε)− g(x)

ε
+O(ε), (3.3.5)

g′(x) =
g(x)− g(x− ε)

ε
+O(ε). (3.3.6)

The first approximation is called the forward difference and the second approximation is the

backward difference. They both have an error of order ε and are therefore less accurate than

the central difference approximation. Concerning the second derivative of the function g, summing

Equations (3.3.2) and (3.3.3) gives

g′′(x) =
g(x+ ε)− 2g(x) + g(x− ε)

ε2
+O

(
ε2
)
. (3.3.7)

Note that this is the reason why we apply Taylor’s formula in (3.3.2) and (3.3.3) up to order ε4.

Had we not done so, we could have erroneously concluded that the approximation for the second

derivative would hold with an error of order ε instead of ε2.

Exercise 16. Prove Equality (0.1.1) on Page 9.

We shall study three types of numerical methods to solve the heat equation (3.3.1). Each of

them relies on one of the above discretisation scheme for the approximation of the time deriva-

tive ∂τ , while the space-derivative ∂xx (and ∂x whenever needed) is always approximated by central

differences:

• the implicit method uses a backward difference scheme, leading to an error of order ε;

• the explicit method uses a forward difference scheme, leading to an error of order ε;

• the Crank-Nicolson method uses a central difference scheme, leading to an error of order ε2.

Let us first start by constructing the time-space grid on which we will build the approximation

scheme. The time boundaries are 0 and T > 0 (the maturity of the option) and the space boundaries

3.3. Discretisation schemes 62

are xL and xU . Let m and n be two integers. We consider a uniform grid, i.e. we split the space

axis into m intervals and the time axis into n intervals, and we denote I := {0, 1, . . . , n} and

J := {0, 1, . . . ,m}. This means that each point on the grid has coordinates (iδT , xL + jδx) for

i ∈ I and j ∈ J , where δT := T
n and δx := xU−xL

m . At each node, we let ui,j := u (iδT , xL + jδx)

denote the value of the function u. Note in particular that the boundary conditions imply

u0,j = f(xL + jδx), ui,0 = fL(iδT), ui,m = fU (iδT).

From now on, we shall use the following (non standard) notation for ease of clarity.

Notation 3.3.1. For a tridiagonal matrix T ∈ Mm(R), i.e.

T :=


a1 c1 0 0

b2 a2
. . . 0

0
. . .

. . . cm−1

0 0 bm am

 , (3.3.8)

we shall use the short-hand notation T = Tm(a, b, c) for some Rm-valued vectors a, b and c, or

simply T = Tm(a, b, c) when the entries in the vectors are all the same.

Remark 3.3.2. The heat equation (3.3.1) is an example of a convection-diffusion equation −∂τ +

γ∂xx + µ∂x = 0, where γ > 0 is the diffusion coefficient and µ the convection coefficient. The

schemes we shall study below are efficient (up to some precision) to solve this parabolic partial

differential equation. However, when γ is very small, these schemes are usually not accurate at

the boundary layer, and we speak of singular perturbation problem. In fact, formally setting γ to

zero changes the nature of the PDE, which becomes first-order hyperbolic: −∂τ + µ∂x = 0. Other

methods have been proposed in the literature, and we refer the interested reader to [26] for an

overview of these.

3.3.1 Explicit scheme

In the explicit scheme, the time derivative ∂τ is evaluated using the forward difference scheme (3.3.5),

while the space second derivative ∂xx is approximated with a central difference scheme. More pre-

cisely we consider the following approximations

∂τu(τ, x) =
u(τ + δT , x)− u(τ, x)

δT
+O (δT) ,

∂xxu(τ, x) =
u(τ, x+ δx)− 2u(τ, x) + u(τ, x− δx)

δ2x
+O

(
δ2x
)
.

Ignoring the terms of order δT and δ2x, the heat equation (3.3.1) at the node (iδT , xL + jδx) becomes

ui+1,j − ui,j
δT

+O (δT) =
σ2

2

ui,j+1 − 2ui,j + ui,j−1

δ2x
+O

(
δ2x
)
, (3.3.9)

3.3. Discretisation schemes 63

which we can rewrite

ui+1,j =
δT
δ2x

σ2

2
ui,j+1 +

(
1− δT

δ2x
σ2

)
ui,j +

δT
δ2x

σ2

2
ui,j−1, (3.3.10)

for all i = 0, . . . , n− 1, j = 1,m− 1. Let us rewrite this in matrix form. To do so, define for each

i = 0, . . . , n the vectors ui ∈ Rm−1, bi ∈ Rm−1 and the matrix A ∈ Mm−1(R) by

ui := (ui,1, . . . , ui,m−1)
T
, bi := (ui,0, 0, . . . , 0, ui,m)

T
, A := Tm−1

(
1− ασ2,

ασ2

2
,
ασ2

2

)
,

where we introduce the quantity α := δT /δ
2
x. The recursion (3.3.9) thus becomes

ui+1 = Aui +
ασ2

2
bi, for each i = 0, . . . , n− 1,

where the time boundary condition reads u0 = (u0,1, . . . , u0,m−1)
T
= (f(xL + δx), . . . , f(xL + (m− 1)δx))

T
.

Example. Consider the heat equation with σ =
√
2, xL = 0, xU = 1 and boundary conditions

u(0, x) = f(x) = 2x11{0≤x≤1/2} + 2 (1− x) 11{1/2≤x≤1} and fL(τ) = fU (τ) = 0 for any τ ∈ [0, T].

The explicit solution to this initial value problem is given by

u(τ, x) =
8

π2

∑
n≥1

sin(nπx)

n2
sin
(nπ

2

)
e−n2π2τ .

Implement the explicit scheme above and study the behaviour of the computed solution with

respect to the discretisation parameters.

Remark 3.3.3. The explicit scheme—as well as the other schemes that will follow—computes the

value of the function u at some points on the grid. In the case of the Black-Scholes model, we have

performed quite a few changes of variables from the stock price S to the space variable x. Fix

some time t ≥ 0 (or remaining time τ). If one wants to compute the option value at some point S,

it is not obvious to have the grid match the corresponding x value exactly. In that case one can

perform some (linear) interpolation between the two points that are the closest to x.

Exercise 17. Comment on the link between the explicit scheme (3.3.10) and the trinomial tree

scheme in Theorem 1.2.1. How are the up, down and middle probabilities expressed in terms of

the discretisation parameters and of σ?

Remark 3.3.4. Note that as soon as the inequality σ2δT /δ
2
x ≤ 1 is satisfied, Equation (3.3.10)

implies that ui+1,j is a convex combination of the neighbouring three nodes at the previous time iδT .

In particular, if the initial datum u0,· is bounded, say u ≤ u0,j ≤ u, for all j ∈ J and for some

constants u and u, then the inequalities u ≤ ui,j ≤ u remain true for all j ∈ J and all i ∈ I.

This condition on δT and δx is called the CFL condition (after Richard Courant, Kurt Friedrichs,

and Hans Lewy, who introduced for finite difference schemes of some classes of partial differential

equations in 1928, see [16]) and clearly prevents the solution from unbounded oscillations. This

stability of the discretisation scheme will be made rigorous in Section 3.3.8 below.

3.3. Discretisation schemes 64

Exercise 18. As an example of Remark 3.3.4, consider the initial data u0,j = (−1)j for each

j = 0, . . . ,m. Compute explicitly the value of ui,j for all (i, j) ∈ I × J . What can you conclude

on the stability of the scheme?

3.3.2 Implicit scheme

In the implicit scheme, the time derivative ∂τ is evaluated using the backward difference scheme (3.3.6),

while the space second derivative ∂xx is approximated with a central difference scheme. Ignoring

the errors or orders δT and δx, the heat equation (3.3.1) therefore becomes

u(τ, x)− u(τ − δT , x)

δT
=
σ2

2

u(τ, x+ δx)− 2u(τ, x) + u(τ, x− δx)

δ2x
,

which, at the node (iδT , xL + jδx), reads

ui,j − ui−1,j

δT
=
σ2

2

ui,j+1 − 2ui,j + ui,j−1

δ2x
.

Similarly as for the explicit scheme, we can reorganise the equality and we obtain

ui−1,j = −ασ
2

2
ui,j+1 +

(
1 + ασ2

)
ui,j − α

σ2

2
ui,j−1, (3.3.11)

where as before we set α := δT /δ
2
x. As in the explicit scheme, define for each i = 1, . . . , n the

vectors ui ∈ Rm−1, bi ∈ Rm−1 and the matrix A ∈ Mm−1(R) by

ui := (ui,1, . . . , ui,m−1)
T
, bi := (ui,0, 0, . . . , 0, ui,m)

T
, A := Tm−1

(
1 + ασ2,−ασ

2

2
,−ασ

2

2

)
.

The recursion (3.3.11) becomes

ui−1 = Aui −
ασ2

2
bi, for each i = 0, . . . , n− 1,

with boundary condition u0 = (u0,1, . . . , u0,m−1)
T
=
(
f(xL + δx), . . . , f(xL + (m− 1)δx)

)T
.

3.3.3 Crank-Nicolson scheme

The Crank-Nicolson scheme uses the central difference approximation for the first-order time

derivative. It was first described in 1947 (see [19]), and was subsequently fully developed in

Los Alamos National Laboratory. Let us consider the point
(
iδT + 1

2δT , xL + jδx
)
, and perform a

Taylor series expansion around the point iδT + 1
2δT . Equation (3.3.4) (with ε = 1

2δT) gives

∂τu
∣∣∣
iδT+ 1

2 δT ,xL+jδx
=
ui+1,j − ui,j

δT
+O

(
δ2T
)
.

For the space-derivative, we average the central differences between the points (i, j) and (i+1, j):

∂xxu
∣∣∣
(i+ 1

2)δT ,xL+jδx
=

1

2

ui+1,j+1 − 2ui+1,j + ui+1,j−1

δ2x
+

1

2

ui,j+1 − 2ui,j + ui,j−1

δ2x
+O

(
δ2x
)
.

3.3. Discretisation schemes 65

The heat equation (3.3.1) thus becomes, after some reorganisation,

−ασ
2

4
ui+1,j+1 +

(
1 +

ασ2

2

)
ui+1,j −

ασ2

4
ui+1,j−1 =

ασ2

4
ui,j+1 +

(
1− ασ2

2

)
ui,j +

ασ2

4
ui,j−1.

In matrix form, this reads

Cui+1 = Dui +
1

2
ασ2bi, for i = 0, . . . , n− 1,

where

C := Tm−1

(
1 +

ασ2

2
,−ασ

2

4
,−ασ

2

4

)
, D := Tm−1

(
1− ασ2

2
,
ασ2

4
,
ασ2

4

)
,

bi :=

(
ui,0 + ui+1,0

2
, 0, . . . , 0,

ui,m + ui+1,m

2

)T

∈ Rm−1.

Exercise 19. Although computing option prices is fundamental, computing the Greeks is a key

ingredient in order to properly monitor the risks of the (portfolio of) options. Suppose we are

approximating the PDE of an option using central differences for the space variable and forward

differences in time, determine the order of accuracy for the Greeks defined in (1.1.13) on page 28.

Solution. The different Greeks can be approximated by

∆i,j := ∂xu(t, x)|(ij) =
ui,j+1 − ui,j−1

2δx
+O(δ2x),

Γi,j := ∂2xxu(t, x)
∣∣
(ij)

=
ui,j+1 − 2uij − ui,j−1

δ2x
+O(δ2x),

Θi,j := ∂tu(t, x)|(ij) =
ui+1,j − ui−1,j

2δT
+O(δ2T).

Since the three schemes are accurate to order O
(
δ2x
)
, then the Delta is accurate to order O(δx)

and the Gamma is accurate to order O(1). Likewise, the Theta is accurate to order O(δT) in the

Crank-Nicolson scheme and to order O(1) in the implicit and explicit schemes.

Remark 3.3.5. Exercise 19 above highlighted the fact that accuracy is lost when computing the

Greeks (i.e. the sensitivities of the option price with respect to its parameters). This is indeed

a well-known drawback of Crank-Nicolson type schemes, as outlined for instance in [69]. More

refined schemes have been proposed in the literature, and we refer the interested reader to the very

good monograph [27].

Remark 3.3.6. The PDE we have studied so far in (3.3.1) was associated with Dirichlet boundary

conditions. One could also consider Neumann boundary conditions of the type ∂xu(τ, xL) = aL

or ∂xu(τ, xU) = aU (for any τ ≥ 0), for some real constants aL, aU . A first-order approximation

(with error O(δx)) gives

aL = ∂xu(τ, xL) =
u(τ, xL + δx)− u(τ, xL)

δx
and aU = ∂xu(τ, xU) =

u(τ, xU)− u(τ, xU − δx)

δx
.

3.3. Discretisation schemes 66

We can therefore ‘eliminate’ both u(τ, xL) and u(τ, xU) and we are left with m − 1 points to

compute. However, since the three schemes above are of order O(δ2x), accuracy is lost at the

boundary. A second-order approximation of these boundary conditions is therefore needed:

∂xu(τ, xL) =
u(τ, xL + δx)− u(τ, xL − δx)

2δx
and ∂xu(τ, xU) =

u(τ, xU + δx)− u(τ, xU − δx)

2δx

where the error is of order O(δ2x). We have however introduced here two fictitious points xL − δx

and xU + δx. Imposing that the PDE is satisfied at the boundaries, however, allows us to remove

these fictitious points, and we are hence left (for each τ) with m+ 1 points to evaluate.

3.3.4 Generalisation to θ-schemes

One may wonder why these three schemes (implicit, explicit and Crank-Nicolson) lead to a similar

recurrence relation. Let us cast a new look at the heat equation (3.3.1) with σ =
√
2. A Taylor

series expansion at some point (t, x) in the t direction gives u(τ + δT , x) =
(
eδT ∂τu

)
(τ, x), where

we write the operator eδT ∂τ as a compact version of 1 + δT∂τ + 1
2δ

2
T∂

2
ττ + This implies that

u(τ + δT , x)− u(τ, x) =
(
eδT ∂τ − 1

)
u(τ, x) =: ∆τu(τ, x),

and hence ∂τ = δ−1
T log (1 + ∆τ); ∆τ is therefore a one-sided difference operator in the time

variable. A Taylor expansion leads to

∂τ =
1

δT
∆τ − 1

2δT
∆2

τ +O
(
∆3

τ

)
. (3.3.12)

For the central difference scheme, let ∆x be the central difference operator defined by ∆xu(τ, x) :=

u
(
τ, x+ 1

2δx
)
− u

(
τ, x− 1

2δx
)
, which we can also write as

∆x = exp

(
δx
2
∂x

)
− exp

(
−δx

2
∂x

)
= 2 sinh

(
δx∂x
2

)

in terms of the operator ∂x. Therefore ∂x =
2

δx
asinh

(
1

2
∆x

)
and Taylor expansions give

∂x =
1

δx

(
∆x − ∆3

x

24
+O

(
∆5

x

))
,

∂2xx =
1

δ2x

(
∆2

x − ∆4
x

12
+O

(
∆6

x

))
, (3.3.13)

where we recall that asinh(z) = z− 1
6z

3 +O(z5) for z close to zero. Note further that ∆2
xu(τ, x) =

u(τ, x+ δx)− 2u(τ, x) + u(τ, x− δx). Between two points (iδT , xL + jδx) and ((i+ 1)δT , xL + jδx)

on the grid, the heat equation then reads, in operator form:

ui+1,j = eδT ∂τui,j = e
1
2σ

2δT ∂2
xxuij ,

where the first equality follows by Taylor expansion (in time) and the second one holds since the

function u solves the heat equation. Consider for instance τ = θiδT+(1−θ)(i+1)δT , where θ is some

3.3. Discretisation schemes 67

fixed real number in [0, 1], and denote uθij the value of the function u at this point. Assuming they

exist, a forward Taylor expansion gives uθij = e(1−θ)δT ∂τui,j = e
1
2σ

2(1−θ)δT ∂2
xxui,j and a backward

Taylor expansion implies uθij = e−θδT ∂τui+1,j = e−
1
2σ

2θδT ∂2
xxui+1,j , so that we can write

e−
1
2σ

2θδT ∂2
xxui+1,j = e

1
2σ

2(1−θ)δT ∂2
xxui,j .

From the Taylor expansions for the differential operators ∂τ and ∂2xx derived in (3.3.12) and

in (3.3.13), we obtain—after tedious yet straightforward algebra—the so-called θ-recurrence scheme:

(
1 + αθσ2

)
ui+1,j−

αθσ2

2
(ui+1,j+1 + ui+1,j−1) =

(
1−ασ2 (1− θ)

)
ui,j+

ασ2

2
(1− θ) (ui,j+1 + ui,j−1) ,

where we recall that α := δT /δ
2
x. In matrix form, this can be rewritten as(

I− αθσ2

2
A

)
ui+1 =

(
I +

ασ2 (1− θ)

2
A

)
ui + bi, for i = 0, . . . , n− 1, (3.3.14)

where

A :=



−2 1 0 . . . 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . −2 1

0 . . . 0 1 −2


,

and where bi represents the vector of boundary conditions. The explicit, implicit and Crank-

Nicolson schemes are fully recovered by taking θ = 0, θ = 1 and θ = 1/2. Other schemes are

available, corresponding to other values of θ ∈ [0, 1], but they fall beyond the scope of this course.

A critique of the Crank-Nicolson scheme

3.3.5 Exponentially fitted schemes

In order to obtain an accuracy error of order δ2x, we used above a central difference approximation

for the second derivative ∂2xxu(τ, x). One could wonder whether other scheme could approximate

this term while keeping the same order of accuracy. In particular, we would like to find (if it exists)

such a scheme not giving rise to the spurious oscillations observed in the Crank-Nicolson scheme

when volatility is low. The main reference for this new class of scheme is [61]; it was introduced by

Il’in [43], extended to one-factor convection-diffusion equation by Duffy [25], and first applied to

mathematical finance by Cooney [15]. Since we shall only be looking at space derivative, we drop

here, temporarily, the time notations. Our goal is to determine a vector c := (c−1, c0, c1) such that

the discretised scheme

Φ̃u(x) :=
c1u(x+ δx) + c0u(x) + c−1u(x− δx)

δ2x

3.3. Discretisation schemes 68

is an O(δ2x) approximation of ∂2xxu(x). Consider now a so-called exponential fitting space

F =
{
1, eµx, e−µx

}
,

for some µ ∈ R, and introduce the linear operator

E[δx, c]u(x) := ∂2xxu(x)− Φ̃u(x).

Note that this is nothing else than the truncation error operator from Definition 3.3.7 below. In

order to choose the vector c, we make sure that the discretised scheme is exact at the discretisation

nodes on the exponential fitting space, that is E[δx, c]f(xj) = 0, for all j ∈ J and all f ∈ F . We

obtain the following system:

E[δx, c]1(xj) = −δ−2
x (c−1 + c0 + c1) = 0,

E[δx, c]e
µ·(xj) = µ2 − δ−2

x

(
c−1e

µδx + c0 + c1e
−µδx

)
= 0,

E[δx, c]e
µ·(xj) = µ2 − δ−2

x

(
c−1e

−µδx + c0 + c1e
µδx
)

= 0,

which can be solved explicitly as

c = (χx,−2χx, χx) , where χx :=
µ2δ2xe

µδx

(eµδx − 1)
2 .

Exercise 20. Find the optimal fitting vector c for the trigonometric space F = {1, sin(µx), cos(µx)},

and comment on the case µ = 0.

3.3.6 Multi-step schemes

The three schemes above are the most common schemes used in practice; it is however possible to

construct more elaborate schemes, providing better approximations (with additional computational

cost, of course). For some function g ∈ C3(R → R) and a point x ∈ R, consider the Taylor series

expansions, for some ε > 0:

f(x− ε) = f(x)− εf ′(x) +
ε2

2
f ′′(x) +O(ε3),

f(x− 2ε) = f(x)− 2εf ′(x) + 2ε2f ′′(x) +O(ε3),

so that the derivative of f can be approximated by

f ′(x) =
f(x− 2ε)− 4f(x− ε) + 3f(x)

2ε
+O(ε2).

Applying this to the heat equation at some point ((i+2)δT , xl + jδx) on the grid, together with a

central order difference for the second derivative in space, we obtain

ui,j − 4ui+1,j + 3ui+2,j

2δT
+O(δ2T) =

ui+2,j+1 − 2ui+2,j + ui+2,j−1

δ2x
+O(δ2x),

for any i = 0, . . . , n− 2 and j = 1, . . . ,m− 1, which we can rewrite

−ασ2ui+2,j+1 +
(
3 + 2ασ2

)
ui+2,j − ασ2ui+2,j−1 = 4ui+1,j − ui,j ,

3.3. Discretisation schemes 69

or, in vector notations,

Aui+2 = 4ui+1 − ui + ασ2bi+2,

where A := Tm−1(3 + 2ασ2,−ασ2,−ασ2) and again bi := (ui,0, 0, . . . , 0, ui,m) ∈ Rm−1. Note

than, in order to compute the first iteration (at time 2δT), we need to know, not only the value

function u0 at the boundary, but also at the first time step δT . This can be done by including an

initialisation step using a one-point in time discretisation between time zero and time δT .

3.3.7 Non-uniform grids

We have so far considered uniform grids (or meshes). It may be useful, for instance when consid-

ering barrier options, to construct the scheme with a mesh taking into account of the singularity

of the payoff.

Direct approach

Let us consider a uniform mesh in time as above, and the following mesh in space: we fix an integer

k ∈ {1, . . . ,m − 1} such that the mesh is uniform on [x0, xk] and uniform on [xk, xm], but with

spacing δx,1 on the first interval and δx,2 on the second one. For some (smooth enough) function g

around xk, we can rewrite the Taylor expansions (3.3.2) and (3.3.3) as

g(xk − δx,1) = g(xk)− δx,1g
′(xk) +

δ2x,1
2
g′′(xk)−

δ3x,1
6
g′′′(xk) +O

(
δ4x,1

)
,

g(xk + δx,2) = g(xk) + δx,2g
′(xk) +

δ2x,2
2
g′′(xk) +

δ3x,2
6
g′′′(xk) +O

(
δ4x,2

)
.

However, we cannot simply subtract the two expansions any longer in order to obtain an approxi-

mation of the derivatives since δx,1 ̸= δx,2. Multiplying the first equation by −δ2x,2 and the second

one by δ2x,1, though, and adding them, we obtain, after simplifications

g′(xk) = − δx,2g(xk − δx,1)

δx,1 (δx,1 + δx,2)
+
δx,1g(xk + δx,2)

δx,2 (δx,1 + δx,2)
− δx,1 − δx,2

δx,1δx,2
g(xk) +O (δx,1δx,2) .

For the second derivative, we can do similar computations and obtain

g′′(xk) =
2g(xk − δx,1)

δx,1 (δx,1 + δx,2)
+

2g(xk + δx,2)

δx,2 (δx,1 + δx,2)
− 2g(xk)

δx,1δx,2
+O (δx,1 + δx,2) .

Note, however, that the approximation for the second derivative here has an error of order one

only. Obtaining an order two is possible by using a four-point approximation, but this would break

the tridiagonal structure of the iteration matrix.

Coordinate transformation

We are now interested in constructing a non-uniform grid (in space) while preserving the second-

order accuracy of the finite-difference scheme. The idea is as follows: we construct a uniform grid

3.3. Discretisation schemes 70

on the closed interval [0, 1], and then map it in a non-linear way to the interval [S, S], the non-

linearity of the map breaking the uniformity of the mesh. More precisely, let S : [0, 1] → [S, S] be

an increasing continuous map such that S(0) = S and S(1) = S. Consider now the Black-Scholes

PDE for the function V , as written in (3.1.5), and let us define ψ(τ, ξ) ≡ Vt(S) for ξ ∈ [0, 1], with

again τ := T − t. Since

∂tV = −∂τψ, ∂SV =
∂ξψ

S′(ξ)
and ∂SSV =

∂ξξψ

S′(ξ)2
− S′(ξ)2

S′(ξ)3
∂ξψ,

the Black-Scholes PDE (3.1.5) then reads

∂τψ(τ, ξ) =
σ2

2

S(ξ)2

S′(ξ)2
∂ξξψ +

(
r − σ2

2

S(ξ)S′′(ξ)

S′(ξ)2

)
S(ξ)

S′(ξ)
∂ξψ − rψ(τ, ξ),

with appropriate boundary conditions.

Exercise 21. (Notebook BSPDE NonUniformGrid)

Consider the map

S(ξ) := B + α sinh (c1ξ + c2(1− ξ)) , ξ ∈ [0, 1].

Given B and α, compute c1 and c2 in order to ensure that S(0) = S and S(1) = S. Discuss the

influence of the parameters B and α on the behaviour of the mesh.

3.3.8 Stability and convergence analysis

We start this section with a simple example. Suppose we are interested in solving the heat equa-

tion (3.3.1) with an explicit difference scheme, as developed in Section 3.3.1. For simplicity, we

shall assume that σ =
√
0.2. We also consider the following boundary conditions:

u(0, x) = x211{x∈[0,1/2]} + (1− x)
2
11{x∈[1/2,1]} and u(τ, 0) = u(τ, 1) = 0, for all τ ≥ 0.

We plot in Figure 3.1 the outputs of the numerical implementation, where we consider (δx, δT) =

(0.1, 0.001) and (δx, δT) = (0.1, 0.1). The grid mesh is (δx)
−1 and (δT)

−1. It is clear that increasing

the time step in the second figure leads to high numerical instability. We now move on to a rigorous

justification of this fact.

A Fourier transform approach

Let us start with a few preliminary definitions and notations. We shall restrict ourselves here—

mainly for notational reasons—as before to the one-dimensional case, even though most of the

discussion below carries over to more general spaces. With a view towards more generality, let Φ

denote a (differential) operator acting on the space of smooth real functions C∞(R+,R). In the

case of the heat equation (3.3.1), Φ := L−∂τ , where L = 1
2σ

2∂xx is the rescaled Laplace operator.

In the following, we shall denote ψ∗ the (unique up to boundary point specification) solution to

3.3. Discretisation schemes 71

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
x 10

44

Figure 3.1: Explicit finite difference method for the heat equation with δx = 0.1 and δT = 0.001

(left) and δT = 0.1 (right). The upper plot corresponds to the solution at time 0 (initial condition)

and the lower plot to the solution at time 1.

the equation Φ (ψ∗) = 0. Define further Φ̃ := (Φ̃ij)i∈I,j∈J as the finite difference approximation

of Φ on the grid I × J (see Exercise 22 for an example). Note that the equation Φ(ψ) = 0,

ψ ∈ C∞(R+,R), is a partial differential equation, whereas for any (i, j) ∈ I × J , Φ̃ij(ψ) = 0 is a

so-called difference equation.

Definition 3.3.7. For any smooth real function ψ ∈ C∞(R+,R), the truncation error Eij at the

node (i, j) is defined as

Eij(ψ) := Φ̃ij(ψ)− Φ(ψ)|(iδT ,xL+jδx)
.

Since ψ∗ solves the PDE Φ(ψ) = 0, we immediately see that Eij(ψ
∗) = Φ̃ij(ψ

∗), and we shall

call this quantity the local truncation error at the lattice point (i, j).

Definition 3.3.8. The finite difference scheme (Φ̃ij)i∈I,j∈J is said to be consistent if for any

(i, j) ∈ I × J , the truncation error Eij(ψ) converges to zero as δT and δx tend to zero for any

smooth real function ψ.

Exercise 22. Consider the equation defined by Φ(ψ) = (∂t + ∂x)(ψ) ≡ 0. Assume a forward-time

forward-space discretisation scheme:

Φ̃i,j(ψ) :=
ψi+1,j − ψi,j

δT
+
ψi,j+1 − ψi,j

δx
.

Prove that the scheme is consistent.

Solution. A Taylor expansion gives

ψi+1,j = ψi,j + δT∂tψi,j +
1

2
δ2T∂

2
ttψi,j +O(δ3T),

ψi,j+1 = ψi,j + δx∂xψi,j +
1

2
δ2x∂

2
xxψi,j +O(δ3x).

3.3. Discretisation schemes 72

Plugging these expansions into the definition of the Φ̃, we can compute the truncation error for

any (i, j) ∈ I × J as

Ei,j(ψ) =
ψi+1,j − ψi,j

δT
+
ψi,j+1 − ψi,j

δx
− (∂t + ∂x)ψij

=
(
∂tψi,j +

1

2
δT∂

2
ttψi,j +O(δ2T)

)
+
(
∂xψi,j +

1

2
δx∂

2
xxψi,j +O(δ2x)

)
− (∂t + ∂x)ψij

=
1

2
δT∂

2
ttψi,j +O(δ2T) +

1

2
δx∂

2
xxψi,j +O(δ2x),

which clearly converges to zero as δx and δT tend to zero.

Exercise 23. In the case of the exponentially fitted scheme, find conditions on the fitting vector c

ensuring consistency of the scheme for the equation Φ(ψ) = ∂2xxψ ≡ 0.

Definition 3.3.9. We define the orders of accuracy p∗ (in δT) and q
∗ (in δx) as

(p∗, q∗) := sup
(i,j)∈I×J

{
(p, q) ∈ N2 : |Eij(ψ)| ≤ C (δpT + δqx) , for some C > 0

}
.

Exercise 24. What are the orders of accuracy in δT and in δx of the explicit scheme and the

Crank-Nicolson scheme? Are these schemes consistent with the original heat equation?

Solution. For the explicit scheme, p∗ = 1 and q∗ = 2, whereas in the Crank-Nicolson scheme,

p∗ = q∗ = 2.

Let ψ̃ := (ψ̃ij)i∈I,j∈J be the exact solution of the finite difference approximation scheme Φ̃

(i.e. Φ̃(ψ̃) = 0), and define the discretisation error ε by

εij := ψ̃ij − ψ∗
ij , for each i ∈ I, j ∈ J ,

namely the difference, at the point (i, j) on the grid, between the solution of the difference equation

and that of the differential equation.

Definition 3.3.10. The scheme is said to converge in the ∥·∥ norm if

lim
(δT ,δx)↓(0,0)

sup
i∈I,j∈J

∥εij∥ = 0.

The story is however not complete yet: first, the truncation error in Definition 3.3.7 is a local

concept whereas convergence in norm is a global concept. Then we have to make it clear what is

meant by the double limit in (δT , δx) in the definition of convergence? On a grid with spacing δ

and dimension m, let us define the norm ∥·∥δ by

∥v∥δ :=

δ m∑
j=1

v2j

1/2

,

for any Rm-valued vector v = (vj)j=1,...,m. It is an l2-norm on the grid and measures the size of

the solution on the grid. For a matrix (ψij)i∈I,j∈J defined on the grid I × J , we define ψi·, for

any i ∈ I, as the vector corresponding to the i-th line, so that ψi· ∈ Rm, where m := dim(J).

3.3. Discretisation schemes 73

Definition 3.3.11. The finite difference scheme Φ̃ is said to be stable in some stability region S

if there exists n0 ∈ N such that for all T > 0, there is a strictly positive constant CT satisfying∥∥∥ψ̃n·

∥∥∥2
δx

≤ CT

n0∑
i=0

∥∥∥ψ̃i·

∥∥∥2
δx
, for all 0 ≤ nδT ≤ T and (δx, δT) ∈ S.

The stability inequality above expresses the idea that the norm of the solution vector, at any

point in time, is limited by the sums of the norms of the vector solution up to time n0.

Example. We illustrate this definition with a scheme for the equation introduced in Example 22.

Consider a general forward-time forward-space discretisation scheme of the form

ψi+1,j = αψi,j + βψi,j+1,

for some α and β. Then

∥ψi+1,·∥2δx = δx
∑
j

|ψi+1,j |2 = δx
∑
j

|αψi,j + βψi,j+1|2

≤ δx
∑
j

(
α2 |ψi,j |2 + β2 |ψi,j+1|2 + 2|α||β| |ψi,j | |ψi,j+1|

)
≤ δx

∑
j

(
α2 |ψi,j |2 + β2 |ψi,j+1|2 + |α||β|

(
|ψi,j |2 + |ψi,j+1|2

))
,

since x2 + y2 ≥ 2xy for any (x, y) ∈ R2. Splitting the indices j and j + 1, we obtain

∥ψi+1,·∥2δx ≤ δx
(
α2 + |α||β|

)∑
j

|ψi,j |2 + δx
(
β2 + |α||β|

)∑
j

|ψi,j+1|2

≤ δx
∑
j

(
α2 + 2|α||β|+ β2

)
|ψi,j |2

= (|α|+ |β|)2 δx
∑
j

|ψi,j |2 .

Therefore ∥ψi+1,·∥δx ≤ (|α|+ |β|)2 ∥ψi·∥δx . Note that we have here omitted the boundary terms

arising from the second sum in the first line. We shall assume here that they are not relevant.

Repeating this, we obtain

∥ψi,·∥2δx ≤ (|α|+ |β|)2i ∥ψ0·∥2δx ,

and hence the scheme is stable if and only if |α|+ |β| ≤ 1

Recall now that the L2-norm of a function ψ : R → R is defined by ∥ψ∥L2(R) :=
(∫

R ψ(x)
2dx
)1/2

.

Definition 3.3.12. The partial differential equation Φψ = 0 is said to be well-posed if for each

T > 0 there exists CT > 0 such that

∥ψ(t, ·)∥L2(R) ≤ CT ∥ψ(0, ·)∥L2(R) ,

for all t ∈ [0, T] and for any solution ψ.

3.3. Discretisation schemes 74

We can now state the main result of this section, which provides a full characterisation of the

convergence of a scheme.

Theorem 3.3.13 (Lax Equivalence theorem). A consistent finite difference scheme of a well-posed

linear initial-valued problem converges if and only if it is stable .

Remark 3.3.14. One may wonder how this result changes when studying an inhomogeneous PDE

such as Φψ = g for some function g. Duhamel’s principle says that the solution to such a problem

can be written as the superposition of solutions to the homogeneous PDE Φψ = 0. Therefore the

concepts of well-posedness and stability follow from the homogeneous case.

The importance of this theorem stems from the fact that convergence is not easy to check

directly from the definition. However, well-posedness and stability are much easier to check in

practice. By means of Fourier methods, we shall now give a precise and easy-to-check condition

for the stability of the finite difference scheme. Let v = (vi,j) be a function defined on a grid

with space increment δx and time increment δT . We assume for now that there is no restriction in

the space domain (i.e. x ∈ R), and we fix some time nδT . The discrete Fourier transform of the

vector vn is defined as

v̂n(ξ) :=
1√
2π

∞∑
m=−∞

δxe
−imδxξvn,m, for ξ ∈ Πx :=

[
− π

δx
,
π

δx

]
, (3.3.15)

and we have the inverse Fourier transform formula

vn,m =
1√
2π

∫ π/δx

−π/δx

eimδxξ v̂n(ξ)dξ. (3.3.16)

Assume now that we have a (one-step in time) finite difference scheme which we write as

vn+1,m =

u∑
j=−d

αj(δT , δx)vn,m+j . (3.3.17)

This means that at each grid point ((n + 1)δT ,mδx) we can write the scheme using some of the

grid points at time nδT . The positive integers d and u represent how far up and down we have

to go along the grid at time nδT . Applying the inverse Fourier transform formula (3.3.16) to the

finite difference scheme (3.3.17), we have

1√
2π

∫ π/δx

−π/δx

eimδxξ v̂n+1(ξ)dξ = vn+1,m =

u∑
j=−d

αj(δT , δx)vn,m+j

=
u∑

j=−d

αj(δT , δx)
1√
2π

∫ π/δx

−π/δx

ei(m+j)δxξ v̂n(ξ)dξ

=
1√
2π

∫ π/δx

−π/δx

eimδxξ
u∑

j=−d

αj(δT , δx)e
ijδxξ v̂n(ξ)dξ,

which implies, by unicity of the Fourier transform, that

v̂n+1(ξ) =

u∑
j=−d

αj(δT , δx)e
ijδxξ v̂n(ξ) =: ζ (ξ, δT , δx) v̂n(ξ),

3.3. Discretisation schemes 75

for all ξ ∈ Πx, where the function ζ is defined in an obvious way, and does not depend on n.

Iterating this equality, we obtain

v̂n(ξ) = ζ (ξ, δT , δx)
n
v̂0(ξ). (3.3.18)

Recall Parseval identity:

∥v̂n∥2L2(Πx)
:=

∫ π/δx

−π/δx

|v̂n(ξ)|2 dξ =
∞∑

m=−∞
δx |vn,m|2 = ∥vn,·∥2δx . (3.3.19)

Recalling the definition of stability (Definition 3.3.11) of a finite difference scheme, we see that it

should be possible to express it simply in terms of the function ζ. The following theorem makes

this precise and provides us with a ready-to-use condition to check stability.

Theorem 3.3.15. A (one-step in time) finite difference scheme is stable if and only if there exist

K > 0 (independent of ξ, δx, δT) and
(
δ0T , δ

0
x

)
such that

|ζ(ξ, δT , δx)| ≤ 1 +Kδ0T ,

for all ξ, δT ∈ (0, δ0T] and δx ∈ (0, δ0x]. In particular, when the function ζ does not depend on δT

and δx, the condition |ζ(ξ)| ≤ 1 is sufficient.

The factor ζ is called the amplification factor and this analysis is called von Neumann analysis,

in memory of its founder. Applying Theorem 3.3.15 to (3.3.19) and using (3.3.18), we now see that

∥vn,·∥2δx = ∥v̂n∥2L2(Πx)
≤
∫ π/δx

−π/δx

|ζ(ξ, δT , δx)|2n |v̂0(ξ)|2 dξ

=
(
1 +Kδ0T

)2n ∥v̂0∥2L2(Πx)

=
(
1 +Kδ0T

)2n ∥v0,·∥2δx .
We now apply this result to the three finite difference schemes developed above to the heat

equation ∂τu = γ∂2xxu, with γ > 0.

Application to θ-schemes

Let us first consider the von Neumann analysis of the explicit scheme. The explicit finite differ-

ence (3.3.10) can be rewritten as

un+1,m = un,m + αγ (un,m+1 − 2un,m + un,m−1) , (3.3.20)

where we recall that α := δT /δ
2
x and γ = σ2/2. Writing un,m in terms of its Fourier trans-

form (3.3.16) and using the relation (3.3.18), the amplification factor reads

ζ(ξ, δT , δx) = 1 + αγ
(
eiξδx − 2 + e−iξδx

)
= 1 + 2αγ (cos(ξδx)− 1) = 1− 4αγ sin

(
ξδx
2

)2

.

Hence |ζ(ξ, δT , δx)| ≤ 1 if and only if αγ ≤ 1/2. The scheme is hence conditionally stable.

3.3. Discretisation schemes 76

Remark 3.3.16. Note that we could argue more directly here: if the inequality αγ ≤ 1/2 is

satisfied then using the maximum norm, the scheme (3.3.20) implies

∥un+1,·∥∞ ≤ ∥un,·∥∞ ,

and we can conclude on its stability.

The implicit finite difference (3.3.11) can be rewritten as

un,m = un−1,m + αγ (un,m+1 − 2un,m + un,m−1) . (3.3.21)

The amplification factor is

ζ(ξ, δT , δx) =
(
1− αγ

(
eiξδx − 2 + e−iξδx

))−1
=

(
1 + 4αγ sin

(
ξδx
2

)2
)−1

,

and the inequality |ζ(ξ, δT , δx)| ≤ 1 always holds. The scheme is therefore unconditionally stable.

Exercise 25. Prove that the amplification factor for the Crank-Nicolson scheme is

ζ(ξ, δT , δx) =
1− 2αγ sin

(
ξδx
2

)2
1 + 2αγ sin

(
ξδx
2

)2 ,
and conclude on the stability of the scheme.

3.3.9 Convergence analysis via matrices

We review here the convergence analysis from a different—albeit equivalent—point of view.

A crash course of matrix norms

We recall here some basic facts about vector and matrix norms, which shall be useful for a full

understanding of the matrix approach of convergence of the finite difference schemes. We let

x := (x1, . . . , xn) be a vector in Cn for some fixed n ∈ N∗. The norm ∥ · ∥ of a vector is a real

non-negative number that gives a measure of its size. It has to satisfy the following properties:

• ∥x∥ > 0 if x ̸= 0 and ∥x∥ = 0 if x = 0;

• ∥αx∥ = |α|∥x∥, for any α ∈ C;

• ∥x + y∥ ≤ ∥x∥+ ∥y∥, for any x, y ∈ Cn.

The most common norms are

• the L1-norm (or taxicab norm): ∥x∥1 :=
∑n

i=1 |xi|;

3.3. Discretisation schemes 77

• the Lp-norm (p ≥ 1): ∥x∥p :=

(
n∑

i=1

|xi|p
)1/p

;

• the infinity-norm: ∥x∥∞ := max
i=1,...,n

|xi|.

For a matrix A in Mn(C), we define its norm as follows:

Definition 3.3.17. Let ∥ ·∥ be a vector norm on Cn. We then define the subordinate matrix norm

(and by a slight abuse of language, use the same notation ∥ · ∥) by

∥A∥ := sup
x∈Cn\{0}

∥Ax∥
∥x∥

.

The following lemma, the proof of which is straightforward and left to the reader, gathers some

immediate properties of subordinate matrix norms:

Lemma 3.3.18. Let ∥ · ∥ be a subordinate matrix norm on Cn.

• the equalities ∥A∥ = supx∈Cn,∥x∥=1 ∥Ax∥ = supx∈Cn,∥x∥≤1 ∥Ax∥ hold;

• the identity matrix I satisfies ∥I∥ = 1;

• for two matrices A and B in Mn(C), the inequality ∥AB∥ ≤ ∥A∥∥B∥ always holds.

Remark 3.3.19. The Euclidean matrix norm defined by ∥A∥ :=
√∑n

i,j=1 |aij |2 for A = (aij) ∈

Mn(C) defines a matrix norm, but ∥I∥ =
√
n. It is therefore not a subordinate matrix norm.

Exercise 26. Let A = (aij) ∈ Mn(C). Prove the following statements:

• ∥A∥2 = ∥A∗∥2, where A∗ denotes the conjugate transpose of A;

• ∥A∥2 is equal to the largest singular value of A, or equivalently to the square root of the

largest eigenvalue of the positive semidefinite matrix A∗A;

• ∥A∥1 = max1≤j≤n

∑n
i=1 |aij |;

• ∥A∥∞ = max1≤i≤n

∑n
j=1 |aij |;

Norms of matrices measure in some sense their sizes. It is hence natural that they will play a

role in the behaviour of expressions such as Ap as p tends to infinity. The right tool to study this

is the spectral radius of a matrix, which we define as follows.

Definition 3.3.20. For a matrix A ∈ Mn(C), the spectral radius ρ(A) is defined as the maximum

modulus of the eigenvalues of A.

Example. Consider the matrix

A =

−1 1

3 −2

 .

Compute its 2-norm and its spectral radius.

3.3. Discretisation schemes 78

Example. Consider the two matrices

A =

1 0

2 0

 and B =

0 2

0 1

 .

Then clearly ρ(A) = 1 and ρ(B) = 1 and ρ(A + B) = 3. Therefore the inequality ρ(A + B) ≤

ρ(A)ρ(B) does not hold, and hence the spectral radius is in general not a norm.

The following lemma highlights an important and useful property of the spectral radius. Its

proof is left as an exercise.

Lemma 3.3.21. Let U ∈ Mn(C) be a unitary matrix (i.e. U∗ = U−1) and A ∈ Mn(C). Then

∥UA∥2 = ∥AU∥2 = ∥A∥2. In particular, if A is normal (i.e. AA∗ = A∗A), then ρ(A) = ∥A∥2.

The spectral radius is not a norm over the Hilbert space Mn(C). However, as shown in the

lemma, it is so on the restriction of Mn(C) to normal matrices, and in particular on its restriction

to symmetric matrices. Furthermore the spectral radius is in general not equal to the 2-norm, but

for any subordinate norm the following bound always holds:

Lemma 3.3.22. Let A ∈ Mn(C) and ∥ · ∥ a subordinate norm. For any k ∈ N∗, ρ(A) ≤ ∥Ak∥1/k.

Proof. Let λ be an eigenvalue of A with associated eigenvector u ̸= 0, then

|λ|k∥u∥ = ∥λku∥ = ∥Aku∥ ≤ ∥Ak∥∥u∥.

Therefore |λ|k ≤ ∥Ak∥ and the lemma follows.

The following theorem, proved by Gelfand [32] highlights the importance of the spectral radius,

and its relationship with the asymptotic growth rate of the matrix norm.

Theorem 3.3.23. For any matrix norm ∥ · ∥ and any matrix A ∈ Mn(C), ρ(A) = lim
k↑∞

∥Ak∥1/k.

Convergence analysis

We have seen above that θ-schemes have the general representation Cun+1 = Aun+bn, where C is

the identity matrix in the implicit and explicit schemes, and the vector b represents boundary con-

ditions. Using the notation (3.3.8), let us define the matrix T ∈ Mm−1(R) by T := Tm−1(−2, 1, 1),

and rewrite the recurrence matrix equation as

un+1 = Mun + b̃n, (3.3.22)

where the matrix M takes the following form:

• Explicit scheme: M = I + αγT;

• Implicit scheme: M = (I− αγT)
−1

;

3.3. Discretisation schemes 79

• Crank-Nicolson scheme: M =

(
I− 1

2
αγT

)−1(
I +

1

2
αγT

)
,

• General θ-scheme: M = (I− αθγT)
−1

(I + αγ(1− θ)T),

where I denotes the identity matrix in Mm−1(R) and where the matrix b̃n of modified boundary

conditions is straightforward to compute. We used here γ := σ2/2 for notational convenience. The

following theorem is a matrix reformulation of the von Neumann analysis above:

Theorem 3.3.24. If ∥M∥2 ≤ 1, then the scheme is convergent.

Here the norm ∥·∥2 represents the spectral radius of a real symmetric matrix, i.e. its largest

absolute eigenvalue. This theorem can be understood with the following argument: let the vector e0

denote a small perturbation of the initial condition u0, and define (ũn)n as the perturbed solution.

By (3.3.22), we can write

ũn = Mũn−1 + b̃n−1 = M2ũn−2 +Mb̃n−2 + b̃n−1 = . . . = Mnũ0 +
n−1∑
i=0

Mn−1−ib̃i.

Therefore the error satisfies en := un − ũn = Mne0, and hence ∥en∥2 = ∥Mne0∥2 ≤ ∥Mn∥2 ∥e0∥2.

Since we want the error to remain bounded, we need to find a constant M > 0 such that ∥en∥2 ≤

M ∥e0∥2. It is clear that this will be satisfied as soon as ∥M∥2 ≤ 1.

Exercise 27. Show that the eigenvalues of a real symmetric matrix matrix are real.

Exercise 28. For p ∈ N∗, consider the matrix Tp(a, b, c) ∈ Mp(R), where (a, b, c) ∈ R3 with

bc > 0. Prove that it has exactly p eigenvalues (λk)1≤k≤p and that

λk = a+ 2
√
bc cos

(
πk

p+ 1

)
, for k = 1, . . . , p.

Solution. Let λ ∈ R be an eigenvalue corresponding to the eigenvector u = (u1, . . . , um)
T ̸= 0.

This implies that Tp(a, b, c)u = λu and the difference equation

buk−1 + auk + cuk+1 = λuk, for k = 1, . . . ,m,

where we added the auxiliary boundary conditions u0 = um+1 = 0. This can be rewritten as

buk−1 +(a−λ)uk + cuk+1 = 0. The solutions to such an equation can be expressed in terms of the

roots of the characteristic polynomial P : x 7→ cx2 + (a − λ)x + b. Let q1 and q2 denote the two

(possibly complex) roots of P. There exist two constant α and β such that uk = αqk1 +βq
k
2 , for any

k = 0, . . . ,m+ 1. The two boundary conditions at k = 0 and k = m+ 1 imply

α = −β and

(
q1
q2

)m+1

= 1.

We further know that q1q2 = b/c, which implies

q
2(m+1)
1 =

(
b

c

)m+1

and q
−2(m+1)
2 =

(
b

c

)m+1

,

3.3. Discretisation schemes 80

so that the possible roots of P read

q1,k =

∣∣∣∣bc
∣∣∣∣1/2 exp(iπk

m+ 1

)
and q2,k =

∣∣∣∣bc
∣∣∣∣1/2 exp(−iπk

m+ 1

)
,

for k = 0, . . . ,m. For each k = 0, . . . ,m, there is one eigenvalue λk given by the equation q1,k +

q2,k = λk−a
c (sum of the roots of a polynomial of order two). This in particular implies that

λk = a+ 2
√
bc cos

(
πk

m+ 1

)
, for each k = 0, . . . ,m.

We can further compute the corresponding eigenvectors uk := (uk,1, . . . , uk,m)
T
:

uk,j = α
(
qj1,k − qj2,k

)
= 2iα

(
b

c

)j/2

sin

(
πjk

m+ 1

)
,

for k = 0, . . . ,m. Note however that u0,· = 0, so that λ0 is not an eigenvalue.

Remark 3.3.25. Let A ∈ Mm(R) and x ̸= 0 be an eigenvector of A corresponding to the

eigenvalue λ ∈ R. For any positive integer p, we can write

Apx = Ap−1 (Ax) = λAp−1x = . . . = λpx,

so that λp is an eigenvalue (with corresponding eigenvector x) of the matrix Ap. For two polyno-

mials P1 and P2, a similar argument shows that P1(λ)/P2(λ) is an eigenvalue of P1(A)/P2(A).

In the θ-schemes above, we can apply Exercise 28 to compute the m eigenvalues of the tridiag-

onal matrix Tm−1(−2, 1, 1) as

λTk = −4 sin

(
kπ

2m

)2

, for k = 1, . . . ,m− 1.

The eigenvalues of the transition matrix M in the implicit scheme then follow directly from Re-

mark 3.3.25, and we obtain

λMk =

(
1 + 4αγ sin

(
kπ

2m

)2
)−1

, for k = 1, . . . ,m− 1.

Since the ∥·∥2 norm of a normal matrix is equal to its spectral radius, i.e. the largest absolute

eigenvalue, we obtain

∥M∥2 = max
k=1,...,m−1

∣∣∣∣∣∣
(
1 + 4αγ sin

(
kπ

2m

)2
)−1

∣∣∣∣∣∣ < 1,

for any α > 0. The implicit scheme is thus unconditionally stable, consistent and hence (by

Theorem 3.3.13) convergent.

In the Crank-Nicolson scheme, the eigenvalues of the matrix M read

λMk =
1− 2αγ sin

(
kπ
2m

)2
1 + 2αγ sin

(
kπ
2m

)2 ,

3.3. Discretisation schemes 81

for k = 1, . . . ,m− 1. Therefore

∥M∥2 = max
k=1,...,m−1

∣∣λMk ∣∣ < 1, for any α > 0.

The Crank-Nicolson scheme is therefore unconditionally stable, consistent and hence convergent.

Exercise 29. Perform such an analysis for the explicit scheme and discuss its stability.

Solution. Using a similar analysis as for the implicit scheme above, we see that the eigenvalues

of the transition matrix M in the explicit scheme read

λMk = 1− 4αγ sin

(
kπ

2m

)2

, for k = 0, . . . ,m− 1.

Remark 3.3.26. We could have worked from the beginning with general θ schemes, with θ ∈ [0, 1].

In that case, a similar analysis of the eigenvalues of the transition matrix M shows that the scheme

is unconditionally stable as soon as θ ∈ [1/2, 1].

Exercise 30. Which condition on the parameters α and γ ensures that θ-schemes are convergent

when θ ∈ [0, 1/2)?

To finish with the matrix convergence analysis, let us mention and prove two results, which

provide easy-to-check conditions on the modulus of the eigenvalues of the iteration matrix.

Theorem 3.3.27 (Gerschgorin’s Theorem). The modulus of the largest eigenvalue of a square

matrix is always smaller or equal to the largest sum of the moduli of the terms along any row or

column.

Proof. Let A = (aij)1≤i,j≤n denote such a matrix and (λk, u
k)1≤k≤n its eigenvalues and associated

eigenvectors: Auk = λku
k for all k = 1, . . . , n. Fix one k ∈ {1, . . . , n} and let l := max{j ∈

{1, . . . , n} : |ukl | ≥ ukj }. From the eigenvalue equation, we can write

λk =
(
ukl
)−1

n∑
j=1

ak,ju
k
j ,

so that |λk| ≤
∑n

j=1 |ak,j |, and the theorem follows since the eigenvalues of the transposed matrix

are the same.

Theorem 3.3.28 (Brauer’s Theorem). Let A ∈ Mn(C) with eigenvalues λ1, . . . , λn. Then, for

any i ∈ {1, . . . , n}, Πi :=
∑

1≤j≤n,j ̸=i

|ai,j | ≥ |λi − ai,i|.

Proof. The proof is immediate in light of the proof of Theorem 3.3.27.

Exercise 31. Consider the Crank-Nicolson equations for the heat equation, say with σ = 1, for

j = 0, . . . , n − 1: (2I− αT)uj+1 = (2I + αT)uj , which we can rewrite as Buj+1 = (4I − B)uj , or

uj+1 = (4B−1 − I)uj , where B = T((2(1 + α),−α,−α). We know that the system is stable if and

3.4. PDEs for path-dependent options 82

only if the modulus of all eigenvalues of (4B−1 − I) is less than one, i.e. |4/λ − 1| ≤ 1, or λ ≥ 2,

where λ is an eigenvalue of B. We can also apply Theorem 3.3.28 directly, noting that aii = 2(1+α)

and maxi Πi = 2α, so that Brauer’s Theorem yields |λ−2(1+α)| ≤ 2α, or λ ∈ [2, 2+4α], showing

that the scheme is unconditionally stable, for any (non-negative) value of α.

3.4 PDEs for path-dependent options

3.4.1 The American case: Problem class

3.4.2 The Asian case

The payoff of an Asian option written on the underlying S, with maturity T , depends on the

average of the asset price over the whole life of the product. This average can be either continuous

or discrete, namely

1

T

∫ T

0

Stdt or
1

n

n∑
i=1

Sti ,

for some partition 0 < t1 < · · · < tn = T . We assume for simplicity that the underlying stock price

evolves according to the Black-Scholes dynamics:

dSt = St (rdt+ σdWt) , S0 > 0,

and we shall be interested in deriving a PDE to evaluate a continuously monitored Asian Call

option with strike K, i.e. an option with the following payoff at maturity:

VT :=

(
1

T

∫ T

0

Stdt−K

)
+

.

By risk-neutral expectation, the price at time t ∈ [0, T] is given by

Vt = E
(
e−r(T−t)VT |Ft

)
.

The discounted option price (e−rtVt)t∈[0,T] is clearly a martingale; however, it is not Markovian,

since it does not only depends on T , but on the whole trajectory. We therefore augment the state

space with the process It :=
∫ t

0
Sudu, which clearly satisfies the stochastic differential equation

dIt = Stdt, with starting value I0 = 0. Now, the couple (S, Y) forms a Markov process, and the

value of the option depends only on its terminal value, making Feynman-Kac theorem amenable

to such a problem: the function u : [0, T]× R2
+ defined by

u(t, x, y) := E

(
e−r(T−t)

(
1

T
IT −K

)
+

|St = x, It = y

)

satisfies the following:

3.5. Solving general second-order linear parabolic partial differential equations 83

Theorem 3.4.1. The function u satisfies the following partial differential equation:(
∂t + rx∂x + x∂y +

1

2
σ2x2∂xx

)
u(t, x, y) = ru(t, x, y), for all (t, x, y) ∈ [0, T)× R+ × R,

with boundary conditions

u(t, 0, y) = e−r(T−t)
(y
T

−K
)
+
, for (t, y) ∈ [0, T)× R,

lim
y↓−∞

u(t, x, y) = 0, for (t, y) ∈ [0, T)× R+,

u(T, x, y) =
(y
T

−K
)
+
, for (x, y) ∈ R+ × R.

Proof. Exercise.

3.5 Solving general second-order linear parabolic partial dif-

ferential equations

We have so far concentrated our efforts in solving the heat equation, which enabled us to solve

the Black-Scholes equation from the set of transformations developed in Section 3.1.2. However

the latter are not always available. In view of the Feynmac-Kac theorem (Theorem 3.2.2), one has

then to solve a general second-order linear parabolic partial differential equation of the form

∂tu = Lu where Lu := µ(x, t)∂xu+ a(x, t)∂xxu+ c(x, t)u, (3.5.1)

with some appropriate boundary conditions, and where the function a(·, ·) is strictly positive (equal

to 1
2σ

2(·, ·) in the heat equation above). As opposed to the heat equation, we do have here a term

in ∂x. In order to be consistent with the O(δ2x) order of accuracy of the scheme, central finite

differences for this term will be necessary.

Remark 3.5.1. Note that if the boundary condition is of the form u(T, x) = x, then the solution

to the partial differential equation above is trivially u(t, x) = x. Financially speaking, this simply

means that the price today of an option that pays out the final value of the stock price at maturity

is necessarily equal to the stock price at inception. If the boundary condition reads u(T, x) = c ∈ R,

then the value of the option at any time t ∈ [0, T] is clearly equal to ce−r(T−t).

Let us first state some existence results (recall that D represents the closure of a set D).

Theorem 3.5.2 (Maximum principle for parabolic equations). Let D and Γ be some subsets of

R×[0, T] for some T > 0. Assume that the coefficients of (3.5.1) are continuous and that a(x, t) > 0

for all (x, t) ∈ D. If

(i) Lu ≤ 0 on D \ Γ;

(ii) µ is bounded by some constant on D \ Γ;

3.5. Solving general second-order linear parabolic partial differential equations 84

(iii) u(x, t) ≥ 0 for all (x, t) ∈ Γ.

Then u(x, t) ≥ 0 on D.

This theorem is fundamental since it allows us to determine the properties of solutions of

parabolic differential equations. In particular it tells us that the solution to the Black-Scholes

equation is necessarily positive.

3.5.1 Applications to θ-schemes

Concerning the implicit finite difference scheme, the discretisation of (3.5.1) gives

ui,j = −
(
αai+1,j −

β

2
µi+1,j

)
ui+1,j−1+(1 + 2αai+1,j − ci+1,jδT)ui+1,j−

(
αai+1,j +

β

2
µi+1,j

)
ui+1,j+1,

for any i = 0, . . . , n − 1, j = 1, . . . ,m − 1, where α := δT /δ
2
x and β := δT /δx. The notation ai,j

denotes as usual the value of the function a evaluated at the node (iδT , xL + jδx), and likewise for

the other functions. In matrix notations, the problem reduces to solving the equation Ai+1ui+1 =

ui +bi for i = 1, . . . , n− 1, where (recall that T stands for the tridiagonal matrix notation (3.3.8))

Ai = Tm−1

(
β

2
µi,j − αai,j , 1 + 2αai,j − δT ci,j ,−

(
αai,j +

β

2
µi,j

))
∈ Mm−1(R),

bi =

((
αai,1 −

β

2
µi,1

)
ui,0, 0, . . . , 0,

(
β

2
µi,m−1 + αai,m−1

)
ui,m

)T

∈ Rm−1.

Exercise 32. Write the discretisation of (3.5.1) in the explicit scheme in matrix form.

In the Crank-Nicolson discretisation scheme, we can perform a similar finite-difference scheme

and after some tedious but straightforward algebra, we obtain the matrix equation Cui+1 = Dui+

bi, for i = 0, . . . , n− 1, where

C = T

(
β

4
µ̃ij −

α

2
ãij , 1 + αãij −

δT
2
c̃ij ,−

(
α

2
ãij +

β

4
µ̃ij

))
,

D = T

(
α

2
ãij −

β

4
µ̃ij , 1− αãij +

δT
2
c̃ij ,

α

2
ãij +

β

4
µ̃ij

)
,

bi =



(
α

2
ãi,0 −

β

4
µ̃i,0

)
ui+1,0 +

(
α

2
ãi,0 −

β

4
µ̃i,0

)
ui,0

0
...

0(
α

2
ãi,m−1 +

β

4
µ̃i,m−1

)
ui+1,m −

(
α

2
ãi,m−1 +

β

4
µ̃i,m−1

)
ui,m


and

ãij := a

(
iδT +

1

2
δT , xL + jδx

)
,

µ̃ij := µ

(
iδT +

1

2
δT , xL + jδx

)
,

c̃ij := c

(
iδT +

1

2
δT , xL + jδx

)
.

3.6. Two-dimensional PDEs 85

3.6 Two-dimensional PDEs

The partial differential equations we have studied so far were one-dimensional (in space). This

came from the fact that we were looking at financial derivatives written on a single stock price,

as in the one-dimensional Black-Scholes model. Many financial derivatives are actually written on

several assets—for instance basket options—and hence the methods above have to be extended to

higher dimensions. Even in the case of a single asset, higher-dimensional PDEs can be needed,

for instance in the case of stochastic volatility, stochastic interest rates. We shall focus here on

the heat equation in two dimensions, which provide us with the canonical model to study such a

feature. Let us consider the two-dimensional (in space) partial differential equation

∂τu = b1∂xxu+ b2∂yyu, (3.6.1)

on a square. From Theorem 3.1.4, we know that this PDE is parabolic if b1 > 0 and b2 > 0, which

we assume from now on. In particular when b1 = b2, the PDE (3.6.1) precisely corresponds to the

two-dimensional heat equation. Let us now see how this comes into the financial modelling picture.

In Section 3.1.2, we saw how to reduce the Black-Scholes differential equation to the heat equation

in one dimension. The two-dimensional Black-Scholes model for the pair (S1(t), S2(t))t≥0 reads

S1(t) = S1(0) exp

((
r − 1

2
σ2
1

)
t+ σ1

√
t
(
ρZ +

√
1− ρ2W

))
,

S2(t) = S2(0) exp

((
r − 1

2
σ2
2

)
t+ σ2

√
tZ

)
,

whereW and Z are two independent Gaussian random variables with zero mean and unit variance.

The two volatilities σ1 and σ2 are strictly positive, the risk-free interest rate r is non negative and

the correlation parameter ρ lies in (−1, 1). In two dimensions (in the space variable), one can show

that the Black-Scholes differential equation reads

∂tV + LV = 0, (3.6.2)

where

L := rS1∂S1 + rS2∂S2 +
1

2
σ2
1S

2
1∂S1S1 +

1

2
σ2
2S

2
2∂S2S2 + ρσ1σ2S1S2∂S1S2 − r.

For clarity, we do not mention the boundary conditions here, but it is clear that they are funda-

mental in establishing a unique solution consistent with the pricing problem. Let us consider this

equation on a logarithmic scale, i.e. x1 := log(S1) and x2 := log(S2), and define ν1 := r− 1
2σ

2
1 and

ν2 := r − 1
2σ

2
2 . The PDE (3.6.2) reduces to

∂tV + ν1∂x1V + ν2∂x2V +
1

2
σ2
1∂x1x1 +

1

2
σ2
2∂x2x2 + ρσ1σ2∂x1x2 − r = 0. (3.6.3)

In order to simplify this equation further, we need to remove the mixed second-order derivative.

Let us first recall some elementary facts from linear algebra.

3.6. Two-dimensional PDEs 86

Theorem 3.6.1 (Spectral theorem). Let A ∈ Mn(R). If the matrix A has n linearly independent

eigenvectors (u1, . . . ,un) (i.e. there exists (λ1, . . . , λn) ̸= 0 such that Aui = λiui for any i =

1, . . . , n), then the decomposition A = UΛU−1 holds where each column of U is an eigenvector and

where the matrix Λ is diagonal with Λii = λi.

Remark 3.6.2. In particular, when the matrix A is real and symmetric, the eigenmatrix U is

orthogonal, i.e. U−1 = UT , and hence A = UΛUT .

Proposition 3.6.3. Let A ∈ M2(R). Then A has at most two eigenvalues λ− and λ+ and

λ± =
1

2

(
Tr(A)± (Tr(A)− 4det(A))

1/2
)
.

The proof is left as an exercise. Consider now the covariance matrix related to the PDE (3.6.3):

Σ :=

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .

From the proposition above, we can compute explicitly its two eigenvalues λ− an λ+ (which

we respectively rename λ1 and λ2 for convenience). Denote by u1 and u2 the corresponding

eigenvectors and U := (u1u2) as in the spectral theorem. Consider finally the change of variables

(y1, y2)
T = U(x1, x2)

T . The partial differential equation (3.6.3) becomes

∂tV + α1∂y1V + α2∂y2V +
λ1
2
∂y1y1V +

λ2
2
∂y2y2V − rV = 0,

where (α1, α2)
T = U(ν1, ν2)

T . As in the one-dimensional case, let us define the transformation

V (y1, y2, t) := eβ1y1+β2y2+β3tΨ(y1, y2, t).

Upon choosing β1 := −α1/λ1, β2 := −α2/λ2 and β3 :=
α2

1

2λ1
+

α2
2

2λ2
+ r, we finally obtain

∂tΨ+
λ1
2
∂y1y1Ψ+

λ2
2
∂y2y2Ψ = 0.

We can make a last change of variable (z1, z2) := (y1, y2
√
λ1/λ2) in order to obtain the standard

heat equation in two dimensions:

∂tΨ+
λ1
2

(∂z1z1 + ∂z2z2)Ψ = 0.

3.6.1 θ-schemes for the two-dimensional heat equation

By a change of time t 7→ T −t, where T > 0 is the time boundary of the problem, the heat equation

boils down to (modulo some constant factor)

∂tu = γ2 (∂xxu+ ∂yyu) , (3.6.4)

3.6. Two-dimensional PDEs 87

and we are interested in solving it for (x, y, t) ∈ [x, x]× [y, y]× [0, T]. We specify now the following

boundary conditions:

u(x, y, 0) = u0(x, y), for any (x, y) ∈ [x, x]× [y, y],

u(a, y, t) = fa(y, t), for any (y, t) ∈ [y, y]× [0, T],

u(b, y, t) = fb(y, t), for any (y, t) ∈ [y, y]× [0, T],

u(x, c, t) = fc(y, t), for any (x, t) ∈ [x, x]× [0, T],

u(x, d, t) = fd(y, t), for any (x, t) ∈ [x, x]× [0, T].

The first boundary condition corresponds to the payoff at maturity, whereas the other boundary

conditions account for possible knock-out barriers. The functions f· are assumed to be smooth.

For (nx, ny, nT) ∈ N3, consider the discretisation steps δx > 0, δy > 0 and δT > 0 defined by

δx :=
x− x

nx
, δy :=

y − y

ny
, δT :=

T

nT
.

At some node (i, j, k) ∈ [0, nx]× [0, ny]× [0, nT] (in Cartesian coordinates: (a+ iδx, c+ jδy, kδT)),

we use the notation uki,j for the function u evaluated at this point.

Explicit scheme

At the node (i, j, k), approximating the time-derivative of the function u using a forward difference

scheme ∂tu|(i,j,k) = δ−1
T

(
uk+1
i,j − uki,j

)
+O(δT), the heat equation (3.6.4) is approximated by

uk+1
i,j =

(
1− 2 (αx + αy)

)
uki,j + αx

(
uki+1,j + uki−1,j

)
+ αy

(
uki,j+1 + uki,j−1

)
,

for any i = 1, . . . , nx − 1, j = 1, . . . , ny − 1, k = 0, . . . , nT − 1, and where we define αx := γ2δT /δ
2
x

and αy := γ2δT /δ
2
y.

Implicit scheme

At the node (i, j, k), using a backward difference scheme ∂tu|(i,j,k) = δ−1
T

(
uki,j − uk−1

i,j

)
+O(δT) for

the time-derivative, the heat equation (3.6.4) is approximated by(
1 + 2 (αx + αy)

)
uki,j − αx

(
uki+1,j + uki−1,j

)
− αy

(
uki,j+1 + uki,j−1

)
= uk−1

i,j ,

for any i = 1, . . . , nx − 1, j = 1, . . . , ny − 1, k = 0, . . . , nT − 1, and where αx and αy are defined as

in the explicit scheme.

Crank-Nicolson

If we apply the Crank-Nicolson scheme to the two-dimensional heat equation, we obtain

3.6. Two-dimensional PDEs 88

uk+1
i,j − uki,j
δT

=
γ2

2

uki+1,j − 2uki,j + uki−1,j

δ2x
+
γ2

2

uk+1
i+1,j − 2uk+1

i,j + uk+1
i−1,j

δ2x

+
γ2

2

uki,j+1 − 2uki,j + ui,j−1

δ2y
+
γ2

2

uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

δ2y
.

Using a similar Fourier analysis as above, one can further show that the Crank-Nicolson scheme

in two (space) dimensions remains unconditionally stable. Consider the following vector:

Uk :=
(
uk11, . . . , unx−1,1, u

k
12, . . . , unx−1,2, . . . , u

k
1,ny−1, . . . , unx−1,ny−1

)T
∈ R(nx−1)(ny−1).

The Crank-Nicolson scheme can be written in matrix form as follows(
I +

1

2
C

)
Uk+1 =

(
I− 1

2
C

)
Uk + bk,

where the vector bk represents the boundary conditions and where

Dx := T (a,−δx,−δx) ∈ Mnx−1(R),

Dy := −δyI ∈ Mny−1(R),

C := T (Dx,Dy,Dy) ∈ M(nx−1)2(ny−1)2(R),

a := 2γ2δT
(
δ2x + δ2y

)
.

We may solve these matrix equations as in the one-dimensional case. However, the matrix to

invert is now block-tridiagonal and its inversion is computer intensive and often not tractable for

practical purposes. We therefore search for an alternative method, tailored for this multidimen-

sional problem, in particular preserving the tridiagonal structure of the matrix.

3.6.2 The ADI method

Let L1 and L2 be linear operators, and assume that we are able to solve the equations ∂tu = L1u

and ∂tu = L2u. Taking L1 = b1∂xx and L2 = b2∂yy, the equation (3.6.1) becomes ∂tu = L1u+L2u.

We now use a central difference scheme around the point
(
k + 1

2

)
δT , i.e. perform a Taylor series

around this point, and average the central differences in space, so that (3.6.1) becomes

uk+1 − uk

δT
=

1

2

(
L1u

k+1 + L1u
k
)
+

1

2

(
L2u

k+1 + L2u
)
+O

(
δ2T
)
,

which we can rewrite as(
I − δT

2
(L1 + L2)

)
uk+1 =

(
I +

δT
2

(L1 + L2)

)
uk +O

(
δ3T
)
. (3.6.5)

Applying a central-difference scheme for the space variables as in the Crank-Nicolson scheme will

eventually lead to the computation of the inverse of the matrix version of the left-hand side, which

3.6. Two-dimensional PDEs 89

is not an easy task. However, using the identities

(1 + z1) (1 + z2) = 1 + z1 + z2 + z1z2,

(1− z1) (1− z2) = 1− z1 − z2 + z1z2,

we can turn (3.6.5) into (take z1 = −1
2δTL1 and z2 = − 1

2δTL2)(
I − δT

2
L1

)(
I − δT

2
L2

)
uk+1 =

(
I +

δT
2
L1

)(
I +

δT
2
L2

)
uk+

δ2T
4
L1L2

(
uk+1 − uk

)
+O

(
δ3T
)
.

Now, the last two terms on the right-hand side are of order O
(
δ3T
)
, so that this simplifies to(

I − δT
2
L1

)(
I − δT

2
L2

)
uk+1 =

(
I +

δT
2
L1

)(
I +

δT
2
L2

)
uk +O

(
δ3T
)
.

Let us now use a Crank-Nicolson central difference scheme for the space variables, i.e. let the

matrices L1 and L2 be the second-order approximations of the operators L1 and L2, and uk the

vector of solutions at time kδT . We obtain(
I− δT

2
L1

)(
I− δT

2
L2

)
uk+1 =

(
I +

δT
2
L1

)(
I +

δT
2
L2

)
uk, (3.6.6)

where we have ignored the terms of order O
(
δ3T
)
, O

(
δT δ

2
x

)
and O

(
δT δ

2
y

)
. Several schemes now

exist to solve such an equation. Peaceman and Rachford [58] splits (3.6.6) as follows(
I− 1

2
δTL1

)
ũk+1/2 =

(
I +

1

2
δTL2

)
uk,(

I− 1

2
δTL2

)
uk+1 =

(
I +

1

2
δTL1

)
ũk+1/2,

(3.6.7)

where the notation ũ expresses the fact that this is not an approximation of the function u at the

time (k+1/2)δT but only an auxiliary quantity. This amounts to introducing an intermediate time

step—i.e. splitting the interval [t, t+ kδT] into [t, t+ kδT /2] and [t+ kδT /2, t+ δT]—and to using

an implicit scheme on one subinterval and an explicit scheme on the other subinterval. This set of

two equations is furthermore equivalent to the original matrix equation (3.6.6), where we use the

fact that, for i = 1, 2,(
I− 1

2
δTLi

)(
I +

1

2
δTLi

)
=

(
I +

1

2
δTLi

)(
I− 1

2
δTLi

)
.

As usual, we need to specify (space) boundary conditions for this split scheme at the intermediate

time point t + kδT /2. These are simply obtained using the (space) boundary conditions at the

times t and t+ kδT and plugging them into (3.6.7).

Let us now reconsider the PDE ∂tu = L1u+ L2u, and use a backward-in-time scheme:

(I − δTL1 − δTL2)u
k+1 = uk +O(δ2T),

where we use I as the identity operator. We can rewrite this as(
I − δTL1 − δTL2 + δ2TL1L2

)
uk+1 =

(
I + δ2TL1L2

)
uk + δ2TL1L2

(
uk+1 − uk

)
+O(δ2T),

3.7. Divergence: solving one-dimensional PDEs via eigenfunction expansions 90

which implies that

(I− δTL1) (I− δTL2) u
k+1 =

(
I + δ2TL1L2

)
uk,

where the matrices L1 and L2 are defined as above, I is the identity matrix, and we have again

ignored the higher-order terms. The Douglas-Rachford method [22] reads

(I− δTL1) ũ
k+1/2 = (I + δTL2) u

k,

(I− δTL2) u
k+1 = ũk+1/2 − δTL2u

k.

As we mentioned in the one-dimensional case, the stability of the scheme is of fundamental

importance. In the case of the Douglas-Rachford scheme, we can apply the same Fourier-transform

approach and set uki,j → gkeiiδxeijδy and ũ
k+1/2
i,j → g̃gkeiiδxeijδy . We therefore obtain(

1 + 4b1δx,T sin

(
δx
2

)2
)
g̃ = 1− 4b2δy,T sin

(
δy
2

)2

,(
1 + 4b2δy,T sin

(
δy
2

)2
)
g = g̃ + 4b2δy,T sin

(
δy
2

)2

,

where δx,T := δT /δ
2
x and δy,T := δT /δ

2
y. Therefore the amplification factor g reads

g =
1 + 16b1b2δx,T δy,T sin

(
δx
2

)2
sin
(

δy
2

)2
(
1 + 4b1δx,T sin

(
δx
2

)2)(
1 + 4b2δy,T sin

(
δy
2

)2) ≤ 1,

so that the scheme is unconditionally stable. A similar analysis can be done for the Peaceman-

Rachford scheme, but we omit it here for brevity.

3.7 Divergence: solving one-dimensional PDEs via eigen-

function expansions

3.8 Finite differences for PIDEs

3.8.1 A quick review of SDE with jumps

Poisson, Compound Poisson and Lévy processes

Before diving into Partial Integro-Differential Equations (PIDEs) and their discretisations, let us

quickly recall the fundamental blocks of modelling with jumps.

Definition 3.8.1. A Poisson process (Nt)t≥0 with intensity λ > 0 is a counting process such that

(i) N0 = 0;

(ii) N has independent increments;

3.8. Finite differences for PIDEs 91

(iii) for any 0 ≤ s < t, the increment Nt−Ns is a Poisson random variable with intensity λ(t−s).

There are several alternative definitions for a Poisson process, and we shall not state them as

such, but we provide several other useful (for intuition and for computations) characterisations.

To a given Poisson process (Nt)t≥0, one can associate an increasing sequence (τ)n≥0 of stopping

times, representing the jump times of N , such that

Nt =
∑
n≥0

11{[τn,∞)}(t), for all t ≥ 0.

Since, by Definition 3.8.1(iii), P(Nt − Ns = n) = e−λ(t−s) λ
n(t−s)n

n! for any n ≥ 0, we have in

particular, for small enough δ > 0,

P(Nt+δ −Nt = 0) = 1− λδ +O(δ2),

P(Nt+δ −Nt = 1) = λδ +O(δ2),

P(Nt+δ −Nt > 1) = o(δ).

Stochastic differential equation with jumps

Let now (Nt)t≥0 denote a Poisson process with intensity λ > 0, and consider the equation

dSt = ηSt−dNt, S0 > 0.

This equation means that, at a jump time τ , the process S moves from Sτ− to Sτ = (1 + η)Sτ− .

Using the jump sequence (τn), we then obtain that, for any t ≥ 0, St = S0(1 + η)Nt . If the jump

amplitude η is time-dependent (but deterministic), then a similar computation yields

St = S0

Nt∏
n=1

(1 + ητn) , for all t ≥ 0.

A more important–and useful–equation is

dSt = µtStdt+ ηtSt− (dNt − λdt) , S0 > 0,

for some adapted process (µt)t≥0, which, similarly, admits the closed-form representation

St = S0 exp

(∫ t

0

[µs − ληs]ds

) Nt∏
n=1

(1 + ητn) , for all t ≥ 0.

Lévy processes

Definition 3.8.2. A càdlàg process (Xt)t≥0 is a Lévy process (starting at zero) if

• it has independent increments;

• it has stationary increments: for any h, t ≥ 0, the law of (Xt+h −Xt) does not depend on t;

3.8. Finite differences for PIDEs 92

• it is stochastically continuous: for any ε > 0, limh↓0 P(|Xt+h −Xt| ≥ ε) = 0.

Note that the third item is different from continuity, and it particularly excludes processes with

jumps at fixed times (such as calendar effects).

Proposition 3.8.3. If X is a Lévy process, then there exists a continuous function ψ, called the

Lévy exponent, such that

logE
(
eizXt

)
= ψ(z)t, for all z ∈ R.

Example (Brownian motion). The simplest example of a Lévy process is the (one-dimensional)

Brownian motion with drift: Wµ
t = µt + σWt. Clearly, for any t ≥ 0, Xt is a Gaussian random

variable with mean X0 + µt and variance σ2t; therefore

E
(
eizW

µ
t

)
= exp (iµzt)E

(
eizσWt

)
= exp

(
iµzt− σ2ξ2t

2

)
.

Example (Poisson process). A Poisson process (Nt)t≥0 is a counting process, in the sense that at

time t ≥ 0, Nt represents the number of events that have happened up to time t. Such a process

has independent increments and is such that for each t ≥ 0, the random variable Nt is Poisson

distributed with parameter λt for λ > 0 (the intensity), i.e.

P (Nt = n) =
(λt)n

n!
e−λt, for any n = 0, 1, . . .

Its characteristic function can be computed as

(
eizNt

)
=
∑
n≥0

(λt)n

n!
e−λteizn = exp

(
λt
(
eiz − 1

))
, for any z ∈ R.

Note that the paths of a Poisson process are non-decreasing and discontinuous.

Example (Compound Poisson processes). A compound Poisson process (Jt)t≥0 is defined as Jt :=∑Nt

n=1 Zn, where N is a Poisson process with parameter λt and (Zk)k≥0 a family of independent

and identically distributed random variables with common law F . Therefore, for any z ∈ R,

E
(
eizJt

)
= E

(
exp

(
iz

Nt∑
n=1

Zn

))
= E

(
E
(
eiz

∑m
n=1 Zn

)∣∣∣Nt = m
)

=
∑
m≥0

E
(
eiz

∑m
n=1 Zn

) (λt)m

m!
e−λt =

∑
m≥0

(∫
R
eizxF (dx)

)m
(λt)m

m!
e−λt

= exp

(
λt

∫
R

(
eizx − 1

)
F (dx)

)
.

Before going further, let us recall the notion of a Poisson random measure. For a given Poisson

process (Nt)t≥0 with intensity λ > 0, let (τNn)n≥1 denote the sequence of jump times, so that

Nt = #
{
n ≥ 1 : τNn ∈ [0, t]

}
,

3.8. Finite differences for PIDEs 93

which yields a random measure M on the half space [0,∞):

M(ω,A) := #
{
n ≥ 1 : τNn (ω) ∈ A

}
, for any A ⊂ [0,∞).

This is a positive, integer-valued measure with average E(M(A)) = λ|A|, where |A| denotes the

Lebesgue measure of the set A. In fact, M(A) is distributed as a Poisson distribution with inten-

sity λ|A|. Pathwise, we can then rewrite the Poisson process as

Nt(ω) =M(ω, [0, t]) =

∫ t

0

M(ω, ds), for any t ≥ 0,

and define the compensated random measure

M̃(ω,A) :=M(ω,A)− λ|A|.

Note that M̃(A) is neither integer-valued nor positive, and is in fact a signed measure. We can

extend this notion to that of a Poisson random measure as follows:

Definition 3.8.4. Let (Ω,F ,P) be a probability space, E ⊂ R and µ a fixed Radon measure on

(E, E). A Poisson random measure M on E with intensity measure µ is an integer-valued random

measure such that

• for almost all ω ∈ Ω, M(ω, ·) is an integer-valued Radon measure on E;

• for every A ⊂ E, P(M(A)− n) = 1
n!µ(A)

n exp(−µ(A)) for all n ∈ N;

• the variables M(A1), . . . ,M(An) are independent whenever the sets A1, . . . , An are disjoint.

Consider the case of a Compound Poisson process (CPP) with the representation

Jt :=

Nt∑
n=1

Zn, (3.8.1)

where N is a Poisson process with intensity λ and (Zn)n≥0 forms a sequence of iid random variables

with common distribution η. We shall denote by (τJn)n≥1 denote the sequence of jump times. The

jump measure J of J , defined as

J(I ×A) :=
∑
n≥1

δI(τ
J
n)δA(Zn), for any (I ×A) ∈ B ([0,∞)× Rn) ,

counts the expected number of jumps of amplitude A occurring in the time period I. This yields

an alternative (and convenient) representation to (3.8.1) as

Jt =
∑

s∈[0,t]

∆Js =

∫
[0,t]×R

zJ(ds, dz).

Lemma 3.8.5. For any t > 0, E (J([0, t]×A)) = tλη(A), for any A ⊂ Rn. In particular,

E (J([0, t]×A)) = tE (J([0, 1]×A)).

3.8. Finite differences for PIDEs 94

Proof. For I = [0, t], the jump measure simplifies to J([0, t]×A) :=
∑Nt

n=1 δA(Zn), so that

E [J([0, t]×A)] = E

[
Nt∑
n=1

δA(Zn)

]
= E

[
E

(
Nt∑
n=1

δA(Zn)

∣∣∣∣∣Nt

)]

=
∑
n≥1

E

(
n∑

k=1

δA(Zk)11{Nt=n}

)
=
∑
n≥1

P(Nt = n)

n∑
k=1

P(Zk ∈ A)

=
∑
n≥1

(λt)n

n!
e−λtnη(A) = λtη(A).

Definition 3.8.6. The map ν : A 7→ E (J([0, 1]×A)) is a finite measure on B(Rn) with ν(Rn) = λ,

and is called the Lévy measure of the process J .

The following representation is a fundamental tool in the theory of Lévy processes:

Theorem 3.8.7 (Lévy-Khinchin Representation). There exists γ ∈ R, σ > 0 and a measure ν

such that the following representation holds for any z ∈ R:

ψ(z) = iγz − σ2

2
z2 +

∫
R

(
eizx − 1− izx11{|x|≤1}

)
ν(dx).

The measure ν in the theorem is called the Lévy measure and represents the number of jumps

of size dx occurring over the time interval [0, 1]. The triplet (γ, σ, ν) is called the Lévy triplet and

completely characterises a Lévy process.

Example.

• Merton model [57]: η = N (m, δ2), so that

ν(dx) =
λ

δ
√
2π

exp

(
− (x−m)2

2δ2

)
dx;

here the jumps are symmetric around a constant m.

• Kou model [50]: ν(dx) =
(
pλ+e

−λ+x11{x>0} + (1− p)λ−e
−λ−x11{x<0}

)
dx, with λ+ > 1 and

λ− > 0; here the jumps are not symmetric.

Since there is a one-to-one link between the Lévy exponent ψ and the Lévy measure ν, it is

rather natural that, properties about the marginal distributions of the Lévy process can be given

in terms of its Lévy measure. In particular, the following proposition will be very useful in the

next chapter:

Proposition 3.8.8. For a Lévy process X with Lévy triplet (γ, σ, ν) and a real number u ∈ R, the

exponential moment E(euXt) is finite for all t ≥ 0 if and only if
∫
|x|≥1

euxν(dx) is also finite.

From a pathwise point of view, a Lévy process can be represented in the following way:

3.8. Finite differences for PIDEs 95

Proposition 3.8.9 (Lévy-Itô decomposition). For a Lévy process with Lévy triplet (γ, σ, ν), the

following decomposition holds for any ε > 0:

Xt = γt+ σWt +

∫ t

0

∫
|z|≥1

zJX(ds,dz) +

∫ t

0

∫
ε<|z|<1

zJ̃X(ds,dz)

The first double integral counts the number of large (greater than 1 in size) jumps, and is

essentially a Compound Poisson process. The second formula accounts for the (possibly infinite)

small jumps, and needs to be compensated in order to ensure convergence. The last result we

shall need on order to formulate a pricing PIDE for option prices, is an Iô formula, valid for

(one-dimensional) Lévy processes:

Proposition 3.8.10. For aLévy process X with Lévy triplet (γ, σ, ν) and f ∈ C2(R → R),

f(Xt) = f(X0)+

∫ t

0

(
σ2

2
f ′′(Xs)ds+ f ′(Xs−)dXs

)
+

∑
{s∈[0,t]:∆Xs ̸=0}

[
f(Xs−+∆Xs)−f(Xs−)−∆Xsf

′(Xs−)
]
.

Since a Lévy process takes values on the whole real line, for modelling purposes we shall be

interested in exponentials of Lévy processes. Applying Proposition 3.8.10 to Y := eX , we can write

Yt = eX0 +

∫ t

0

(
σ2

2
Ysds+ Ys−dXs

)
+

∑
{s∈[0,t]:∆Xs ̸=0}

(
Ys−e

∆Xs − Ys− − Ys−∆Xs

)
= 1 +

σ2

2

∫ t

0

Ysds+

∫ t

0

Ys−dXs +

∫ t

0

∫
R
(ez − 1− z)Ys−JX(ds, dz), (3.8.2)

since X0 = 0. Note that the second integral needs to be treated carefully since the term dXs actu-

ally contains both a diffusive part and a jump part. We now provide an alternative representation,

which will turn useful when deriving a pricing PIDE. Since the compensated jump measure reads

J̃(ds, dz) = J(ds, dz)− ν(dz)ds, we can rewrite (3.8.2) as

Yt =1 +
σ2

2

∫ t

0

Ysds+

∫ t

0

Ys−dXs +

∫ t

0

∫
R
(ez − 1− z)Ys−

[
J̃X(ds, dz) + ν(dz)ds

]
=1 +

(
γ +

σ2

2

)∫ t

0

Ysds+ σ

∫ t

0

YsdWs +

∫ t

0

Ys−

(∫
|z|≥1

zJX(ds, dz) +

∫
|z|<1

zJ̃X(ds, dz)

)

+

∫ t

0

∫
R
Ys−

{
(ez − 1) J̃X(ds, dz) + (ez − 1− z) ν(dz)ds− zJ̃X(ds, dz)

}
=1 +

(
γ +

σ2

2

)∫ t

0

Ysds+ σ

∫ t

0

YsdWs +

∫ t

0

∫
R
Ys− (ez − 1) J̃X(ds, dz)

+

∫ t

0

Ys−

(∫
|z|≥1

z
[
J̃X(ds, dz) + ν(dz)ds

]
+

∫
|z|<1

zJ̃X(ds, dz)

)

+

∫ t

0

∫
R
Ys−

{
(ez − 1− z) ν(dz)ds− zJ̃X(ds, dz)

}
=:Mt +At, (3.8.3)

where we have decomposed the second integral in the first line using the Lévy-Itô decomposition

(taking ε = 0) from Proposition 3.8.9, and we split the last integral using the compensated jump

3.8. Finite differences for PIDEs 96

measure. Here the processes M and A are defined as

Mt := 1 + σ

∫ t

0

YsdWs +

∫ t

0

∫
R
Ys− (ez − 1) J̃X(ds, dz),

At :=

∫ t

0

Ys−

{
γ +

σ2

2
+

∫
R

(
ez − 1− z11{|z|<1}

)
ν(dz)

}
ds = ψ(−i)

∫ t

0

Ys−ds,

where ψ is the Lévy exponent characterised in Theorem 3.8.7. Since M is a martingale, the

process Y is so as well if and only if ψ(−i) = 0, i.e.

γ = −σ
2

2
−
∫
R

(
ez − 1− z11{|z|<1}

)
ν(dz).

3.8.2 The pricing PIDE

We have so far studied finite difference methods to solve partial differential equations, which allowed

us to evaluate option prices when the underlying stock price process follows an Itô diffusion. How-

ever, some features of the market cannot be captured by such models, and jumps have been added

in the dynamics of stock prices. We let S denote the stock price process, which we assume satisfies

St = S0 exp(rt+Xt), where X is a Lévy process with triplet (γ, σ, ν). We assume for convenience

that the second moment of St exists for all t ≥ 0, which can be stated as
∫
|x|≥1

e2xν(dx) <∞, and

we can therefore write, using (3.8.3),

St = S0 +

∫ t

0

Su− (rdu+ σdWu) +

∫ t

0

∫
R
(ez − 1)Su− J̃X(du,dz),

where J̃X is the compensated jump measure of X defined as J̃X(du,dz) = JX(du,dz)− ν(dz)du.

Consider now a European Call option price, characterised, under the risk-neutral measure, by

Vt(s) := e−r(T−t)E [H(ST)|St = s] .

Proposition 3.8.11. If either σ > 0 or there exists β ∈ (0, 2) such that

lim inf
ε↓0

ε−β

∫ ε

−ε

|x|2ν(dx) <∞,

then the value function (t, s) 7→ Vt(s) of the European Call is continuous on [0, T) × (0,∞) and

satisfies the partial integro-differential equation(
∂t + rs∂S +

σ2s2

2
∂ss − r

)
Vt(s) +

∫
(0,∞)

[Vt(Se
y)− Vt(s)− (ey − 1) s∂sVt(s)] ν(dy) = 0,

on (0, T)× (0,∞), with boundary condition VT (s) = h(s).

Denoting τ := T − t, x := log
(
St

K

)
+ rτ , h(x) := H(Kex)

K and u(τ, x) := erτ C(t,St)
K , we can then

rewrite (3.8.4) as

∂τu(τ, x) = LX
−σ2/2u(τ, x), on (0, T)× R,

with boundary condition u(0, x) = h(x), and where the operator LX is defined as

LX
−σ2/2f(x) :=

σ2

2
(∂xx − ∂x) f(x) +

∫
R

(
f(x+ y)− f(x)− y11{|y|<1}∂xf(x)

)
ν(dy). (3.8.4)

3.8. Finite differences for PIDEs 97

Note that this is essentially the infinitesimal generator of the Lévy process, defined as

LX
γ φ := lim

t↓0

Ptφ− φ

t
,

where Pt denotes the transition (semigroup) operator of the (Markovian) Lévy process: (Ptφ)(x) :=

E[φ(Xt + x)].

Remark 3.8.12. In the case of barrier options, one needs to be careful about the boundary

conditions in space. Indeed, the condition Vt(B) = 0 for all t ∈ [0, T] in the case of a, say,

lower barrier option for an underlying process with continuous paths has to be modified here into

Vt(s) = 0 for all t ∈ [0, T] and all s ≤ B, as the stock price may jump over the barrier.

Our final statement is a converse to Proposition 3.8.11, namely a Feynman-Kac representation

for the European price function:

Theorem 3.8.13 (Feynman-Kac Representation). Let h ∈ L∞(R) and assume that σ > 0. Then

the boundary value problem

(∂t + LX
γ)f(t, x) = 0 on [0, T)× (x, x),

with boundary conditions f(T, x) = h(x) on [x, x], has a unique solution given by f(t, x) =

E [h(XT)|Xt = x], where X is a Lévy process with triplet (γ, σ, ν).

3.8.3 Finite differences

Truncating the integral

The main difference between the PDEs we have seen so far and (3.8.4) is the integral term, which

also contains the value function. The first step is therefore to approximate the integral by trunca-

tion. For some fixed tolerance level ε > 0, we wish to find y > 0 such that∣∣∣∣∣
∫
R
γ(y)dy −

∫ y

−y

γ(y)dy

∣∣∣∣∣ < ε.

Consider the case of the Merton model, where the jumps are normally distributed:

ν(dy) = g(y)dy =
1

ξ
√
2π

exp

(
− y2

2ξ2

)
dy, for all y ∈ R,

for some ξ > 0. Straightforward computations show that

g(y) ≥ ε if and only if y ∈
[
−
√
−2ξ2 log(εξ

√
2π),

√
−2ξ2 log(εξ

√
2π)

]
.

Setting y :=
√
−2ξ2 log(εξ

√
2π) allows us to control the truncation of the integral domain from R

down to [y, y]. The remaining integral can then be estimated by Newton-Cotes approximations.

3.9. Numerical solution of systems of linear equations 98

Finite difference schemes

In order to build a finite difference scheme, we need to act on two levels:

• a classical finite difference scheme for the diffusion operator;

• a discretisation of the integral term.

All the θ-schemes can be applied here, and we refer the interested reader to [13] for details about

a stable scheme (construction of the scheme and proof of its stability)

A working example: the CGMY model

We consider the CGMY model, proposed by Carr, Geman, Madan and Yor [9]. In this model, the

Lévy measure has the form ν(dy) = k(y)dy, where

k(y) =
1

ν|y|1+Y

(
e−λ+y11{y>0} + e−λ−|y|11{y<0}

)
,

where λ, λ+ are two strictly positive real numbers and Y ∈ R. Specifically,

λ± =
1

σ

√
θ2

σ2
+

2

ν
∓ θ

σ2
.

3.9 Numerical solution of systems of linear equations

In Sections 3.3 and 3.5 above, we have explored different ways to approximate a partial differential

equation. In particular, our analysis has boiled down to solving a matrix equation of the form

Ax = b, where A ∈ Mm(R) and x and b are two Rm-valued vectors. An interesting feature outlined

above was that the matrix A had a tridiagonal structure, i.e. it can be written as A = Tm(a, b, c),

where we use the tridiagonal notation (3.3.8). By construction, this matrix is invertible, and hence

the solution to the matrix equation is simply x = A−1b. Classical matrix inversion results—in

particular the Gaussian elimination method—are of order O(m3) (in the number of operations).

Since we may want to have a fine discretisation grid, the dimension m may be very large, and

these methods may be too time consuming for high-dimensional problems. We may however use

the simplified structure of the matrix A.

3.9.1 Gaussian elimination

Gaussian elimination is a method devised to solve systems of linear equations, and hence to compute

the inverse of a matrix. Note that it was invented in the second century BC, but got its name in

3.9. Numerical solution of systems of linear equations 99

the 1950s based on the fact that Gauss came up with standard notations. Consider the system
a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...

am1 am2 . . . amm




x1
...
...

xm

 =


b1
...
...

bm

 .

Assume for now that the coefficient a11 is not null. Dividing by it and modifying the last m − 1

lines, we obtain
1 a12/a11 . . . a1m/a11

0 a22 − a12(a21/a11) . . . a2m − a1m(a21/a11)
...

...
. . .

...

0 am2 − a12(am1/a11) . . . amm − a1m(am1/a11)




x1
...
...

xm

 =


b1/a11

b2 − b1(a21/a11)
...

bm − b1(am1/a11)

 .

If we now repeat this process, we obtain

1 ã12 ã13 . . . ã1m

0 1 ã23 . . . ã2m

0 0 1
...

...
...

...
. . .

. . . ãm−1,m

0 0 . . . 0 1





x1
...
...
...

xm


=



b̃1

b̃2
...
...

b̃m


.

where all the coefficients ãij and b̃i are determined recursively. The matrix equation is then solved

by backward substitution:
xm = b̃m,

xm−k = b̃m−k −
m∑

j=m−k+1

ãm−k,jxj , for any k = 1, . . . ,m− 1.

This method has however several drawbacks. The first obvious one occurs as soon as one diagonal

element becomes null, in which case, we cannot proceed as above. From a numerical point of

view, even if not null, a very small value of the diagonal element can lead to numerical (decimal)

truncation, which can get amplified as the scheme goes on.

Exercise 33. Note that a zero on the diagonal does not mean that the matrix is singular!! Consider

for example the matrix equation equation:
0 3 0

2 0 0

0 0 1



x1

x2

x3

 =


3

2

1

 .

What happens when one applies Gauss elimination? Is there however an (obvious) solution?

3.9. Numerical solution of systems of linear equations 100

The way to bypass this issue is to use pivoting. The idea is that one can interchange rows and

columns of the matrix A (keeping track of the corresponding modified vectors x and b) without

modifying the problem. Interchanging two rows implies interchanging the corresponding two el-

ements of the vector b. Interchanging two columns implies interchanging the corresponding two

elements of the vector x.

Exercise 34. Apply pivoting to the system in Exercise 33 to use Gaussian elimination.

The Gaussian elimination method therefore requires the computation of an invertible matrix B

such that the matrix BA is upper triangular. Once this is done, all that is left is (i) to compute

the product Bb and (ii) to solve the triangular system (BA)x = Bb by backward substitution. The

existence of such a matrix B is guaranteed by the following lemma, the proof of which is simply

the construction of the Gaussian elimination method itself.

Lemma 3.9.1. Let A be a square matrix. There exists at least one invertible matrix B such

that BA is upper triangular.

Some remarks are in order here:

• we never compute the matrix B;

• if the original matrix A is not invertible, then one of the diagonal elements of the matrix BA

will be null, and the backward substitution will be impossible;

• it is easy to show that det(A) = ±det(BA), the sign depending on the number of permutations

needed in order to remove any null pivot.

3.9.2 LU decomposition

In the Gaussian elimination method above, the vector b is modified when solving the matrix

equation. This makes the method rather cumbersome when one has to solve a recursive equation,

repeating the same procedure at each step. A quicker computation can be achieved by first finding

the so-called LU decomposition for the matrix A ∈ Mm(R), i.e. by determining a lower triangular

matrix L ∈ Mm(R) and an upper triangular matrix U ∈ Mm(R) such that A = LU.

Proposition 3.9.2. Let A = (aij) ∈ Mm(R) such that all the subdiagonal matrices

(a11),

a11 a11

a21 a22

 , . . . ,


a11 . . . a1k
...

. . .
...

ak1 . . . akk

 , . . . ,


a11 . . . a1m
...

. . .
...

am1 . . . amm

 ,

are invertible. Then there exist a unique lower triangular matrix L ∈ Mm(R) with unit diagonal

and upper triangular matrix U ∈ Mm(R) such that A = LU.

3.9. Numerical solution of systems of linear equations 101

In particular, if the matrix A is positive definite, then the proposition holds. The proof of this

proposition is again constructive, and the following practical computation of the decomposition is

very similar. Assume that such a decomposition holds. For any 1 ≤ i, j ≤ m we have

aij =
m∑

k=1

likukj =

i∧j∑
k=1

likukj =


li1u1j + . . .+ liiuij , if i < j,

li1u1j + . . .+ lijujj , if i > j,

li1u1j + . . .+ liiujj , if i = j.

There are m2 equations to solve and m2+m variables to determine. We therefore have the freedom

to choosem of them arbitrarily. Following Proposition 3.9.2, Crout’s algorithm proceeds as follows:

(i) for each i = 1, . . . ,m, set lii = 1;

(ii) for each j = 1, . . . ,m, let

uij = aij −
i−1∑
k=1

likukj , for i = 1, . . . , j, (3.9.1)

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)
, for i = j + 1, . . . ,m. (3.9.2)

Note that under the conditions of Proposition 3.9.2, the term ujj can never be null.

Solving the system

We are interested here in solving the matrix equation Ax = b, where A ∈ Mm(R) and x and b

are two Rm-valued vectors. If the matrix A admits an LU-decomposition, then there exist two

matrices L and U (respectively lower triangular and upper triangular) such that A = LU. We have

already used this factorisation in Theorem 2.1.7 and in Section 3.6.2 above. The system Ax = b

can therefore be written as L (Ux) = b. Set z := Ux = (zi)1≤i≤n. The new system then reads
l11 0 . . . 0

l21 l22 0
...

...
. . .

. . . 0

lm1 lm2 . . . lmm




z1
...
...

zm

 =


l11z1

l21z1 + l22z2
...

lm1z1 + . . .+ lmmzm

 =


b1
...
...

bm

 .

So that, starting from the last line, we can solve this equation by successive forward substitution:

z1 =
b1
l11
, zk =

1

lkk

bk −
k−1∑
j=1

lkjzj

 , for k = 2, . . . ,m.

Once this is done, we can then solve the other part Ux = z, i.e.
u11 u12 . . . u1m

0 u22
. . .

...
...

. . .
. . . um−1,m

0 0 0 umm




x1
...
...

xm

 =


u11x1 + . . .+ u1mxm

...

um−1,nxn−1 + ummxm

ummxm

 =


z1
...
...

zm

 .

3.9. Numerical solution of systems of linear equations 102

Backward substitution hence gives

xm =
zm
umm

, xk =
1

ukk

zk −
k+1∑
j=m

ujkxj

 , for k = m− 1, . . . , 1.

Note that the backward substitution step is exactly the same as in the Gaussian elimination

method. The LU decomposition requires
∑m−1

j=1

∑m
i=j+1

(
1 +

∑m
k=j+1

)
operations and the forward-

backward substitution requires 2
∑m

i=1 i steps. The total amount of operations is hence of order

m3/3 as m becomes large. The determinant of the matrix A is also trivially equal to u11 · · ·umm,

and also requires an order of m3/3 operations.

Remark 3.9.3. In the particular case where the matrix A is tridiagonal (as in the one-dimensional

θ-schemes), we have the obvious decomposition A = T(a, b, c) = T(1, l, 0)T(d, 0,u), where T(1, l, 0)

is lower triangular and T(d, 0, u) is upper triangular (recall the tridiagonal notation (3.3.8)). The

vectors d, u and l are computed recursively.

Exercise 35. Give an explicit representation for the vectors d, u and l in Remark 3.9.3.

3.9.3 Cholesky decomposition

We have already seen this decomposition in Theorem 2.1.7 when considering correlation matrices.

It indeed solely applies to real symmetric positive definite matrices.

Proposition 3.9.4. Let A ∈ Mm(R) be a real symmetric positive definite matrix. There exists a

unique lower triangular Z ∈ Mm(R) with strictly positive diagonal entries, such that ZZT = A.

The proof of this proposition is based on the LU decomposition above and the fact that the

inverse (when it exists) of a lower triangular matrix is again lower triangular. The construction of

the algorithm was detailed in the proof of Theorem 2.1.7 and we shall not repeat it here. From a

computational point of view—and this is left as a simple exercise—one can show that the number

of operations is of order m3/6 as the size m of the matrix A becomes large, which is twice as fast

as the LU decomposition.

3.9.4 Banded matrices

The methods we have presented so far apply in fairly general situations. In the case of the finite

difference schemes, the matrix A is tridiagonal and has hence many zeros. It is therefore natural

to wonder whether the methods above are quicker for this special type of matrices.

Definition 3.9.5. A matrix A = (aij) ∈ Mm(R) is called a banded matrix with half-bandwidth

p ∈ N (equivalently with band size 2p) if aij = 0 whenever |i− j| > p.

In the case of a tridiagonal matrix, for instance, p = 1. The following lemma—the proof of

which is left as an exercise—shows why this is important.

3.9. Numerical solution of systems of linear equations 103

Lemma 3.9.6. For a matrix A ∈ Mm(R) with half-bandwidth p, the number of operations is of

order mp2 for the LU decomposition and of order mp2/2 for the Cholesky decomposition.

3.9.5 Iterative methods

When the problem under consideration requires a fine grid, the iteration matrix becomes high

dimensional. The Gaussian elimination method above can become computationally intensive, and

one may need to resort to more suitable methods, in particular the so-called iterative methods. As

before, we are interested in solving the system Ax = b, where A ∈ Mm(R) and b ∈ Rm. We shall

assume that the matrix A does not have any zero diagonal elements (if such is the case, we can

always interchange some rows and columns in order to satisfy the assumption). In particular, it

is clear that this system has a unique solution if and only if the matrix A is invertible, which we

shall assume from now on. The essence of iterative methods is to rewrite this matrix equation as

a fixed-point iteration

xk+1 = Ψ(xk, b), for any k ∈ N. (3.9.3)

A solution x∗ of the equation x∗ = Ψ(x∗, b) is called a fixed-point.

Definition 3.9.7. The fixed-point iteration (3.9.3) is said to be

(i) consistent with the matrix A if for any b, the vector A−1b is a fixed-point of (3.9.3);

(ii) convergent if for any b ∈ Rm, there exists some vector x∗ ∈ Rm such that the sequence

(xk)k≥0 defined by (3.9.3) converges to x∗, for any seed x0;

(iii) linear if Ψ is linear in its two variables: Ψ(x,b) = Hx + Nb, H being the iteration matrix.

The basic idea in these methods is to decompose the matrix A as the sum of three matrices: a

diagonal matrix D, a lower triangular matrix L and an upper triangular matrix U, such that the

diagonal elements of the two matrices L and U are null. The problem Ax = b therefore reads

(D + L + U) x = b,

which we can further rewrite as x = D−1b − D−1 (L + U) x. Note that the inverse matrix D−1 is

well defined by the assumptions on A. The methods that follow are based on this decomposition.

The following lemma—the proof of which is left as an exercise—provides some intuition.

Lemma 3.9.8. Let the matrix A be invertible and the mapping Ψ linear. Then the fixed-point

iteration is consistent with A if and only if

H = I−NA ⇐⇒ N = (I−H)A−1 ⇐⇒ A−1 = (I−H)
−1

N,

where I is the identity matrix in Mm(R).

3.9. Numerical solution of systems of linear equations 104

We shall encounter a simpler version of the following theorem below. Its proof, based on simple

yet tedious properties of the spectral radius is rather long and hence left for the avid reader.

Theorem 3.9.9. If ρ(H) < 1 then there exists a unique fixed point x∗ = (I − H)−1Nb to (3.9.3)

and the iteration converges to x∗ for any starting point.

Proof. Since ρ(H) < 1, then 1 does not belong to the spectrum of H, and therefore the iteration

Ψ(xk, b) = xk+1 admits a unique fixed-point x∗ = (I − H)−1Nb. For any k ≥ 0, the error ek :=

xk − x∗ satisfies ek = H(xk−1 − x∗) = Hek−1 = . . . = Hke0. It can be proved (using Jordan’s

decomposition) that for every ε > 0, there exists a norm ∥ · ∥ε such that ∥H∥ε ≤ ρ(H). Therefore,

for any k ≥ 0,

∥ek∥ε = ∥Hk−1e0∥ε ≤ ∥H∥k−1
ε ∥e0∥ε.

We then deduce that the sequence (ek)k≥0 converges to zero in the norm ∥ · ∥ε. Since all norms on

the finite-dimensional space Rn are equivalent, the sequence (xk)k≥0 converges to x∗.

When the spectral radius is greater than one, we can actually prove that the scheme does not

converge:

Proposition 3.9.10. If ρ(H) ≥ 1, then there exist two vectors x0 and b such that the sequence

(xk)k≥0 does not converge.

Proof. Let us choose b = 0 for simplicity, and pick an eigenvalue λ of H such that |λ| ≥ 1; let x0

be the corresponding (non-zero) eigenvector. If λ = 1, then the sequence (xk)k≥0 clearly converges

since xk = x0 for all k ≥ 0. However, should one choose another seed, say x̃0 = −x0, then the new

sequence converges to −x̃0. If |λ| > 1, then clearly the sequence (xk)k≥0 diverges to +∞ or −∞.

In the case |λ| = 1, but λ ̸= 1, i.e. λ = eiθ for some θ ∈ (0, 2π), we obtain xk = eikθx0, so that

lim supm↑∞ |xn − xm| = 2|x0|, for any n ≥ 0. Therefore, the sequence (xk)k≥0 is not a Cauchy

sequence, and hence does not converge.

Jacobi iteration

The Jacobi method—due to Carl Gustav Jacob Jacobi (1804-1851)—proceeds by approximating

the solution xk at step k ≥ 1 by

xk = Hxk−1 +D−1b,

where H := −D−1 (L + U), and where the seed x0 can be chosen arbitrarily. In component nota-

tions, this can also be written as

xki =
1

aii

bi −
m∑

j=1,j ̸=i

aijx
k−1
j

 , for i = 1 . . . ,m.

In the context of PDE solving, the solution vector x corresponds to the function u to be solved

for evaluated at some time ti. A sensible choice for x0 is to consider the function u at the previous

3.9. Numerical solution of systems of linear equations 105

time step ti−1. The scheme is then stopped as soon as some predefined accuracy is reached, i.e. as

soon as ∥∥xk − xk−1
∥∥ ≤ ε, for some predefined tolerance ε > 0.

One may wonder whether the scheme is actually convergent, i.e. whether or not the family (xk)k≥0

converges to some vector x as k tends to infinity. For ease of notation, let us rewrite the Jacobi

iteration as

xk = Hxk−1 + β,

where β := D−1b, and note that both β and H are independent of k (the method is stationary).

We then have ∥∥xk∥∥ ≤
∥∥Hxk−1 + β

∥∥
≤ ∥H∥

∥∥xk−1
∥∥+ ∥β∥

≤ ∥H∥2
∥∥xk−2

∥∥+ ∥H∥ ∥β∥+ ∥β∥

≤ . . . ≤ ∥H∥k
∥∥x0∥∥+(k−1∑

i=0

∥H∥i
)
∥β∥ .

If ∥H∥ < 1, the sum above converges to (1− ∥H∥)−1 ∥β∥. One may conclude that this condition

suffices to ensure the convergence of the scheme, whatever the initial data x0 is. While this is

indeed true, a stronger result holds. Recall that the spectral radius of the matrix H is given by

ρ(H) := max
i=1,...,m

|λi|,

where the λi represents the eigenvalues of H. We now know that the condition ρ(H) < 1 ensures

that Hk converges to zero as k tends to infinity, and the quantity
∑

k≥0 H
k = (I−H)

−1
is called

the resolvent of H. Applying this to the scheme, we see that

lim
k→∞

xk = β(I−H)−1 =: x∞,

for any initial guess x0. Note that this limit is also a fixed point of the algorithm (exercise).

Remark 3.9.11. It can further be shown that the speed of convergence is of order ρ(H)k, i.e.∥∥xk − x∞
∥∥

∥x0 − x∞∥
= O

(
ρ(H)k

)
.

Hence, the smaller the spectral radius, the quicker the convergence.

Computing all the eigenvalues of the matrix H may however be computationally intensive, and

we may wish to find a shortcut to determine whether the matrix is convergent or not.

Definition 3.9.12. A matrix Q = (qij) ∈ Mm(R) is said to be (weakly) diagonally dominant if

|qii| ≥
∑

j=1,...,m,j ̸=i

|qij |, for any i = 1, . . . ,m.

If the inequality is strict, we actually say that the matrix is strictly diagonally dominant.

3.9. Numerical solution of systems of linear equations 106

Proposition 3.9.14 below shows why such a concept is important. We need a preliminary lemma

before though.

Lemma 3.9.13 (Hadamard). A diagonally dominant matrix is invertible.

Proof. Let A = (aij) be such a matrix in Mm(C) and x = (x1, . . . , xm) ∈ Rm such that Ax = 0.

Define 1 ≤ p ≤ m such that |xp| = max1≤i≤m |xi|. Therefore

appxp +
∑
i ̸=p

apixi = 0.

If x ̸= 0, then clearly |xp| > 0 and

|app||xp| ≤
∑
i ̸=p

|api||xi| ≤ |xp|
∑
i ̸=p

|api| < |app||xp|,

which yields a contradiction, so that x is indeed null, and the lemma follows.

Proposition 3.9.14. Consider the matrix equation Ax = b. If A is strictly diagonally dominant

matrix then the Jacobi scheme converges.

Proof. Let H := −D−1 (L + U) be the iteration matrix. Since for any 1 ≤ i ≤ m, we have

|aii| >
∑

j ̸=i |aij |, we deduce
∑

j ̸=i
|aij |
|aii| < 1, and hence, for any λ ∈ C such that |λ| ≥ 1, the matrix

(λI − H) is diagonally dominant, and hence invertible by Lemma 3.9.13. Therefore ρ(H) < 1 and

the Jacobi iteration converges.

Note that the matrix to check here is A. What the proposition essentially says is that if A

is strictly diagonally dominant, then ρ(H) < 1. This proposition therefore gives a simple way

to determine whether or not the Jacobi scheme converges. When the matrix A is only (weakly)

diagonally dominant, one must in principle check its spectral radius. However, since ρ(H) ≤ ∥H∥

(exercise), we only need to check the inequality ∥H∥ < 1 in any convenient norm. The usual one

is the sup norm, i.e.

∥H∥∞ := sup
i=1,...,m

m∑
j=1

|hij |. (3.9.4)

Exercise 36. For a tridiagonal matrix A, write a simple recursive formula for the Jacobi iteration.

Exercise 37. Consider the matrix equation
5 −2 3

−3 9 1

2 −1 −7

 x =


−1

2

3

 .

Use the Jacobi iteration with starting value x0 = 0 and write the first three steps.

3.9. Numerical solution of systems of linear equations 107

Exercise 38. Consider the matrix equation1 −5

7 −1

 x =

−4

6

 .

Compute the first steps of the Jacobi iteration with starting value x0 = 0 and prove that the

scheme diverges.

Exercise 39. Recall that the matrix A in the implicit, explicit and Crank-Nicolson schemes is

tridiagonal. Check the convergence of the Jacobi method for these schemes. You may want to

check first whether the matrix is strictly diagonally dominant or not.

Gauss-Seidel iteration

This method is a modification of the Jacobi iteration scheme due to Carl Friedrich Gauss (1777-

1855) and Philipp L. Seidel (1821-1896). It essentially follows the exact same steps but requires

less memory. When applying the Jacobi iteration scheme, the whole vector x remains unchanged

until the end of each step. In the Gauss-Seidel method, one uses the new value of the element xi

as soon as it is computed. The scheme therefore reads

xk = − (L + D)
−1

Uxk−1 + (L + D)
−1

b,

Generally, the convergence of the Gauss-Seidel scheme follows from that of the Jacobi iteration.

Some counterexamples do exist though. If the matrix A is strictly diagonally dominant, the

scheme will however be convergent for any initial seed x0. A general result is stated below in

Proposition 3.9.15 without proof.

Exercise 40. For a tridiagonal matrix A, write a simple recursive formula for this scheme.

Exercise 41. Compute the first few steps of the iteration using the same example as in Exercise 37.

Exercise 42. Compare the divergence of Exercise 38 using the Jacobi iteration and the Gauss-

Seidel method. Interchange now the rows of the system and show that this leads to a convergent

iteration scheme.

Successive Over Relaxation method (SOR)

The SOR method is essentially a linear interpolation between the Gauss-Siedel iteration and the

previous approximate solution. Let us consider the Gauss-Seidel iteration scheme. We have

xk = − (L + D)
−1 [

Uxk−1 − b
]

= xk−1 − (L + D)
−1

(L + D) xk−1 − (L + D)
−1 [

Uxk−1 − b
]

= xk−1 − (L + D)
−1 [

Axk−1 − b
]

= xk−1 − (L + D)
−1
ξk−1

3.9. Numerical solution of systems of linear equations 108

where the vector ξk−1 represents residual vector. The SOR method corrects this by penalising (or

relaxing) the correction term ξk−1. Let ω be a strictly positive number. The SOR scheme reads

xk = xk−1−ω (L + D)
−1
ξk−1. It can be shown that the scheme converges only when the relaxation

parameter ω lies in (0, 2), and we refer the interested reader to [41] for more details and a recent

review of the optimal choice of ω. In particular, if ρJ denotes the spectral radius of the iteration

matrix in the Jacobi method, it can be proved that the optimal relaxation parameter reads

ω =
2

1 +
√
1− ρ2J

.

Exercise 43. For a tridiagonal matrix A, write a simple recursive formula for the SOR method.

We have here merely scratched the surface of iterative methods for matrix equations. In partic-

ular we have not said much—or nothing at all—concerning the complexity of each scheme. We refer

the interested reader to [59] for more details on the subtleties of these and for more advanced nu-

merical methods used in scientific computing. The following proposition—which we state without

proof—provides the main convergence results for these schemes.

Proposition 3.9.15. Consider the matrix equation Ax = b. If A is symmetric definite positive,

then the Gauss-Seidel iteration converges and the SOR converges if ω ∈ (0, 2). The Jacobi iteration

converges if we further assume that A is tridiagonal.

Chapter 4

Fourier and integration methods

4.1 A primer on characteristic functions

4.1.1 Fourier transforms and their inverses

Reminder on Lp spaces

Let (Rn,Σ) be a measurable space and associate the Lebesgue measure to it. For p ∈ [1,∞), the

space of functions f : Rn → R satisfying

∥f∥p :=

(∫
R
|f(x)|pdx

)1/p

<∞

is called Lp(R). When p = ∞, the space L∞(Rn) is the set of functions which are essentially

bounded, i.e. bounded everywhere except possibly on sets of (Lebesgue) measure zero. More

precisely, we define

∥f∥∞ := ess supx∈Rnf(x) := inf{K ≥ 0 : |f(x)| ≤ K for almost every x ∈ Rn}.

As an example on the real line, consider the function defined by f(x) = 1 if x is a rational and

zero otherwise. Since the set of rational numbers has Lebesgue measure zero, it follows that the

essential supremum (its infinity norm) is equal to zero whereas its supremum is clearly equal to

one. For any p ∈ [1,∞] the space Lp(Rn) thus defined is a Banach space (complete normed vector

space). Unless p = 2 however, these spaces are not Hilbert spaces (i.e. not complete with respect

to the norm associated with its inner product).

Fourier transforms on Schwartz space

Fourier transforms are often introduced on the space L1(Rn). However some manipulations are

not allowed there due to convergence issues. The natural space to introduce such a transform is

the Schwartz space, which we define below after some notations. A multi-index α is an ordered

109

4.1. A primer on characteristic functions 110

n-tuple (α1, . . . , αn) of non-negative integers. For a smooth function f ∈ Rn, we shall denote ∂αf

the multiple derivative (whenever it exists) ∂α1 . . . ∂αnf , and hence |α| := α1 + . . .+αn represents

the total order of differentiation. If x = (x1, . . . , xn) is a vector in Rn and α a multi-index, we

shall further use the notation xα := xα1
1 . . . xαn

n .

Definition 4.1.1. A function f ∈ C∞(Rn) is called a Schwartz function if for every pair of

multi-indices α and β, there exists a positive constant C—possibly function of α and β—such that

ρα,β(f) := sup
x∈Rn

∣∣xα∂βf(x)∣∣ ≤ C.

The space of all such functions is called the Schwartz space and is denoted S(Rn). The operator

ρα,β is called the Schwartz seminorm (i.e. a norm without the positivity property).

Exercise 44. Show that the Schwartz seminorm is a norm on the Schwartz space.

The Schwartz space therefore represents all the (smooth) functions that decay faster than any

polynomial at infinity. For example, the function x 7→ e−|x|2 belongs to S(Rn) whereas the function

x 7→ e−|x| is not in S(Rn) since it is not differentiable at the origin. A polynomial of order m ∈ N is

clearly not in S(Rn), but any smooth function with compact support is. Convergence of functions

in the Schwartz space is defined with respect to the Schwartz seminorm, and is a strong form of

convergence as the following proposition shows.

Proposition 4.1.2. Let f and (fk)k∈N be in S(Rn). If (fk) converges to f in S(Rn) (i.e.

limk↑∞ ρα,β(f − fk) = 0) then the family (fk) converges to f in Lp, for any p ≥ 1.

We can now define the Fourier transform

Definition 4.1.3. For a function f in S(Rn), its Fourier transform f̂ is defined by

f̂(ξ) :=

∫
Rn

eiξ·xf(x)dx, for any ξ ∈ Rn.

Remark 4.1.4. In the literature, one can also find the notation Ff for the Fourier transform.

The definition f̂(ξ) :=
∫
Rn e−iξ·xf(x)dx can also be found, as well as factors (2π)−n or (2π)−n/2

in front. These notations lead to the same properties and are used differently according to one’s

preferences.

Exercise 45. Determine the Fourier transform (if it exists) of the function f : x ∈ R 7→ e−x2

.

The following proposition lists some of the most fundamental properties of the Fourier trans-

form. We leave these items to prove as an exercise for the interested reader.

Proposition 4.1.5. Let f and g be two functions on S(Rn), a ∈ R, α a multi-index, and denote

f̃ the function defined by f̃(x) := f(−x).

(i) ∥f̂∥L∞ ≤ ∥f∥L1 .

4.1. A primer on characteristic functions 111

(ii) (Linearity) âf + g = af̂ + ĝ.

(iii)
˜̂
f =

̂̃
f .

(iv) (Differentiation) ∂̂αf(ξ) = (−iξ)αf̂(ξ), for any ξ ∈ R.

(iv) f̂ ∈ S(Rn), i.e. the Fourier transform is an isomorphism in S(Rn).

(v) (Convolution) f ∗ g ∈ S(Rn) and f̂ ∗ g = f̂ · ĝ, where

(f ∗ g)(x) :=
∫
Rn

f(x− y)g(y)dy, for any x ∈ Rn.

We can now define the inverse Fourier transform:

Definition 4.1.6. For a Schwartz function f in Rn, we define its inverse Fourier transform as

f̆(ξ) := (2π)−nf̂(−ξ).

We summarise some properties of the inverse Fourier transform in the following theorem, the

proof of which is left as a—not easy—exercise.

Theorem 4.1.7. Let f and g be two functions in S(Rn). The following identities hold

(i)
∫
Rn f̂(x)g(x)dx =

∫
Rn f(x)ĝ(x)dx.

(ii)
̂̆
f =

˘̂
f = f .

(iii) (Plancherel identity) ∥f∥L2 = (2π)−n∥f̂∥L2 = ∥f̆∥L2 .

(iv)
∫
Rn f(x)g(x)dx =

∫
Rn f̂(x)ğ(x)dx.

The Schwartz space is however not very large, and we wish to extend the definition (and the

properties) of the Fourier transform to larger spaces such as L1 and L2. Definition 4.1.3 clearly

makes sense as a convergent integral for functions in L1(Rn), and most of the properties above

can be checked to hold. However one does not always have f̂ ∈ L1(Rn) (take for example f(x) ≡

e−x11{x≥0}), and hence the inverse Fourier transform is not defined (and therefore
̂̆
f ̸= f). Things

become more subtle on L2(Rn) since the integral defining the Fourier transform in Definition 4.1.3

does not converge absolutely (consider for example the function f ∈ L2(R) \ L1(R) defined by

f(x) ≡ (1 + x2)−1/2). We can however make sense of it as the limit of Fourier transforms of

functions in L1(Rn) ∩ L2(Rn). We shall not delve into these details here and refer the interested

reader to [35] for more details.

4.1. A primer on characteristic functions 112

Fourier transforms on L1(R)

From now on, we shall only be looking at Fourier transform on the real line, and for any f ∈ L1(R),

we recall the definition of its Fourier transform f̂ : R → C:

f̂(ξ) :=

∫
R
eiξxf(x)dx, for all ξ ∈ R. (4.1.1)

Clearly f ∈ L1(Rn) implies that f̂ ∈ L∞(Rn). Furthermore if f is non-negative, then the identity

∥f̂∥∞ = f̂(0) = ∥f∥1 holds.

Remark 4.1.8. In the previous chapter, we used the Fourier transform of a function on a grid,

namely for a function fδ on a grid with δ > 0 step size, we defined (see (3.3.15)):

f̂δ(ξ) :=
1√
2π

∞∑
m=−∞

δe−imδξfδ(mδ), for ξ ∈
[
−π
δ
,
π

δ

]
.

This corresponds to a Riemann sum, so that, letting δ tend to zero, we obtain

lim
δ↓0

f̂δ(ξ) =
1√
2π

∫ ∞

−∞
e−iξxf(x)dx, for all ξ ∈ R,

where the function f is the continuous version of the function fδ.

The following result is easy to prove:

Lemma 4.1.9. If f ∈ L1(Rn) then f̂ is continuous.

Proof. Fix some ξ ∈ Rn. Then

f̂(ξ + h) =

∫
Rn

ei(ξ+h)·xf(x)dx.

As h tends to zero, the integrand converges pointwise to eiξ·xf(x), and hence the dominated

convergence theorem implies the lemma.

We have the following behaviour of the Fourier transform at infinity:

Lemma 4.1.10. (Riemann-Lebesgue lemma) If f belongs to L1(R), then lim|ξ|↑∞ |f̂(ξ)| = 0.

The proof of the lemma in this generality is outside the scope of these lectures. The following

version, with stronger assumptions, is easier to prove:

Lemma 4.1.11. If f ∈ C1(R) ∩ L1(R), then lim|ξ|↑∞ |f̂(ξ)| = 0.

Proof. Since f belongs to L1(R), for any ε > 0, there exists z > 0 such that
∫
R\[−z,z]

|f(x)|dx < ε.

Now, for any ξ ∈ R, an integration by parts yields∫
[−z,z]

eiξxf(x)dx =

[
eiξxf(x)

iξ

]z
−z

− 1

iξ

∫
[−z,z]

eiξxf ′(x)dx.

4.1. A primer on characteristic functions 113

Therefore

|f̂(ξ)| =
∣∣∣∣∫

R
eiξxf(x)dx

∣∣∣∣ ≤
∣∣∣∣∣
∫
R\[−z,z]

eiξxf(x)dx

∣∣∣∣∣+
∣∣∣∣∣
∫
[−z,z]

eiξxf(x)dx

∣∣∣∣∣
≤ ε+

|f(z)|+ |f(−z)|
|ξ|

+
1

|ξ|

∫ z

−z

|f ′(x)|dx.

Since z is finite, the second term tends to zero as |ξ| tends to infinity, and so does the last one,

and the lemma follows.

As mentioned above, we can define the inverse Fourier transform of a function f in L1(R) as

f̆(ξ) :=
1

2π
f̂(−ξ) = 1

2π

∫
R
e−iξxf(x)dx, for all ξ ∈ R.

Note that the identity
˘̂
f ≡ f does hold in the Schwartz space, but not necessarily in L1(R).

Consider in particular the function f(x) ≡ 11(−1,1)(x). Clearly f is bounded and hence belongs

to L1(R). However for any ξ ∈ R, we have f̂(ξ) = 2 sin(ξ)/ξ, which clearly does not belong to

L1(R). We finally state the following Fourier inversion result for discontinuous functions, due to

P.G. Lejeune Dirichlet (1805-1859) and Camille Jordan (1838-1922). Let I = [ζ, ζ] be an interval

on the real line and ζ = {ζ = ζ0, . . . , ζn = ζ} a partition of it. The variation of a function f on I,

relative to ζ is defined as VI(g, ζ) :=
∑n

k=1 |f(ζk)− f(ζk−1)|. The function f is then said to have

bounded variation if the supremum of VI(g, ζ) over all partitions ζ of I is bounded.

Theorem 4.1.12. [Dirichlet-Jordan Theorem] Let f be an integrable function on the real line,

with bounded variation in a neighbourhood of some point x ∈ R. Then

lim
R↑∞

1

2π

∫ R

−R

e−xξ f̂(ξ)dξ =
1

2

(
lim
z↓x

f(z) + lim
z↑x

f(z)

)
.

Remark 4.1.13. We have defined above Fourier transforms on the real line. It is sometimes

convenient to extend this definition to the complex plane—or at least a subset of it—i.e. to define

f̂(ξ) from (4.1.1) for ξ ∈ C. It is clear that there are no restrictions on ℜ(ξ). However, the

Fourier transform is not well defined for all ξ ∈ C, and is so only in a so-called strip of regularity

a < ℑ(ξ) < b which is parallel to the real axis. This extension of the Fourier transform to (part

of) the complex plane is called the generalised Fourier transform, which we also denote by f̂ and

its inverse—whenever it exists—is given by

f(x) =
1

2π

∫ iz+∞

iz−∞
e−ixξ f̂(ξ)dξ,

with z ∈ (a, b), where the integration is carried out along a horizontal contour in the complex

plane, parallel to the real axis.

4.1. A primer on characteristic functions 114

4.1.2 Characteristic functions

For a one-dimensional random variable X taking values of the real line, we define its characteristic

function ϕX : R → C by

ϕX(ξ) := E
(
eiξX

)
, for all ξ ∈ R,

where i =
√
−1. Since the map ξ 7→

∣∣eiξX ∣∣ is continuous and bounded, the function ϕX is well

defined. If the random variable X has a density fX then

ϕX(ξ) =

∫ ∞

−∞
eiξxfX(x)dx, for all ξ ∈ R,

i.e. the characteristic function is the Fourier transform of the density: ϕX ≡ f̂X . The following

properties are straightforward and we omit their proofs for brevity:

(i) ϕ(0) = 1;

(ii) let (α, β) ∈ R2. If Y = αX + β, then ϕY (ξ) = eiβξϕX(αξ) for all ξ ∈ R;

(iii) if X and Y are two independent random variables then ϕX+Y (ξ) = ϕX(ξ)ϕY (ξ) for all ξ ∈ R;

(iv) let n ≥ 1 and assume that the n-th moment of X exists (i.e. E (Xn) <∞), then

E (Xn) =
1

in
dnϕX(ξ)

dξn

∣∣∣∣
ξ=0

.

(v) the function ϕ is uniformly continuous on R.

The characteristic function therefore completely characterises the distribution. We finish this part

with the following fundamental theorem:

Theorem 4.1.14. Let X be a random variable with distribution F and let ϕ : R → C be its

characteristic function. If
∫
R |ϕ(ξ)|dξ <∞, then X admits a density f and

(i) f(x) = (2π)−1
∫
R e−ixξϕ(ξ)dξ;

(ii) f(x) = F ′(x) for all x ∈ R;

(iii) f is uniformly continuous on R.

Remark 4.1.15. For notational simplicity, we have considered here random variables on the real

line. All the definitions and properties above generalise directly to the multi-dimensional case. For

instance if X is a random variables in Rn for some n ∈ N, then we define its characteristic function

ϕX : Rn → C by

ϕX(ξ) := E
(
ei⟨ξ,X⟩

)
, for all ξ ∈ Rn,

where ⟨·, ·⟩ represents the Euclidean inner product on Rn.

4.1. A primer on characteristic functions 115

4.1.3 Examples

We review here some basic models used in financial modelling from the point of view of their

characteristic functions. The Black-Scholes model is the fundamental model for the dynamics of

stock price processes, but assumes continuous paths. However, such a feature is not always realistic

and jumps have to be introduced, for instance via Poisson processes.

Black-Scholes

The first example that comes to mind is obviously the Black-Scholes model. In this model, the

random variable Xt—representing the logarithm of the stock price—satisfies

Xt = X0 +

(
r − σ2

2

)
t+ σWt,

for any t ≥ 0, where Wt is equal in law to
√
tN (0, 1). This implies that Xt is Gaussian with mean

X0 +
(
r − σ2/2

)
t and variance σ2t, and hence

ϕXt(ξ) := E
(
eiξXt

)
= exp

(
iξ

(
X0 +

(
r − σ2

2

)
t

))
E
(
eiξσWt

)
= exp

(
iξX0 +

(
r − σ2

2

)
iξt− σ2ξ2t

2

)
.

Poisson processes

Another popular model—mainly used as a building block for other processes—in finance is the

Poisson process (Nt)t≥0. It is a counting process, in the sense that at time t ≥ 0, Nt represents the

number of events that have happened up to time t. Such a process has independent increments

and is such that for each t ≥ 0, the random variable Nt is Poisson distributed with parameter λt

for λ > 0 (the intensity), i.e.

P (Nt = n) =
(λt)n

n!
e−λt, for any n = 0, 1, . . .

It is easy to compute its characteristic function

ϕNt(ξ) :=
(
eiξNt

)
=
∑
n≥0

(λt)n

n!
e−λteiξn = exp

(
λt
(
eiξ − 1

))
.

Note that the paths of a Poisson process are non-decreasing and discontinuous.

Compound Poisson processes

As we mentioned, Poisson processes are mainly used as building blocks. In particular they are the

main ingredients in compound Poisson processes. Such a process (Xt)t≥0 is defined as

Xt :=

Nt∑
k=1

Zk,

4.1. A primer on characteristic functions 116

where (Nt) is a Poisson process with parameter λt and (Zk)k≥0 is a family of independent and

identically distributed random variables with common law F . It is then easy to see that

ϕXt(ξ) := E
(
eiξXt

)
= E

(
exp

(
iξ

Nt∑
k=1

Zn

))
= E

(
E
(
eiξ

∑n
k=1 Zk

)∣∣∣Nt = n
)

=
∑
n≥0

E
(
eiξ

∑n
k=1 Zk

) (λt)n

n!
e−λt =

∑
n≥0

(∫
R
eiξzF (dz)

)n
(λt)n

n!
e−λt

= exp

(
λt

∫
R

(
eiξz − 1

)
F (dz)

)
.

Note that the paths of a compound Poisson process are clearly not continuous.

Affine processes

In [23] and [24], Duffie and co-authors introduced a general class of stochastically continuous, time-

homogeneous Markov processes, called affine processes, in finance. These are characterised through

their characteristic functions, and include in particular jumps as well as stochastic volatility. We

consider here a two-dimensional version: (X,V), where X := log(S) denotes the logarithm of the

stock price and V its instantaneous variance. We assume that there exist two functions φ,ψ :

R+ × C2 such that

Φt(u,w) := logE
(
euXt+wVt |X0, V0

)
= φ(t, u, w) + V0ψ(t, u, w) + uX0.

Note that ‘affine’ refers to the fact that the term on the right-hand side is linear (affine) in the

state variable. The following theorem is proved in [23] and [47]:

Theorem 4.1.16. Assume that |φ(τ, u, η)| and |ψ(τ, u, η)| are both finite for some (τ, u, η) ∈

R+ × C2, then, for all t ∈ [0, τ] and w ∈ C such that ℜ(w) ≤ ℜ(η), |φ(t, u, w)| and |ψ(t, u, w)| are

again finite, and the derivatives

F (u,w) := lim
t↓0

∂tφ(t, u, w) and R(u,w) := lim
t↓0

∂tψ(t, u, w)

exist, and the functions φ and ψ satisfy the following system of (Riccati) equations:

∂tφ(t, u, w) = F (u, ψ(t, u, w)), φ(0, u, w) = 0,

∂tψ(t, u, w) = R(u, ψ(t, u, w)), ψ(0, u, w) = w.

Consider for example the case of an exponential Lévy model, for which

φ(t, u, w) ≡ ϕ(u)t and ψ(t, u, w) ≡ 0,

the Black-Scholes case (without interest rates, say) being the simplest example with ϕ(u) ≡ 1
2u(u−

1)σ2. Then, clearly F ≡ ϕ and R ≡ 0, and the Riccati equations are trivially solved.

In the course of this chapter, and throughout some examples we will encounter other processes

with well-defined characteristic functions that are available in closed form. Note in passing that

4.2. Pricing using characteristic functions 117

this approach via characteristic functions allows us to easily combine processes. We can for in-

stance consider the Black-Scholes model for the dynamics of the stock price process and add an

independent compound Poisson process. The paths of the stock price are therefore not continu-

ous any more, and these jumps can reflect financial decisions (such as dividends) or unexpected

reactions of financial markets to political events.

Before moving on to pricing with characteristic functions, let us issue a warning. Consider

the extension of the characteristic function ϕX to the complex plane. By definition, the latter

is continuous. However, the continuity property does not in general extend from the real line to

the complex plane. The most obvious (counter)examples of this are the log and the square root

functions, which exhibit branch cut phenomena, e.g. which become multivalued in the complex

plane.

4.2 Pricing using characteristic functions

Most models do not allow for a closed-form representation of the density of the stock price pro-

cess. Black-Scholes does, but as soon as one deviates from this basic assumption, densities are not

available any more. This implies that pricing directly using the density is not possible. Likewise,

as soon as the dynamics of the process becomes refined and complex, PDE methods may not be

available any longer (or at least not in the form we studied them before). However, the charac-

teristic function is sometimes available, and is in particular so in mathematical finance for a large

class of models, namely affine models, which incorporate jumps and stochastic volatility. We shall

not delve into the theory of affine processes here, but we do bear in mind though that most of the

tools presented here are applicable to this class of models.

4.2.1 The Black-Scholes formula revisited

This section provides a motivational example for the (inverse) Fourier transform approach. We

already determined the fair value of a European Call (or Put) option in the Black-Scholes model

in Chapter 1, and we provided numerical schemes to compute it. We now reformulate this option

pricing problem in terms of Fourier transform, which shall lay the grounds to develop the method

for more advanced models. We shall assume that a risk-neutral probability P is given, and we

denote EP the expectation under this probability. The option pricing problem at time zero (with

maturity T > 0 and strike K > 0) written on the underlying S (and correspondingly X := log(S))

4.2. Pricing using characteristic functions 118

then reads

CT (k) = e−rTEP (ST −K)+

= e−rT

∫ ∞

k

(ex −K) qT (x)dx

= e−rT

∫ ∞

k

exqT (x)dx−Ke−rT

∫ ∞

k

qT (x)dx (4.2.1)

where qT represents the density of the (Gaussian distributed) logarithmic stock price XT at time T ,

and k := log(K). If ϕT denotes the characteristic function of the density qT , we can write

ϕT (ξ) :=

∫
R
eiξxqT (x)dx.

Let us define

Π2 :=

∫ ∞

k

qT (x)dx =

∫ ∞

k

1

2π

∫
R
e−ixξϕT (ξ)dξdx.

It is clear that Π2 is a probability and is precisely equal to P (XT ≥ k) = P (ST ≥ K). The following

theorem allows us to express this probability in terms of the characteristic function ϕT .

Theorem 4.2.1 (Gil-Pelaez inversion theorem [33]). If F is a one-dimensional distribution func-

tion and ϕ : ξ 7→
∫
R eiξxF (dx) its characteristic function, then we have the inverse formula for any

continuity point x of F :

F (x) = P(X ≤ x) =
1

2
− 1

2π

∫
R

e−ixξϕ(ξ)

iξ
dξ.

Proof. Let us first consider the step function

sgn(y − x) :=


−1 if y < x,

0 if y = x,

1 if y > x

=
2

π

∫ ∞

0

sin ((y − x)ξ)

ξ
dξ.

Note further that we have
∫
R sgn(y−x)F (dy) = 1−2F (x). Let now ε and α be two strictly positive

real numbers. We can then write

1

π

∫ α

ε

eixξϕ(−ξ)− e−ixξϕ(ξ)

iξ
dξ =

1

π

∫ α

ε

∫
R

e−iξ(y−x) − eiξ(y−x)

iξ
F (dy)dξ

= − 2

π

∫ α

ε

∫
R

sin ((y − x)ξ)

ξ
F (dy)dξ

= −
∫
R

2

π

∫ α

ε

sin ((y − x)ξ)

ξ
dξF (dy),

where the last line follows from Fubini’s theorem (see Theorem A.3.1 in Appendix A.3). We now

let ε tend to zero and α tend to infinity, and we obtain

1

π

∫ ∞

0

eixξϕ(−ξ)− e−ixξϕ(ξ)

iξ
dξ = −

∫
R

lim
ε↓0,α↑∞

2

π

∫ α

ε

sin ((y − x)ξ)

ξ
dξF (dy)

= −
∫
R
sgn (y − x)F (dy) = 2F (x)− 1.

A change of variable concludes the proof.

4.2. Pricing using characteristic functions 119

It is easy to show that

ℜ (ϕT (ξ)) =
ϕT (ξ) + ϕT (−ξ)

2
, and ℑ (ϕ(ξ)) =

ϕT (ξ)− ϕT (−ξ)
2i

,

so that the function ϕ is even in its real part and odd in its imaginary part. Recalling the fact

that Π2 is a complementary probability, Gil-Pelaez inversion theorem and the symmetry properties

of ϕT imply that

Π2 =
1

2
+

1

2π

∫
R

e−ikξϕT (ξ)

iξ
dξ =

1

2
+

1

π

∫ ∞

0

ℜ
(
e−ikξϕT (ξ)

iξ

)
dξ.

Concerning the first integral in (4.2.1), let us introduce a new probability measure P̃ by

dP̃
dP

:=
ST

E(ST)
.

We can therefore write

EP̃ (eiξXT
)
=

EP (eXT eiξXT
)

E (eXT)
=
ϕT (ξ − i)

ϕT (−i)
.

Furthermore

e−rT

∫ ∞

k

exqT (x)dx = e−rT

∫ ∞

k

eX0qT (x)

(
ex

eX0

)
dx = S0P̃ (Xt ≥ k) =: S0Π1,

where we have used the fact that the stock price process (St)t≥0 is a martingale, i.e. E(ST) = erTS0.

Using again Gil-Pelaez inversion theorem for Π1 and the symmetry properties of ϕX , we obtain

Π1 =
1

2
+

1

2π

∫
R

ϕT (ξ − i)

iξϕT (−i)
e−iξkdξ =

1

2
+

1

π

∫ ∞

0

ℜ
(
ϕT (ξ − i)

iξϕT (−i)
e−iξk

)
dξ.

We can therefore rewrite the option pricing problem as CT (k) = S0Π1 − Ke−rTΠ2. This rep-

resentation expresses the option price as a difference of two probabilities, each under a different

probability measure: the risk-neutral one P and the so-called Share measure P̃. Note further that

the event considered is the probability of ending in the money : ST ≥ K. In order to derive this

representation, we have only assumed (i) that the stock price was a true martingale and (ii) that

it had a density. This representation therefore extends beyond the simple Black-Scholes model to

any model satisfying these two conditions.

4.2.2 Option pricing with characteristic functions

We consider as above a European call option CT (k), with strike K > 0 and maturity T > 0 written

on an underlying stock price process (St)t≥0. Note that we also use (interchangeably) the notation

CT (k), with k := log(K), but this should not create any confusion. The approach outlined in the

previous subsection is appealing since it only requires the knowledge of the characteristic function

of the (logarithmic) stock price process. However, it requires two separate integrations. A now

popular approach developed by Peter Carr and Dilip Madan [11] is somehow a reformulation of

4.2. Pricing using characteristic functions 120

the above derivation and leads to a pricing formula involving a single integral. As before, we can

write the Call option price as

CT (k) = e−rTEP ((ST −K)+) = e−rT

∫ ∞

k

(
ex − ek

)
qT (x)dx

From this, it is easy to see that

lim
k↓−∞

CT (k) = lim
k↓−∞

e−rT

∫ ∞

k

(
ex − ek

)
qT (x)dx = e−rTEP (eXT

)
= S0,

so that the call price function k 7→ CT (k) is not in L1 (R), and its Fourier transform does

not exist. Let α be a strictly positive real number and define the dampened call option price

cT (k) := eαkCT (k), such that the function cT is integrable (in L1(R)). With ψ denoting its Fourier

transform, we then have

ψ(ξ) :=

∫
R
eiξkcT (k)dk =

∫
R
eiξkeαke−rT

(∫ ∞

k

(
ex − ek

)
qT (x)dx

)
dk

=

∫
R
e−rT qT (x)

(∫ x

−∞

(
ex − ek

)
e(α+iξ)kdk

)
dx, (4.2.2)

where again we have used Fubini’s theorem on the second line. Now∫ x

−∞

(
ex − ek

)
e(α+iξ)kdk = ex

∫ x

−∞
e(α+iξ)kdk −

∫ x

−∞
e(1+α+iξ)kdk

=
ex

α+ iξ

[
e(α+iξ)k

]x
−∞

− 1

1 + α+ iξ

[
e(1+α+iξ)k

]x
−∞

=
e(α+1+iξ)x

(α+ iξ) (1 + α+ iξ)
,

where we have used the fact that α > 0 implies that limk↓−∞ e(α+iξ)k = 0. So that (4.2.2) becomes

ψ(ξ) =

∫
R
e−rT qT (x)

e(α+1+iξ)x

(α+ iξ) (1 + α+ iξ)
dx = e−rT ϕT (ξ − (α+ 1) i)

(α+ iξ) (1 + α+ iξ)
.

The final step is to express the dampened call price as the inverse Fourier transform of the function

ψ, and to turn it into the original call price function. More precisely, we have

CT (k) = e−αkcT (k) =
e−αk

2π

∫
R
e−iξkψ(ξ)dξ

=
e−αk

π

∫ ∞

0

e−iξkψ(ξ)dξ, (4.2.3)

where again we have used the symmetry properties of the function ϕT .

Remark 4.2.2. One might be tempted to take any α > 0 so that the dampened call option

price decays fast enough as k tends to infinity. However, if one chooses α > 0 too large, then the

dampened option price might not be integrable any longer on the positive half-axis, i.e. when k

tends to infinity. We shall not delve into these subtleties here, but simply mention that an upper

bound α+ for α has been provided by Roger Lee [52] and is given by

α+ := sup
{
α > 0 : EP (Sα+1

T

)
<∞

}
.

Similar considerations can be made for European Put options by symmetry.

4.2. Pricing using characteristic functions 121

The above result, though very useful in practice, is however limited to the case of vanilla Call

options. We now investigate an extension of it to more general European payoff functions. We

shall denote by h a payoff function, and by H the value of the option at inception of the contract:

H(T) := E[h(XT)], where we assume for simplicity that interest rates are null. As mentioned

above, integrability of the payoff is a necessary property, and we therefore introduce the dampened

payoff function hα (α ∈ R) defined by hα(x) ≡ e−αxh(x). In particular, for a Call option, one

needs to consider α > 1, and for a Put option, α < 0. We shall state and prove below two results,

depending on whether the payoff function h is continuous or not.

Theorem 4.2.3. Suppose that there exists α ∈ R such that both hα and ĥα are integrable, and

that E(Sα
T) is finite, then

H(T) =
1

π

∫ +∞

0

ϕT (−(ξ + iα))ĥα(ξ)dξ.

Proof. We first prove that the integral in the theorem is well defined. Note that

ĥ(ξ + iα) =

∫
R
ei(ξ+iα)xh(x)dx =

∫
R
eiξxe−αxh(x)dx =

∫
R
eiξxhα(x)dx = ĥα(ξ).

Furthermore,

|ϕT (−(ξ + iα))| ≤
∣∣∣∣∫

R
e−i(ξ+iα)xqT (x)dx

∣∣∣∣ ≤ ∫
R
eαxqT (x)dx = E(Sα

T),

which is finite by assumption. Now,

H(T) = E[h(XT)] =

∫
R
eαxhα(x)qT (x)dx =

∫
R
eαx

(
1

π

∫ +∞

0

e−ixξĥα(ξ)dξ

)
qT (x)dx

=
1

π

∫ +∞

0

(∫
R
eαxe−ixξqT (x)dx

)
ĥα(ξ)dξ

=
1

π

∫ +∞

0

ϕT (−(ξ + iα))ĥα(ξ)dξ,

which concludes the proof. The second line follows by the Fourier inversion formula (since ĥα ∈

L1(R) by assumption), and the third line by Fubini.

Example. If h is the payoff of a European Call option, then

ĥCall
α (ξ) =

e(iξ+1−α)k

(iξ − α)(iξ − α+ 1)
,

and ĥCall
α (ξ) ≡ ĥPut

α (ξ), albeit with different restrictions on ξ.

We now investigate the case where the payoff function h is discontinuous.

Theorem 4.2.4. Assume that hα is integrable, that E(Sα
T) is finite, and that the map x 7→

E[h(XT + x)] is continuous around x = X0 = 0 and has bounded variation in a neighbourhood

of X0. Then

H(T) =
1

π
lim

R↑+∞

∫ R

0

ϕT (−(ξ + iα))ĥα(ξ + iα)dξ.

4.2. Pricing using characteristic functions 122

The proof of the theorem is left as an exercise, and follows analogous lines to that of Theo-

rem 4.2.3, together with Theorem 4.1.12.

Example. The following examples of payoffs are not continuous:

• digital option: h(x) = 11{ex≥k} and ĥ(ξ) = − e(iξ−α)k

iξ−α , α > 0;

• asset-or-nothing option: h(x) = ex11{ex≥k} and ĥ(ξ) = − e(1+iξ−α)k

1+iξ−α , α > 1;

• double digital option (k1 < k2): h(x) = 11{k1≤ex≤k2} and ĥ(ξ) = e(iξ−α)k2−e(iξ−α)k1

iξ−α , α ̸= 0;

• self-quanto option: h(x) = ex(ex − ek)+ and ĥ(ξ) = e(2+iξ−α)k

(1+iξ−α)(2+iξ−α) , α > 2;

• power option: h(x) = [(ex − ek)+]
2 and ĥ(ξ) = 2e(2+iξ−α)k

(iξ−α)(1+iξ−α)(2+iξ−α) , α > 2;

A note on bond pricing

In the context of bond pricing, one does not immediately need the characteristic function of

the process itself, but it does come into play. Let (rt)t≥0 denote the instantaneous short rate

process. Then the bond price with maturity T is given by E
(
e−

∫ T
0

rtdt
)
, namely the characteristic

function, evaluated at the point i, of the integrated rate process Rt :=
∫ t

0
rsds. Consider the

Vasicek model [62], introduced in 1977, under which the instantaneous sport interest rate follows

an Ornstein-Uhlenbeck process, namely we consider the unique strong solution to the stochastic

differential equation

drt = κ(θ − rt)dt+ ξdWt, r0 > 0, (4.2.4)

where W is a standard Brownian motion and κ, θ, ξ and r0 strictly positive real numbers. It is

immediate to see that, for any t ≥ 0,

rt = r0e
−κt + θ

(
1− e−κt

)
+ ξ

∫ t

0

e−κ(t−s)dWs,

and

E(rt) = r0e
−κt + θ

(
1− e−κt

)
and V(rt) =

ξ2

2κ

(
1− e−2κt

)
.

Straightforward computations show that, for any t ≥ 0, the integrated rate Rt is Gaussian with

mean and variance given by

E(Rt) = θt+
θ − r0
κ

(
e−κt − 1

)
and V(Rt) =

ξ2

2κ2

(
4e−κt − e−2κt − 3

2κ
+ t

)
,

so that E
(
eiuRt

)
= exp (A(u, t)−B(u, t)r0), where

A(u, t) =

(
θ +

iξ2u

2κ2

)
(B(u, t) + iu)− ξ2

4κ
B(u, t)2,

B(u, t) =
e−κt − 1

κ
iu.

4.3. Pricing via saddlepoint approximation 123

4.3 Pricing via saddlepoint approximation

4.3.1 The Lugannani-Rice approximation

The Gaussian base

We consider here a continuous random variable X, taking values on the real line. We shall denote

M(u) := E(euX) its moment generating function and Λ(u) := logM(u) its cumulant generating

function. Obviously these two functions are only defined on some subset of the real line (including

the origin), which is called the effective domain: DX := {u ∈ R :M(u) <∞}. The function Λ is

differentiable on DX and convex by Jensen’s inequality. Therefore, for any x ∈ D′
X := Λ′(DX)

(the image of DX by Λ′), the equation Λ′(s) = x has a unique solution in DX . We start with

the following saddlepoint approximation theorem. We recall that N and n respectively denote the

Gaussian cumulative distribution function and Gaussian density.

Theorem 4.3.1 (Lugannani and Rice [54]). Let X be a continuous random variable on R, then

P(X ≥ x) ≈


1−N (ω̂) + n(ω̂)

(
1

û
− 1

ω̂

)
, if x ̸= E(X),

1

2
− Λ′′′(0)

6Λ′′(0)3/2
√
2π
, if x = E(X),

where ω̂ := sgn(ŝ(x))
√
2[ŝ(x)x− Λ(ŝ(x))], û := ŝ(x)

√
Λ′′(ŝ(x)), sgn(z) := 11{z>0} − 11{z<0}, and

ŝ(x) is the unique solution to Λ′(s) = x in DX .

Remark 4.3.2. Strictly speaking, Lugannani and Rice considered the mean Xn := n−1
∑n

i=1Xi

of independent and identically distributed random variables (Xi)i∈N under the condition that X1

admits a density. They then proved that, as n tends to infinity, the expansion

P(Xn ≥ x) = 1−N (ω̂) + n(ω̂)

(
1

ω̂
− 1

û

)
+O

(
n−3/2

)
holds. The approximation in Theorem 4.3.1 is thus obtained by considering the case n = 1. It is

remarkable, as we shall see, that this approximation remains extremely accurate.

Example. Consider the standard Gaussian distribution, then ŝ = ŵ = û = x, and the saddlepoint

approximation is exact.

Example. The Gamma distribution with shape parameter α > 0 and rate β > 0 has density

f(x) =
βα

Γ(α)
xα−1e−βx, for all x > 0,

so that M(u) =
(
1− u

β

)−α

, for any u < β, and therefore, for any x > 0,

ŝ = β − α

x
, ŵ = sgn(ŝ(x))

√
2

(
βx− α

[
1 + log

(
βx

α

)])
, û =

βx− α√
α

.

4.3. Pricing via saddlepoint approximation 124

Exercise 46. Check the computations of the Gamma example above (Example 4.3.1) and plot the

difference between the Gamma CDF and its saddlepoint approximation given in Theorem 4.3.1.

Discuss the influence of the parameters α and β on the accuracy of this approximation.

Non-Gaussian bases

Wood, Booth and Butler [65] generalised the Lugannani-Rice approximation by allowing for a non-

Gaussian base. Let Z be a given random variable, which we call the base, for which the cumulant

generating function ΛZ(u) ≡ logE(euZ), the CDF FZ and the density fZ are known. We state

below their results, which obviously reduces to the Lugannani-Rice approximation (Theorem 4.3.1)

when Z is Gaussian:

Theorem 4.3.3. Let X be a real continuous random variable. Then, for any x ∈ R,

P(X > z) ≈ 1− FZ(ξ̂) + fZ(ξ̂)

(
1

ûξ̂
− 1

ωξ̂

)
,

where

ûξ̂ := ŝ

√
Λ′′(ŝ)

G′′(ωξ̂)
,

and where ŝ, ξ̂ and ωξ̂ are the unique solutions to

Λ′(ŝ) = x, H(ξ̂) = Λ(ŝ)− ŝx, G′(ωξ̂) = ξ;

here Λ is the CGF of X and H(ξ) ≡ G(ωξ)− ξωξ.

4.3.2 Pricing with the Lugannani-Rice approximation

Let (Ω,F , (Ft)t≥0,P) be a given filtered probability space. We consider here a European Put option

P (k, T) with strike ek (k ∈ R) and maturity T > 0, on a given stock price (eXt)t≥0, assumed to

be a strictly positive martingale under P. Then

P (k, T) = EP(ek − eXT)+ = EP ((ek − eXT
)
11{XT<k}

)
= ekP(XT < k)− EP (eXT 11{XT<k}

)
.

Using the ’Share measure’ Q defined via the Radon-Nikodym derivative by
dQ
dP

∣∣∣∣
FT

=
ST

S0
=

exp(XT −X0), we have

EP (eXT 11{XT<k}
)
= eX0EP (eXT−X011{XT<k}

)
= eX0EP

(
dQ
dP

11{XT<k}

)
= eX0EQ (11{XT<k}

)
,

and therefore

P(k, T) = ekP(XT < k)− eX0Q(XT < k). (4.3.1)

Suppose now that the cumulant generating function of XT , Λ(u) := logEP (euXT
)
, is known,

obviously only on its effective domain DX . The first probability in (4.3.1) can be approximated

4.4. Numerical integration and quadrature methods 125

directly using the Lugannani-Rice formula in Theorem 4.3.1. Regarding the second one, let us

compute the cumulant generating function, ΛQ of XT under Q:

ΛQ(u) := logEQ (euXT
)
= logE

(
euXT

dQ
dP

)
= eX0 logE

(
e(u−1)XT

)
Example. See the IPython notebook for an implementation.

4.4 Numerical integration and quadrature methods

As we mentioned above, if either the density of the characteristic function of the stock price process

is available in closed-form, then pricing European vanilla options (Calls and Puts) boils down to

a simple integration over (part of) the real line of some real-valued function. We shall now see

how such an integration can be performed. We will first have a look at (standard) integration

schemes, which can be seen essentially as refinements of the standard Riemann integration. We

will then have a look at discrete and fast Fourier methods, which have proven to be extremely

efficient algorithms for the pricing methodology developed in Section 4.2.

4.4.1 A primer on polynomial interpolation

Lagrange polynomials

Polynomial interpolation lies at the basis of function approximation. The basic question can be

formulated as follows: given a continuous function f on an interval [a, b] ⊂ R, can we find a

smooth (simple) function that approximates f in some sense? The sense in which we consider this

approximation is the sup norm, i.e.

∥f∥∞ := sup
x∈[a,b]

|f(x)|.

The answer to the above question is given by Weierstrass theorem, who proves that the space of

polynomials is dense in the space of continuous functions (on any interval of the real line):

Theorem 4.4.1 (Weierstrass). Let f : [a, b] → R be a continuous function. For any ε > 0, there

exists a polynomial P such that ∥f − P∥∞ ≤ ε.

Proof. There exist several proofs in the literature. We give here a constructive proof. For simplicity

consider [a, b] = [0, 1], and for any n ∈ N, define the polynomial Pn by

Pn(x) :=

n∑
k=0

(
n

k

)
f(k/n)xk(1− x)k, for any x ∈ [0, 1].

Since f is continuous on the closed interval [0, 1], it is bounded and the sequence (Pn)n converges

uniformly to f in [0, 1].

4.4. Numerical integration and quadrature methods 126

Remark 4.4.2. Note that Weierstrass theorem ensures the existence of some polynomial close

enough to f in the sup norm. It can be shown, however, that the sequence proposed in the proof

has poor convergence properties.

This theorem motivates our use of polynomials as interpolating functions. Note that the Weier-

strass theorem indicates the existence of a polynomial that approximates a given function in the

sup norm, but does not provide any information concerning its construction. Theorem 4.4.5 below

gives us such information, but we need some preliminary definitions.

Definition 4.4.3. Let n ∈ N. Given a set of distinct points {x0, . . . , xn}, the Lagrange polynomials

are the n+ 1 polynomials satisfying

L
(n)
i (xj) := δij =

 1 if i = j,

0 if i ̸= j,
for each 0 ≤ i, j ≤ n.

Let now {y0, . . . , yn} be a set of n+1 points, we further define the interpolating polynomial Pn as

Pn(x) :=
n∑

i=0

yiL
(n)
i (x).

The Lagrange polynomials can be further characterised by

L
(n)
i (x) :=

n∏
k=0,k ̸=i

x− xk
xi − xk

, for each i = 0, . . . , n.

Remark 4.4.4. It is clear from the definition that Pn(xi) = yi for any i = 1, . . . , n, hence the

name interpolating polynomial. Note further that Pn is of degree at most n.

The following proposition validates the use of these Lagrange polynomials.

Theorem 4.4.5. Let {x0, . . . , xn} be n+1 distinct nodes, then for any {y0, . . . , yn} there exists a

polynomial P of degree at most n such that P (xi) = yi, for any i = 0, . . . , n.

Proof. The existence follows immediately from the construction of the Lagrange polynomials above.

Suppose now that there exist two such interpolating polynomials P and Q of degree at most n,

and define R ≡ P − Q. R is a polynomial of degree at most n but has (at least) n + 1 roots, so

that it must be null everywhere, and the theorem follows.

We could give another proof of existence of these interpolating polynomials, in a more construc-

tive way. Consider a set of pairs {(x0, y0), . . . , (xn, yn)}. We wish to construct the interpolating

polynomials iteratively. Start with the initial constant polynomial P0(x) := y0, and define the

family (Pk)k≥1 recursively as

Pk+1(x) := Pk(x) + γk (x− x0) . . . (x− xk) , for each k ≥ 1,

4.4. Numerical integration and quadrature methods 127

where γk is a constant chosen such that yk+1 = Pk+1 (xk+1), i.e.

γk =
yk+1 − Pk (xk+1)

(x− x0) . . . (x− xk)
.

This construction is called Newton’s algorithm. It has the advantage that given a polynomial

interpolating n points, one does not have to start the Lagrange algorithm from scratch in order to

obtain a polynomial interpolating n+ 1 points. Note that we can rewrite the general term of the

sequence of polynomials as

Pn(x) = y0 +
n∑

k=0

γk

k−1∏
j=0

(x− xj) , for any n ≥ 0,

where an empty product is by convention equal to one.

Interpolation error

It is then natural to wonder how good—in the sense of how close from the original function f—these

interpolating polynomials are. The following theorem provides an answer to that question:

Theorem 4.4.6 (Interpolation Error Theorem). Let Pn be a polynomial of degree at most n ≥ 0

interpolating the function f at the distinct nodes x0, . . . , xn on the interval [a, b] and assume that

the (n+ 1)-th derivative f (n+1) is continuous on this interval, then for each x ∈ [a, b], there exists

ξ ∈ [a, b] such that

f(x)− Pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi) .

Proof. The theorem is trivial when x corresponds to one of the nodes x0, . . . , xn. Assume therefore

that x ̸= xi for any i = 0, . . . , n. Define

ψ(z) :=

n∏
i=0

(z − xi),

γ :=
f(x)− Pn(x)

ψ(x)
,

ϕ(z) := f(z)− Pn(z)− γψ(z).

Note that

(i) γ is well defined;

(ii) the function ϕ has n+ 2 roots: x0, . . . , xn and x;

(iii) the functions f , Pn and ψ are Cn+1([a, b]), and so is ϕ.

Rolle’s theorem implies that ϕ′ has n + 1 roots, that ϕ′′ has n roots ad so on, so that ϕ(n+1)

has exactly one root in [a, b], which we denote ξ. Differentiating ϕ (n + 1) times, we see that

f (n+1)(ξ) − γψ(n+1)(ξ) = 0 since Pn is a polynomial of degree at most n. We also note that

ψ(n+1)(ξ) = (n+ 1)! and hence, replacing γ by its definition, the theorem follows.

4.4. Numerical integration and quadrature methods 128

We usually do not have much control over the derivative f (n+1), so that the only way to reduce

the error is to choose the nodes adequately. The following proposition outlines the interpolation

error when using equally spaced nodes.

Proposition 4.4.7. Consider n + 1 equally spaced nodes x0, . . . , xn of the interval [a, b], i.e.

xi := a+ iδ, for i = 0, . . . , n, where δ := (b− a) /n. Then

n∏
i=0

|x− xi| ≤
δn+1n!

4
, for any x ∈ [a, b].

Proof. If x is situated at one of the nodes, then the proposition is obvious since the left-hand side

is null. Fix some x ∈ [a, b]; then there exists j ∈ [0, n − 1] such that x ∈ (xj , xj+1). Note that

either |x− xj | ≤ δ/2 or |x− xj+1| ≤ δ/2. In either case, we have the inequality

|x− xj | |x− xj+1| ≤
δ2

4
.

Straightforward calculations then show that

|x− xi| ≤ (j − i+ 1)δ, for i < j,

|x− xi| ≤ (i− j)δ, for i > j + 1.

Therefore
n∏

i=0

|x− xi| ≤
δ2

4

(
(j + 1)!δj

) (
(n− j)!δn−j−1

)
≤ δn+1n!

4
,

as claimed, where we have used the fact that (j + 1)!(n− j)! ≤ n!.

The following example (stated as an exercise) should be seen as a warning when using polyno-

mial interpolations.

Exercise 47. Consider the so-called Runge function defined by f(x) := (1+25x2)−1 on the interval

[−1, 1]. Discuss the validity of the polynomial interpolation as the number of nodes increases.

Exercise 48. How many nodes are needed in order to interpolate the function f(x) := sin(x) +

cos(x) on the interval [0, π] with a maximum error of 10−8?

These results seem to indicate that equally spaced nodes may not be the most efficient choice.

Note that from Theorem 4.4.6, we can write

∥f(x)− Pn(x)∥∞ ≤
∥∥f (n+1)

∥∥
∞

(n+ 1)!
∥ω∥∞,

where ω(x) ≡
∏n

i=0 (x− xi). The only term depending on the nodes is ω, and therefore it sounds

sensible to try and minimise ∥ω∥∞. Consider the Chebychev polynomials defined recursively on

[−1, 1] by

T0(x) = 1,

T1(x) = x,

Tk+1(x) = 2xTk(x)− Tk−1(x), for any k ≥ 1.

4.4. Numerical integration and quadrature methods 129

One can show that this definition implies the characterisation cos(kθ) = Tk(cos θ), for any k ≥ 0,

θ ∈ R and that for any k ≥ 2, Tk has exactly k roots:

x
(k)
i = cos

(
i+ 1/2

k
π

)
, for any i = 0, . . . , k − 1.

It is then easy to show that (exercise) for the Chebychev polynomial Tk, we have

k∏
i=0

∣∣∣x− x
(k)
i

∣∣∣ ≤ 2−k, for any x ∈ [−1, 1],

which is clearly an improvement of Proposition 4.4.7. The motivation underlying the use of Cheby-

chev polynomials is the following theorem:

Theorem 4.4.8. For any fixed integer n > 0, then the minimisation problem

τn = inf
deg(Q)≤n−1

{
max

x∈[−1,1]
|xn +Q(x)|

}
has a unique solution equal to τn = 21−n which is attained at Q∗(x) ≡ 21−nTn(x)− xn, where Tn

is the n-th Chebychev polynomial.

Orthogonal polynomials

We have just seen that equally spaced nodes are not optimal, and that greater accuracy can be

achieved by choosing the roots of other polynomials such as Chebychev polynomials. We make this

clearer and more rigorous here. Recall that Weierstrass theorem 4.4.1 considered the approximating

error in the sup norm ∥ · ∥∞. We define here a new norm, more adapted to the current problem.

Let us recall the following basic facts about vector spaces:

Definition 4.4.9. Let H be a (real) vector space and u and v two elements of H. An inner

product ⟨u, v⟩ is a mapping from H×H to R satisfying

• ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩, for w ∈ H;

• ⟨αu, v⟩ = α ⟨u, v⟩, for any α ∈ R;

• ⟨u, v⟩ = ⟨v, u⟩;

• ⟨u, u⟩ ≥ 0;

• ⟨u, u⟩ = 0 if and only if u = 0.

We shall be interested here in the weighted vector space C ([a, b]) of continuous functions on

the interval [a, b], with inner product

⟨f, g⟩w :=

∫ b

a

w(x)f(x)g(x)dx, for any f, g ∈ C ([a, b]) ,

4.4. Numerical integration and quadrature methods 130

where the weight function w : [a, b] → R is continuous, non-negative, and does not vanish on any

subinterval of [a, b] of non-zero length. The corresponding norm ∥ · ∥2,w is the weighted L2-norm.

Let now f ∈ H = C ([a, b]) (and a given weight function w) and define P as a finite-dimensional

subspace ofH of say, dimensionm ≥ 1. This implies that there exists a basis of linearly independent

vector (ϕ1, . . . , ϕm) ∈ Hm such that

P =

{
m∑

k=1

αkϕk, (α1, . . . , αm) ∈ Rm

}
.

The problem we are considering can be written as

Find P ∈ P that minimises ∥f − P∥2,w. (4.4.1)

The solution to this problem is contained in the following theorem, the proof of which is omitted.

Theorem 4.4.10. The problem (4.4.1) has a unique solution P ∗ ∈ P, which is the unique solution

to ⟨f − P,Q⟩w = 0 for all Q ∈ P.

Definition 4.4.11. We shall say that two polynomials P and Q are orthogonal in the Hilbert

weighted space H if ⟨P,Q⟩w = 0.

Remark 4.4.12. One could for instance consider P as the (n + 1)-dimensional subspace gener-

ated by the basis (1, x, . . . , xn). In this case, the function to minimise (from the minimisation

problem (4.4.1)) reads

Φ (α0, . . . , αn) :=

∫ b

a

w(x)

(
f(x)−

n∑
i=0

αix
i

)2

dx.

In order for (α0, . . . , αn) to be a minimum, we need the conditions ∂iΦ(α0, . . . , αn) = 0, for

i = 0, . . . , n. This can be written as the following linear system

n∑
j=0

αj

∫ b

a

w(x)xi+jdx =

∫ b

a

w(x)f(x)xidx, for i = 0, . . . , n.

Consider the case where the weight function is constant and equal to one on [a, b] = [0, 1]. Then

the linear system becomes

n∑
j=0

αj

i+ j + 1
=

∫ 1

0

f(x)xidx, for i = 0, . . . , n,

which can be written in matrix form as

1
1

2
. . .

1

n+ 1
1

2

1

3
. . .

1

n+ 2
...

. . .
. . .

...
1

n+ 1
.

1

2n+ 1




a0
...
...

an

 =



∫ 1

0

f(x)dx

...

...∫ 1

0

xnf(x)dx


.

4.4. Numerical integration and quadrature methods 131

The matrix on the left-hand side is called the Hilbert matrix, and is invertible since its determinant

is equal to

det =
(
∏n

k=1 k!)
4∏2n+1

k=1 k!
̸= 0.

It can be shown that the solution to this problem is very sensitive to any small perturbation of the

vector on the right-hand side of the equality, making the problem at hand very ill-conditioned. In

fact, even though the Hilbert matrix is invertible, numerical instabilities do arise when performing

the inversion. Note further that this basis of monomials (1, x, . . . , xn) is not orthogonal in the

space H, whatever the weight function w is. The problem here is that the functions x 7→ xk

becomes more and more similar as k increases.

In order to bypass this issue (Remark 4.4.12), we would like to use an orthogonal basis, which

would then ensure that its elements do not become more and more alike. The following Gram-

Schmidt orthogonalisation algorithm provides us with such a construction.

Theorem 4.4.13 (Gram-Schmidt orthogonalisation). For any given weight function w, there

exists a unique sequence of orthogonal polynomials (ψn)n≥0 in H with degree(ψn) = n such that

∥ψn∥2,w = 1 and the highest-order coefficient of ψn is strictly positive.

Proof. The proof is constructive and determines the sequence recursively. Start with the initial

(constant) polynomial ψ0 ≡ c. The condition ∥ψ0∥2,w = 1 implies c =
(∫ b

a
w(x)dx

)−1/2

. Then,

construct ψ1 from an auxiliary polynomial p1 defined by

p1(x) = x+ α1,0ψ0(x).

The orthogonality condition ⟨p1, ψ0⟩w = 0 implies

α1,0 = −⟨x, ψ0⟩w = −
∫ b

a
xw(x)dx(∫ b

a
w(x)dx

)1/2 .
Define now ψ1 := p1/ ∥p1∥2,w, and note that ψ1 satisfies the conditions of the theorem. The general

term of the sequence is then determined by

ψn :=
pn

∥pn∥2,w
,

where pn(x) := xn + αn,n−1ψn−1(x) + . . . + αn,0ψ0(x), and where the constants αn,n−1, . . . , αn,0

are chosen to ensure orthogonality, i.e. αn,k = −⟨xn, ψk⟩w for each k = 0, . . . , n− 1.

The most common families of orthogonal polynomials are given as follows:

Name (a, b) w(x)

Legendre (−1, 1) 1

Chebychev (−1, 1)
(
1− x2

)−1/2

Laguerre (0,∞) exp(−x)

Hermite R exp(−x2)

4.4. Numerical integration and quadrature methods 132

Remark 4.4.14. Note that each orthogonal basis is defined on a pre-specified interval (a, b). A

simple mapping of the nodes allows one to use them on any desired interval.

The following theorem gives a recursion algorithm for the sequence of polynomials constructed

from the Gram-Schmidt orthogonalisation.

Theorem 4.4.15. Let (ψn)n≥0 be a family of orthogonal polynomials with respect to the weight

function w on some interval (a, b). We assume that the n-th element of the sequence has the form

ψn(x) = Anx
n +Bnx

n−1 + . . ., and define

an :=
An+1

An
and γn := ⟨ψn, ψn⟩w .

Then, for all n ≥ 1, we have

ψn+1(x) = (anx+ bn)ψn(x)− cnψn−1(x),

where

bn := an

(
Bn+1

An+1
− Bn

An

)
and cn :=

An−1An+1

A2
n

γn
γn−1

.

The proof of the theorem follows by a careful yet simple manipulation of the Gram-Schmidt

construction, and we hence leave it as an exercise.

Example.

(i) (Legendre polynomials). Let (a, b) = (−1, 1) and w(x) ≡ 1, then

Pn(x) =
(−1)n

2nn!

dn

dxn

[(
1− x2

)n]
and ∥Pn∥22,w =

2

2n+ 1
.

and we have the recursion

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x).

(ii) (Chebychev polynomials). Let (a, b) = (−1, 1) and w(x) ≡
(
1− x2

)−1/2
, then

Tn(x) = cos (acos(x)n) ,

and

⟨Tn, Tm⟩w =


0, if n ̸= m,

π, if n = m = 0,

π/2, if n = m ̸= 0.

and we have the recursion

Tn+1(x) = 2xTn(x)− Tn−1(x).

4.4. Numerical integration and quadrature methods 133

(iii) (Laguerre polynomials). Let [a, b) = [0,∞) and w(x) ≡ e−x, then

Ln(x) =
ex

n!

dn

dxn
(
xne−x

)
and ∥Ln∥22,w = 1,

and we have the recursion

Ln+1(x) =
2n+ 1− x

n+ 1
Ln(x)−

n

n+ 1
Ln−1(x).

(iii) (Hermite polynomials). Let (a, b) = R and w(x) ≡ e−x2

, then

Hn(x) = (−1)nex
2 dn

dxn

(
e−x2

)
,

and we have the recursion

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

The following property is fundamental for the next section:

Theorem 4.4.16. For any n ≥ 1, the orthogonal monic (An = 1) polynomial pn defined by

Theorem 4.4.15 has exactly n distinct roots in the interval (a, b) which are the eigenvalues of the

symmetric tridiagonal matrix 
−b1 c1 0 0

c1 −b2
. . . 0

0
. . .

. . . cn−1

0 0 cn−1 −bn

 .

Proof. Suppose that pn has fewer than n roots in (a, b), and denote them x̃1, . . . , x̃m with m < n.

Define the polynomial q(x) := (x− x̃1) . . . (x− x̃m). Since the polynomial product pnq does not

change sign in the whole interval (a, b), we have ⟨pn, q⟩ ≠ 0. By the Gram-Schmidt construction,

we further know that pn is orthogonal to any polynomial of degree strictly smaller than n, so in

particular is orthogonal to and q, and the contradiction concludes the proof of the theorem. The

characterisation of the roots as eigenvalues of the matrix is left as an exercise.

Interpolation via splines

We have seen so far how to construct interpolating polynomials given a set of data points; one of

the main drawbacks of this approach is that as the number of interpolating nodes increases, the

interpolating polynomial becomes more and more oscillating. An alternative method has become

increasingly popular since the 1960s in many areas of applied mathematics (computer graphics,

numerical solutions of integrals,. . .). The idea is first to split the domain of the function into

a number of subdomains and then to apply an interpolation method on each of them. To be

more precise, we consider a sequence of points (x0, . . . , xn) subdividing the domain of the function

4.4. Numerical integration and quadrature methods 134

under consideration, say f , and we define a piecewise polynomial P : R → R of order r ≥ 1 as a

polynomial of degree at most r on each subinterval [xi, xi+1], for i = 0, . . . , n−1. There are several

ways of constructing these polynomials:

(i) one could first consider a fixed number of nodes on each interval [xi, xi+1] and then construct

an interpolating polynomial as above using Lagrange polynomials;

(ii) one could choose a weight function w and approximate the function f using orthogonal

polynomials where the nodes within the interval [xi, xi+1] correspond to the (scaled) roots

of the orthogonal polynomial with respect to w;

(iii) if the derivatives of the function f are known (or easily computable), one could use cubic

splines as explained below.

Items (i) and (ii) are rather obvious to construct from the previous results, and are called composite

rules. Likewise, their errors are straightforward to compute. The idea of cubic splines is to find a

sequence of cubic polynomials P := (P0, . . . , Pn−1) satisfying the following conditions:

(a) Pi(xi) = f(xi) and Pi(xi+1) = f(xi+1), for i = 0, . . . , n− 1;

(b) P ′
i (xi+1) = P ′

i+1(xi+1) = 0, for i = 0, . . . , n− 2;

(c) P ′′
i (xi+1) = P ′′

i+1(xi+1) = 0, for i = 0, . . . , n− 2;

Condition (a) ensures the continuity of P at each node, and Conditions (b) and (c) ensure the

continuity of the first and second derivatives of P at each node. Since the cubic polynomial on

each interval has four coefficients, there are exactly 4n coefficients to determine in this procedure.

However, the sets of Conditions (a), (b) and (c) only lead to 2n + (n − 1) + (n − 1) = 4n − 2

equations. Extra conditions are therefore needed in order to make the problem well posed, and

this leads to different types of cubic splines:

• Natural cubic splines:

P ′′
0 (x0) = P ′′

n−1(xn) = 0.

• Clamped boundary conditions:

P ′
0(x0) = α0 and P ′

n−1(xn) = αn,

where α0 and αn are usually set equal to the first derivative of the function f at x0 and xn.

• Not-a-knot conditions:

P ′′′
0 (x1) = P ′′′

1 (x1) and P ′′′
n−2(xn−1) = P ′′′

n−1(xn−1).

This means that P′′′ is continuous at the nodes x1 and xn−1.

4.4. Numerical integration and quadrature methods 135

4.4.2 Numerical integration via quadrature

We are now interested in finding a way to compute (one-dimensional) integrals as accurately as

possible. With Riemann integration in mind, we look for an approximation of the form∫
A

f(x)dx ≈
n∑

i=0

wif(xi),

where A ⊂ R is the integration domain, n + 1 is the number of points we wish to use, (xi)0≤i≤n

some points in A and wi some weights. Such a representation is called a quadrature rule and the

points x0, . . . , xn are the quadrature nodes.

Newton-Cotes formulae

Let us start with a few examples:

• Rectangular rule. We approximate the integral as the area of a rectangle of width (b − a)

and height f(a) or f(b):∫ b

a

f(x)dx ≈ (b− a)f(a) or

∫ b

a

f(x)dx ≈ (b− a)f(b).

• Mid-point rule: ∫ b

a

f(x)dx ≈ (b− a) f

(
a+ b

2

)
.

• Trapezoidal rule. We approximate the integral as the area of a trapezoid with base [a, b] and

sidelines f(a) and f(b): ∫ b

a

f(x)dx ≈ b− a

2

(
f(a) + f(b)

)
.

Note that the first two rules follow by approximating the function f by a constant f(a)—or f(b)—

and f
(
a+b
2

)
. The trapezoidal rule follows by integrating the polynomial of order one: p1(x) :=

f(a)+ x−a
b−a (f(b)− f(a)). Let us now generalise this. Let x0, . . . , xn be n+1 distinct points in the

interval [a, b] and consider the Lagrange interpolating polynomial Pn defined in Definition 4.4.3 by

Pn(x) :=
n∑

i=0

yiL
(n)
i (x).

Definition 4.4.17. The Newton-Cotes quadrature formula is defined as
∫ b

a
Pn(x)dx, where Pn is

an interpolating polynomial of the function f with nodes x0, . . . , xn.

From this definition, we can then write∫ b

a

f(x)dx ≈
∫ b

a

Pn(x)(x)dx =
n∑

i=0

wif(xi),

where wi :=
∫ b

a
L
(n)
i (x)dx for any i = 0, . . . , n.

4.4. Numerical integration and quadrature methods 136

Remark 4.4.18. The three rules introduced above can be recovered by taking n = 0 and x0 = a

(rectangular), n = 0 and x0 = (a+ b)/2 (mid-point) and n = 1, x0 = a, xn = b (trapezoidal).

Remark 4.4.19. A more subtle (and more widely used) rule is n = 2, x0 = a, x1 = (a + b)/2

and x2 = b and is called Simpson’s rule, i.e. we use a quadratic interpolating polynomial on the

interval [a, b]. The integration then reads∫ b

a

f(x)dx ≈
∫ b

a

(
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1) +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2)

)
dx

=
h

3

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
,

where h := (b− a)/2.

Remark 4.4.20. Note that these integration rules can also be applied to solve numerically ordinary

differential equations. Consider indeed an initial value problem for an ODE of the form

ẋt = f (t, xt) , for t ∈ [a, b], with xa = x0.

Integrating both sides of the equality between a and t ∈ [a, b] gives

xt = x0 +

∫ t

a

f (s, xs) ds,

and we are hence left with an integration problem between a and t.

Newton-Cotes integration error

Let us now look at the error of this integration approximation. For simplicity we shall assume that

the function f to integrate is smooth, i.e. has derivatives of all orders. From Theorem 4.4.6, we

know that for a polynomial P of degree at most n ≥ 0 interpolating the function f at the distinct

nodes x0, . . . , xn, the error is worth

f(x)− Pn(x) = εn(x), (4.4.2)

where

εn(x) :=
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi) ,

for some ξ ∈ [a, b] (depending on x). Integrating (4.4.2), we obtain∫ b

a

f(x)dx =

∫ b

a

Pn(x)dx+

∫ b

a

εn(x)dx =
n∑

i=0

wif(xi) + En,

where En :=
∫ b

a
εn(x)dx is called the integration error. It is then immediate to see that

|En| ≤ sup
x∈[a,b]

∣∣∣f (n+1)(ξ)
∣∣∣ 1

(n+ 1)!

n∏
i=0

∫ b

a

|x− xi|dx.

More precise results are available in the literature, but we omit them here for brevity. We however

refer the interested reader to Isaacson & Keller [44] for more details. In the rules discussed above,

we can compute the error explicitly as follows.

4.4. Numerical integration and quadrature methods 137

Proposition 4.4.21. Let h := (b− a)/2. With the rectangular rule, we have

ER
0 = 2h2f ′(ξ), for some ξ ∈ [a, b].

With the trapezoidal rule, we have

ET
1 =

2h3

3
f ′′(ξ), for some ξ ∈ [a, b].

With the mid-point rule, we have

EM
1 =

h3

3
f ′′(ξ), for some ξ ∈ [a, b].

With the Simpson rule, we have

ER
2 = −h

5

90
f ′(ξ), for some ξ ∈ [a, b].

We leave the proof of this proposition as an exercise. This proof is based on the mean value

theorem for integrals (Theorem 4.4.22 below) for the rectangular and the trapezoidal rules. In the

other two cases, this theorem is not enough, and one needs to use a Taylor expansion (i) of order

two around the mid-point of the interval in the mid-point rule and (ii) of order three around the

mid-point of the interval in the Simpson rule. We recall the following theorem for completeness.

Theorem 4.4.22 (Mean value theorem). Let f and g be two continuous functions on the interval

[a, b]. If g(x) ≥ 0 for all x ∈ [a, b], then there exists γ ∈ [a, b] such that∫ b

a

f(x)g(x)dx = f(γ)

∫ b

a

g(x)dx.

Remark 4.4.23. It is clear that the composite polynomial interpolation method presented above

on page 134 carries over to integration method: we first split the integration domain into a number

of subdomains, and then approximate each integrand by its interpolating polynomial. We shall

not write out the details here since they are clearly straightforward.

We finish this part with the following definition and exercises concerning the order of accuracy

of interpolation schemes.

Definition 4.4.24. A (n+ 1)-node quadrature formula∫ b

a

f(x)dx ≈
n∑

i=0

wif(xi),

has a degree of accuracy m ≥ 0 if it is exact for any polynomial pk of degree smaller than m:∫ b

a

pk(x)dx =
n∑

i=0

wipk(xi),

and not exact for some polynomial of degree equal to m+ 1.

4.4. Numerical integration and quadrature methods 138

Example. For the trapezoidal rule, the order of accuracy is m = 1 whereas it is equal to m = 3

for the Simpson rule.

One can in particular show that the order of accuracy of any Newton-Cotes formula cannot

exceed the total number of nodes. We may now wonder whether the Newton-Cotes approximation

formula converges to the original integral as the degree of the polynomial approximation of the

integrand tends to infinity. This shall also serve—as we will see—as an introduction to Gaussian

quadrature methods in the next subsection. As an exercise, the reader should numerically check

that the Newton-Cotes approximation to the integration of the Runge function does not converge

when the number of nodes goes large: ∫ 5

−5

dx

1 + x2
.

The following theorem makes this precise:

Theorem 4.4.25. Let n ≥ 1 and

In(f) :=

n∑
i=0

wi,nf(xi,n)

be a sequence of numerical integration formulae approximating the integral I(f) :=
∫ b

a
f(x)dx. We

write here wi,n and xi,n to highlight the dependence on the number of nodes n + 1. Let then F

be a dense family in the space C([a, b]) of continuous functions on the interval [a, b]. Then In(f)

converges to I(f) for all f ∈ C([a, b]) if and only if the following two conditions are satisfied:

(i) In(f) converges to I(f) for all f ∈ F ;

(ii) supn≥1

∑n
i=0 |wi,n| <∞.

Exercise 49. Using the theorem, check why the Newton-Cotes formulae do not converge for the

Runge function.

Gaussian quadratures

As we mentioned above, the order of accuracy of a Newton-Cotes formula can never exceed the

total number of interpolation / integration nodes. Gaussian integration finds the optimal choice

of such nodes in order to maximise the order of accuracy of the scheme. Let us start with the

following example: we wish to approximate the integral
∫ 1

−1
f(x)dx by w1f(x1) + w2f(x2), where

the two constants w1 and w2 and the two nodes x1 and x2 are such that the order of accuracy is

maximised. These four unknowns lead to a system of four equations via a polynomial of degree

4.4. Numerical integration and quadrature methods 139

three (the monomials 1, x, x2 and x3):∫ 1

−1

1dx = 2 = w1 + w2,∫ 1

−1

xdx = 0 = w1x1 + w2x2,∫ 1

−1

x2dx = 2/3 = w1x
2
1 + w2x

2
2,∫ 1

−1

x3dx = 0 = w1x
3
1 + w2x

3
2,

which gives the unique solution (w1, w2, x1, x2) =
(
1, 1,−

√
3/3,

√
3/3
)
. Note that this integration

rule gives an order of accuracy of 3 with only two nodes. As a comparison, with two nodes the

trapezoidal rule has an order of accuracy of one and the Simpson’s rule requires three nodes to

attain an order of accuracy of three. This example serves as an introduction to the following

definition of Gaussian quadrature:

Definition 4.4.26. A Gaussian quadrature consists in choosing n integration / interpolation nodes

that maximise the order of accuracy to a value of 2n− 1.

In the general case, let us consider n nodes labelled x1, . . . , xn and n corresponding weights

w1, . . . , w2. We wish again to obtain a numerical scheme for the integral
∫ 1

−1
f(x)dx. We consider

all the monomials of degree smaller than 2n − 1 (since there are 2n parameters to determine),

which leads to the following system of equations:

n∑
i=1

wix
k
i =

 0 if k is odd,
2

k + 1
if k is even.

Note however than the non-linearity of the problem makes it difficult to solve for general n ∈ N.

We however have the following theorem:

Theorem 4.4.27. Let (ϕn)n≥0 be a family of orthogonal polynomials on the interval [a, b] with

respect to a given weight function w, of the form

ϕn(x) =
n∑

k=0

Akx
k.

Denote by x1, . . . , xn ∈ [a, b] the zeros of ϕn, let an := An+1/An and γn := ∥ϕn∥22,w =
∫ b

a
w(x)ϕ2n(x)dx.

For each n ≥ 1, there is a unique integration approximation formula

I(f) :=

∫ b

a

f(x)dx ≈
n∑

i=1

wif(xi) =: In(f)

with order of accuracy equal to 2n − 1. If the function f is 2n times differentiable on [a, b], then

there exists ξ ∈ [a, b] such that the integration error En reads

En := I(f)− In(f) =
γn

(2n)!A2
n

f (2n)(ξ).

4.4. Numerical integration and quadrature methods 140

Furthermore, the optimal nodes are given by the roots of ϕn and the weights by

wi =
−anγn

ϕ′n(xi)ϕn+1(xi)
, for all i = 1, . . . , n.

Example. According to the table of orthogonal polynomials on page 131, the Legendre polyno-

mials have weight function constant equal to one. In particular, the first of the series read

P0(x) = 1, P1(x) = x, P2(x) =
3x2

2
− 1

2
, P3(x) =

5x3

2
− 3x

2
, P4(x) =

35x4

8
− 30x2

8
+

3

8
.

The Gauss-Legendre quadrature of
∫ 1

−1
f(x)dx therefore reads

∑n
i=1 wif(xi), where x1, . . . , xn are

the n real roots of the Legendre polynomial of degree n, and the weights are given by

wi =
−2

(n+ 1)P ′
n(xi)Pn+1(xi)

, for i = 1, . . . , n,

and the integration approximation error reads

En =
22n+1 (n!)

4

(2n+ 1) ((2n)!)
2

f (2n)(ξ)

(2n)!
,

for some ξ ∈ (−1, 1). Note that a simple rescaling allows us to consider the integral over some

interval [a, b] as follows: ∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f

(
a+ b+ (b− a)x

2

)
dx.

Remark 4.4.28. Using the integration error formula, we can actually prove—using Stirling’s

approximation—that the convergence of the Gauss-Legendre quadrature is exponentially fast. This

is to be compared to the trapezoidal and the Simpson rules which converge at a speed of n−2 and

n−4 respectively.

Exercise 50. Compute the Gauss-Legendre quadrature to compute the integral
∫ π

0
ex cos(x)dx

and compare with a standard trapezoidal or Simpson rule. The true value of the integral is equal

to − (1 + eπ) /2.

Many other orthogonal polynomials exist in the literature, and we shall not present them here.

One last alternative has been proposed and used in the financial literature, namely the Gauss-

Lobatto quadrature. Contrary to what it may seem, it is not based on some possible Lobatto

polynomials, but on the Legendre polynomials. The idea is that, when performing a Gauss-

Legendre quadrature for the integral
∫ b

a
f(x)dx, the two endpoints a and b are actually not taken

into account by Theorem 4.4.16. The Gauss-Lobatto deforms the Gauss-Legendre quadrature in

order to incorporate these two endpoints. It takes as weight function w ≡ 1, and the general

Gauss-Lobatto quadrature formula reads (for clarity we normalised the integration domain to

[−1, 1]) ∫ 1

−1

f(x)dx =
2

n (n− 1)
(f(−1) + f(1)) +

n−1∑
i=2

wif(xi),

4.4. Numerical integration and quadrature methods 141

where the abscissas x2, . . . , xn−1 are the roots of the polynomial P ′
n−1, where Pn−1 is a Legendre

polynomial. The weights are computed explicitly as

wi =
2

n (n− 1)P 2
n−1(xi)

, for i = 2, . . . , n− 1.

We refer the interested reader to [31] for more details and a precise implementation in Matlab.

Remark 4.4.29. Tables of roots of orthogonal polynomials (and hence of integration nodes) are

available in [1].

Adaptive quadrature

A last refinement of integration by quadrature is adaptive quadrature. This is a straightforward

yet powerful extension, and we shall hence present it very briefly. Suppose one wishes to evaluate

the integral I(f) :=
∫ b

a
f(x)dx. A Gaussian quadrature (or Newton-Cotes) gives an estimate In(f).

Let us now specify a tolerance ε > 0 and split the interval (a, b) in two. Perform then a quadrature

on each subinterval, which gives two values In,1(f) and In,2(f). If |In(f)− (In,1(f) + In,2(f))| > ε,

then we keep splitting the subintervals. This methodology allows for a more refined grid where the

function is less smooth or oscillates more rapidly. We shall see below some practical examples.

Numerical integration example

Quadratures are straightforward in MATLAB. Suppose we are interested in computing the integral∫ π/2

0
f(x)dx, where f : x ∈ [0, π/2] 7→ e2x cos(x). Three commands are available to compute such

an integral: trapz uses the trapezoidal rule, quad implements an adaptive Simpson rule while

quadl evaluates the integral according to an adaptive Gauss-Lobatto quadrature, as proposed

in [31]. As an example, consider the following MATLAB code:

Adaptive Simpson integration

f = @(x) exp(2. ∗ x). ∗ cos(x) (Note that we use the vector formulation)

[I, n] = quad(f ,0,π/2,10−6, ’trace on’)

The output I gives the value of the integral, n is the number of function evaluations needed to

obtain this value with a tolerance of 10−6, and the argument trace on outputs the following table:

4.4. Numerical integration and quadrature methods 142

Function evaluations xi xi+1 − xi I

9 0.0000000000 0.426596866 0.6489482541

11 0.0000000000 0.213298433 0.2637880598

13 0.2132984332 0.213298433 0.3851604435

15 0.4265968664 0.717602594 2.3779211477

17 0.4265968664 0.358801297 0.9919640373

19 0.4265968664 0.179400648 0.4385709242

21 0.6059975149 0.179400648 0.5533932720

23 0.7853981634 0.358801297 1.3859845427

25 0.7853981634 0.179400648 0.6602023206

27 0.9647988119 0.179400648 0.7257824978

29 1.1441994604 0.426596866 1.2012396448

31 1.1441994604 0.213298433 0.8045126483

33 1.1441994604 0.106649217 0.4251261784

35 1.2508486770 0.106649217 0.3793864797

37 1.3574978936 0.213298433 0.3967283285

39 1.3574978936 0.106649217 0.2825300514

41 1.4641471102 0.106649217 0.1141982878

The xi represent the abscissa nodes at which the integrand is computed and the last column, I is

the value of the integral on each subinterval (xi−1, xi).

4.4.3 Fast Fourier transform methods

The FFT algorithm

The Fast Fourier Transform is an algorithm to compute efficiently a vector (F1, . . . ,Fn) (for some

n ∈ N) given as the discrete Fourier transform of some vector (f1, . . . , fn):

Fk :=

n∑
j=1

exp

(
−2iπ

n
(j − 1)(k − 1)

)
fj , for k = 1, . . . , n, (4.4.3)

More precisely, consider the vectors f = (f1, . . . , fn) ∈ Rn, and F = (F1, . . . , Fn) ∈ Cn. If F

denotes the discrete Fourier transform of the vector f , then we can write F = Wnf , where the

complex matrix Wn ∈ Mn(C) is given by

Wn =



1 1 1 . . . 1

1 ωn ω2
n

. . . ωn−1
n

1 ω2
n ω4

n

. . . ω2(n−1)
n

...
...

. . .
. . .

...

1 ωn−1
n ω

(n−1)(n−1)
n


,

4.4. Numerical integration and quadrature methods 143

with ωn := exp
(
− 2iπ

n

)
. The computation of the vector F requires an order O(n2) operations. The

FFT algorithm, in particular the one proposed by Colley and Tukey [14], reduces the number of

computations to O(n log2(n)). Assume that there exists L ∈ N such that n = 2L, and define the

sequences (xj)1≤j≤n/2 and (yj)1≤j≤n/2 by

xj := f2j−1 and xj := f2j , for j = 1, . . . , n/2.

We can therefore rewrite, for any k = 1, . . . , n:

Fk = (Wnf)k =
n∑

j=1

fjω
(j−1)(k−1)
n

=

n/2∑
j=1

[
f2j−1ω

(2j−2)(k−1)
n + f2jω

(2j−1)(k−1)
n

]

=

n/2∑
j=1

[
xjω

(j−1)(k−1)
n/2 + yjω

(j−1)(k−1)
n/2 ωk−1

n

]
=: Xk + Ykω

k−1
n .

where we used the identity ω
2(j−1)(k−1)
n = ω

(j−1)(k−1)
n/2 . We therefore obtain the so-called ‘butterfly

relations’, for k = 1, . . . , n/2: Fk = Xk + Ykω
k−1
n ,

Fk+n/2 = Xk+n/2 + Yk+n/2ω
k−1+n/2
n .

(butterfly relations)

Note further that Xk+n/2 = Xk, that Yk+n/2 = Yk and that ω
n/2
n = −1, so that the butterfly

relations read  Fk = Xk + Ykω
k−1
n ,

Fk+n/2 = Xk − Ykω
k−1
n .

This splitting therefore reduces the computation to two discrete Fourier Transforms of size n/2.

We can iterate this procedure L times until we obtain sequences of length one. After L = log2(n)

steps we have n butterfly relations to evaluate; which require one multiplication and two additions.

Therefore the total computational cost therefore is of order O(n log2(n)).

Remark 4.4.30. It is possible to extend the algorithm to the case where n is not a power of 2,

but this is outside the scope of these notes.

Application to option pricing

In view of the pricing formulae (4.2.3) or (4.2.1), we can use the above quadrature methods to

evaluate the integrals, and hence the call option price. We can also use Fast Fourier transform

(FFT) methods, which are often more tailored for numerical integration problems involving Fourier

transforms. As mentioned above, the FFT is an efficient way to compute sums of the form

Φ(k) :=

n∑
j=1

e−i 2π
n (j−1)(k−1)f(ξj), for k = 1, . . . , n, (4.4.4)

4.4. Numerical integration and quadrature methods 144

where n is an integer, usually of the form 2p (p ∈ N) and (ξj)1≤j≤n are nodes. Standard algorithms

(the discrete Fourier transform) requires a total of n2 multiplications to compute all the terms

Φ(1), . . . ,Φ(n). The FFT algorithm actually reduces this quantity to O (n log(n)). We shall not

detail here the FFT procedure and refer the interested reader to [59] for different FFT algorithms

used in practice.

Let us consider the FFT algorithm applied to the Carr-Madan formula (4.2.3). Using the

trapezoidal rule for the integral in (4.2.3), and setting ξj := η (j − 1) for some η > 0, we obtain

CT (k) ≈
e−αk

π
η

2e−ikξ1ψ(ξ1) + 2e−ikξn+1ψ(ξn+1) +

n∑
j=2

e−ikξjψ(ξj)

 .

Note that the integration domain [0,∞) has been truncated to [0, nη]. Since the FFT algorithm

returns a vector of n values (k1, . . . , kn), we have to select these abscissas first. We define a regular

grid on the k-axis with step λ > 0 so that

ku := −b+ λ (u− 1) , for u = 1, . . . , n.

In order to have a symmetric grid (around the origin), we choose b = λn/2. The final term

e−ikξn+1ψ(ξn+1) is exponentially smaller than the others, so we may discard it, which yields the

approximation

CT (ku) ≈
e−αku

π

n∑
j=1

exp
{
− iξj (−b+ λ(u− 1))

}
ψ(ξj)ηj

≈ e−αku

π

n∑
j=1

exp
{
− iλη(j − 1)(u− 1)

}
eibξjψ(ξj)ηj ,

where ηj := η(1 + δj−1). In order to apply the FFT algorithm, in view of (4.4.4), we need to set

λη = 2π/n. Note that this condition imposes some constraint on the methodology. A small value

for η creates a fine grid for the discretisation of the inverse Fourier transform integral. However

this also implies that the grid in the k-space becomes less dense, and hence one may not be able

to obtain a precise accuracy for some strikes not on this grid. In order to take this into account,

one can add a Simpson’s rule to finally lead to the approximation

CT (ku) ≈
e−αku

π

n∑
j=1

exp

(
−2iπ

n
(j − 1) (u− 1)

)
eibξjψ (ξj)

η

3

(
3 + (−1)j − δj−1

)
.

Example. See the implementation in the IPython notebook.

4.4.4 Fractional FFT methods

In the Fast Fourier transform approach (Section 4.4.3), the constraint λη = 2π/n is imposed on

the discretisation parameters in order for the method to work. For a fixed computational cost (the

dimension n), the FFT imposes a tradeoff between the accuracy of the integration (the truncation

4.4. Numerical integration and quadrature methods 145

of the integration domain is [0, nη]) and the spacing of the strikes, λ = 2π/(nη). For a very

accurate integration, strikes might not be spaced densely enough to match observed strikes, and

the required interpolation between two strikes shall create additional error. The fractional FFT,

introduced in 1991 by Bailey and Swarztrauber [4], is a step further in order to bypass this issue,

and computes sums of the form

Φ(k) :=
n∑

j=1

e−2iπγ(j−1)(k−1)f(ξj), for k = 1, . . . , n, (4.4.5)

where n is an integer and (ξj)1≤j≤n are the nodes. In the standard FFT method (4.4.4), γ = 1/n.

Using the identity 2(j−1)(k−1) = (j−1)2+(k−1)2− (k−j)2, we can write, for any k = 1, . . . , n,

Φ(k) =
n∑

j=1

e−iγπ[(j−1)2+(k−1)2−(k−j)2]f(ξj)

= e−πγ(k−1)2
n∑

j=1

e−iπγ[(j−1)2−(k−j)2]f(ξj)

= e−πγ(k−1)2
n∑

j=1

yjzk−j , (4.4.6)

where yj := e−iπγ(j−1)2f(ξj) and zj := e−iπγj2 . Recall now that, for a given vector x =

(x1, . . . , xn) ∈ Rn, the discrete Fourier transform is a vector x̂ = (x̂k)k=1,...,n satisfying

F(x)k := x̂k :=

n∑
j=1

exp

(
−2iπ

n
(j − 1)(k − 1)

)
xj ,

and the inverse Fourier transform reads, for any j = 1, . . . , n,

F−1(x̂)j := xj =
n∑

k=1

exp

(
2iπ

n
(k − 1)(j − 1)

)
x̂k.

For two vectors x and w in Rn, the convolution is defined as the following operation:

(x ∗ w)l :=
n∑

j=1

xjwj−l =
n∑

j=1

wjxj−l = (w ∗ x)l, for any l = 1, . . . , n.

Recall now the convolution duality, the proof of which follows by simple manipulations:

Theorem 4.4.31. For any two vectors x and w in Rn, the identity F(x ∗ w) = (x̂⊙ ŵ) holds.

Remark 4.4.32. The symbol ⊙ denotes the component-by-component multiplication, so that the

expression in the theorem reads, component-wise: F(x ∗ w)l = x̂lŵl, for each k = 1, . . . , n.

Therefore, the expression (4.4.6) can be rewritten, for any k = 1, . . . , n, as

Φ(k) = e−πγ(k−1)2 (y ∗ z)k = e−πγ(k−1)2F−1
(
ŷ ⊙ ẑ

)
k
= e−πγ(k−1)2F−1

(
F(y)kF(z)k

)
.

Standard Fourier transform procedures (such as the FFT above) requires some circular property

of the input vectors, which is not quite the case here since zk−j = zj−k. The idea of the fractional

4.4. Numerical integration and quadrature methods 146

FFT is to fictitiously extend the vectors y and z in Rn to y and z in R2n in the following way:

yj = yj , 1 ≤ j ≤ n,

yj = 0, n < j ≤ 2n,

zj = zj , 1 ≤ j ≤ n,

zj = z2n−(j−1), n < j ≤ 2n,

so that, for any k = 1, . . . , 2n,

Φ(k) = e−πγ(k−1)2F−1
(
F(y)⊙F(z)

)
k
.

Example. See the IPython notebook.

4.4.5 Sine / Cosine methods

Description of the method

One of the main drawbacks of the FFT method presented above is that it does not seem to be

able to handle path-dependent options. We now present a method, still based on the knowledge of

the characteristic function of the underlying process, due to Fang and Osterlee [29] (see also the

second author’s webpage for several related papers), which, not only improves the computational

pricing time, but allows for path-dependent options.

For a function f := [0, π] → R, its Fourier cosine series expansion reads

f(θ) =
1

2
α0 +

∑
n≥1

αn cos(nθ) =:
∑
n≥0

αn cos(nθ),

where the Fourier coefficients are given by

αn =
2

π

∫ π

0

f(θ) cos(nθ)dθ.

By scaling, it is straightforward to extend this definition to any closed interval [a, b]; with the

mapping θ = (x− a)π/(b− a), or x = a+ (b− a)θ/π, we can write

f(x) =
∑
n≥0

αn cos

(
x− a

b− a
nπ

)
, (4.4.7)

with

αn =
2

b− a

∫ b

a

f(x) cos

(
x− a

b− a
nπ

)
dx.

Consider a one-dimensional random variable with density f and characteristic function ϕ:

ϕ(ξ) :=

∫
R
eiξxf(x)dx.

Evaluation the function ϕ at the point nπ/(b− a), for some n ≥ 0, and truncating the integral to

the compact interval [a, b], we can write

ϕ̃

(
nπ

b− a

)
:=

∫ b

a

exp

(
inπx

b− a

)
f(x)dx,

4.4. Numerical integration and quadrature methods 147

and therefore

ϕ̃

(
nπ

b− a

)
exp

(
−inπa

b− a

)
=

∫ b

a

exp

{
inπ

(
x− a

b− a

)}
f(x)dx

=

∫ b

a

{
cos

(
nπ

(
x− a

b− a

))
+ i sin

(
nπ

(
x− a

b− a

))}
f(x)dx.

Taking the real part on both sides and assuming that the truncation error is negligible, by identi-

fication with the Fourier coefficients above, we have

αn =
2

b− a
ℜ
{
ϕ̃

(
nπ

b− a

)
exp

(
−inπa

b− a

)}
≈ 2

b− a
ℜ
{
ϕ

(
nπ

b− a

)
exp

(
−inπa

b− a

)}
. (4.4.8)

Combining this and (4.4.7), we obtain the cosine series expansion for the density f :

f(x) ≈
∑
n≥0

αn cos

(
x− a

b− a
nπ

)
≈

N∑
n=0

αn cos

(
x− a

b− a
nπ

)
. (4.4.9)

Exercise 51. Study the numerical efficiency (as a function of N) of the approximation (4.4.9) for

the Gaussian density f(x) ≡ (2π)−1−2 exp
(
− 1

2x
2
)
, with [a, b] = [−10, 10].

Application to option pricing

Let us now consider a path-dependent option with payoff h(·) at maturity T , and denote by u(x, t)

its value at time t ∈ [0, T], where x ∈ R denotes the initial value of the log-stock price (or a rescaled

version of it), which we assume has a transition density f between t and T , so that

v(x, t) =

∫
R
h(z)f(z|x)dz.

Assume that the density is supported on a compact interval [a, b] (or that we can neglect the tail

parts R \ [a, b]), then (4.4.9) yields

v(x, t) =

∫ b

a

h(z)
∑
n≥0

αn cos

(
z − a

b− a
nθ

)
dz,

where the coefficients (αn)n≥0 are approximated via (4.4.8). Truncating the infinite sum at some

level N , we finally obtain the following approximation for the option price:

v(x, t) ≈
N∑

n=0

αn

∫ b

a

h(z) cos

(
z − a

b− a
nπ

)
dz =:

N∑
n=0

αnVn.

In the case of a Call option price with strike K and maturity T , with h(z) ≡ K(ez − 1)+,

V Call
n =

∫ b

a

h(z) cos

(
z − a

b− a
nπ

)
dz = K

∫ b

a

(ez−1)+ cos

(
z − a

b− a
nπ

)
dz =

2K

b− a

{
χn(0, b)−φn(0, b)

}
,

and for a Put option with h(z) ≡ K(1− ez)+,

V Put
n =

∫ b

a

h(z) cos

(
z − a

b− a
nπ

)
dz = K

∫ b

a

(1−ez)+ cos

(
z − a

b− a
nπ

)
dz =

2K

b− a

{
φn(a, 0)−χn(a, 0)

}
,

4.4. Numerical integration and quadrature methods 148

where

χn(c, d) :=

∫ d

c

ey cos

(
y − a

b− a
nπ

)
dy

=
cos
(

d−a
b−anπ

)
ed − cos

(
c−a
b−anπ

)
ec + nπ

b−a sin
(

d−a
b−anπ

)
ed − nπ

b−a sin
(

c−a
b−anπ

)
ec

1 +
(

nπ
b−a

)2
and

φn(c, d) =


[
sin

(
d− a

b− a
nπ

)
− sin

(
c− a

b− a
nπ

)]
b− a

nπ
, if n ̸= 0,

d− c, otherwise.

Exercise 52. Consider a digital Call option with payoff h(z) ≡ 11{ez≥K}. Show that

Vn =
2K

b− a
φn(0, b).

Remark 4.4.33. It is not clear, a priori, how to choose the truncation domain [a, b]. In [29], the

authors propose the following:

[a, b] =

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
,

with L = 10, and where ci := ∂iu logE
(
euX

)
is the ith cumulant of X. Higher-order truncation

intervals are also possible, involving higher cumulants. These are necessary when dealing, for

example, with short-maturity options, where the accuracy of this method—and of the FFT method

as well—is low.

Exercise 53. Implement the Cosine method to compute a European Call option in the Black-

Scholes model, and analyse the error. See also the Notebook CosinePricing.py

Chapter 5

Model calibration

In this chapter, we shall endeavour to introduce numerical methods with a view towards everyday

practical issues. As a motivating example, let us introduce the concept of implied volatility. Recall

that, in the Black-Scholes model, the stock price is assumed to have the following dynamics:

St = S0 exp

((
r − σ2

2

)
t+ σWt

)
,

where (Wt)t≥0 is a standard Brownian motion, r ≥ 0 is the risk-free interest rate, and σ > 0 is the

instantaneous volatility. As already proved, the Black-Scholes price (at time zero) of a European

call option CBS (S0,K, T, σ) written on the underlying S, with strike K > 0 and maturity T > 0

has the following closed-form expression:

CBS (S0,K, T, σ) = S0N (d+)−Ke−rTN (d−), (5.0.1)

where

d± :=
log(S0/K) +

(
r ± σ2/2

)
T

σ
√
T

.

This leads to the following concept of implied volatility.

Definition 5.0.34. Given an underlying S, a strike K > 0, a maturity T > 0 and an observed

European call option price Cobs (S0,K, T), the implied volatility is the unique σ > 0 such that the

following equality holds:

CBS (S0,K, T, σ) = Cobs (S0,K, T) .

The fact that the implied volatility is defined uniquely for each strike and maturity follows

directly from the fact that the map σ 7→ CBS (S0,K, T, σ) is strictly increasing on R+ \ {0} (since

the Vega—the derivative of the call price with respect to the volatility— is strictly positive, see

Exercise 5 on page 29). The implied volatility has many useful properties and is one of the most

important concepts in mathematical finance. In fact, most vanilla options are actually quoted in

terms of the implied volatility rather than in terms of the option value. The implied volatility

149

5.1. Solving non-linear equations 150

is therefore a function of both the strike and the maturity, and we shall hence use the notation

σT (K). The map (K,T) 7→ σT (K) is called the implied volatility surface, and for each T > 0,

the function K 7→ σT (K) is an implied volatility slice. Let now CM
(
S0,K, T,

−→
θ
)

be the call

option price with the same characteristics (underlying stock price, strike, maturity) in some model

(other than Black-Scholes) depending on a vector of parameters
−→
θ . The corresponding implied

volatility is then the volatility σ > 0 plugged in the Black-Scholes formula (5.0.1) so that the

Black-Scholes price and the model price are equal. In this chapter, we shall be interested in the

following questions:

(i) Given a set of observed option prices, how does one recover the implied volatility?

(ii) Given a set of observed option prices—or implied volatilities—how does on calibrate the

vector of parameters
−→
θ ?

The first question is clearly related to root-finding. The second question is more subtle and is

an optimisation problem. Let us temporarily leave the option pricing framework and consider a

portfolio (Πt)t≥0 constructed as

Πt :=
n∑

i=1

wiπ
i
t, for all t ≥ 0,

where πi
t represents the value at time t of some contingent claim (European option, American

option, barrier option, single stock price,...) and wi ∈ (0, 1) represents its weight in the whole

portfolio. At some future time T > 0, the value ΠT of the portfolio is random and one is interested

in determining the optimal weights w = (w1, . . . , wn) in order to maximise its expectation. The

optimisation problem can therefore be written as

sup
w

E (ΠT) , subject to

 wi ∈ (0, 1) for i = 1, . . . , n,∑n
i=1 wi = 1.

One could (and does) add further constraints, such as diversification, i.e. each weight is bounded

by some constant in (0, 1). The famous Markowitz efficient frontier problem is to maximise such

an expectation while minimising the variance of the portfolio at maturity T .

5.1 Solving non-linear equations

In this section we shall consider a function f : [a, b] → R, where [a, b] is some interval of the real line,

and we are interested in solving the equation f(x) = 0 for x ∈ [a, b]. Let us first recall—without

proof—the following elementary theorem (Intermediate value theorem) from calculus:

Theorem 5.1.1. If the function f is continuous and f(a)f(b) ≤ 0 then the equation f(x) = 0

admits at least one solution in [a, b].

5.1. Solving non-linear equations 151

All the methods presented below rely on the construction of a sequence converging to the

solution of the equation. In order to study the speed of convergence of this sequence, the following

definition will be fundamental:

Definition 5.1.2. A sequence (xn)n≥0 is said to converge to x∗ with order p ≥ 1 if there exists

γ > 0 such that

|xn+1 − x∗| ≤ γ |xn − x∗|p , for any n ≥ 0.

The convergence is said to be linear if p = 1 and quadratic if p = 2. In the case p = 1, we further

require that γ ∈ (0, 1).

Remark 5.1.3. Note that when p = 1, we can iterate the definition to obtain |xn − x∗| ≤

γn |x0 − x∗|. In this case, we may alternatively say that the convergence is linear with rate γ.

5.1.1 Bisection method

The bisection method constructs a sequence of couples (xn, yn)n≥0 in [a, b] defined recursively by

(x0, y0) := (a, b) and

(xn+1, yn+1) :=



(
xn + yn

2
, yn

)
, if f

(
xn + yn

2

)
f(yn) < 0,(

xn,
xn + yn

2

)
, if f

(
xn + yn

2

)
f(yn) > 0,

(xn, yn) , if f(xn)f(yn) = 0,

for all n ≥ 0. The algorithm clearly stops in the third case, where an exact solution is found (either

xn or yn). As usual, we want to make sure that the algorithm does converge to some limiting

value as n tends to infinity. It is straightforward to see that the root x∗ satisfies
∣∣xn+yn

2 − x∗
∣∣ ≤

2−n (b− a), so that the algorithm converges linearly with a rate equal to 1/2. The major advantages

of the bisection method are (i) that it converges provided that the function f is continuous and

that f(a)f(b) ≤ 0 and (ii) that we have an estimate of the error. However, the algorithm does

not take into account the precision of the computer, for instance if the function does not vary

much in the vicinity of x∗, the evaluation of f(xn) might lead to a wrong sign when xn is close

to x∗. Furthermore, the algorithm does not work for roots of even multiplicity, for instance when

f(x) ≡ x2. Finally, the convergence is rather slow—as opposed to the methods below—and it may

not always be easy to find quantities a and b satisfying f(a)f(b) ≤ 0.

5.1.2 Newton-Raphson method

As in the bisection method above, the idea here is to construct a sequence (xn)n≥0 converging to

the root of the equation f(x) = 0 in the interval [a, b]. Start with some initial guess x0 ∈ [a, b]. A

Taylor series expansion of the function f around this point gives

f(x) = f(x0) + (x− x0) f
′(x0) +O

(
(x− x0)

2
)
.

5.1. Solving non-linear equations 152

The idea of Newton-Raphson algorithm is to locally replace the problem f(x) = 0 by the linear

problem f(x0) + (x− x0) f
′(x0) = 0, which gives the solution x1 := x0 − f(x0)/f

′(x0). We now

iterate this procedure as

xn+1 := xn − f(xn)/f
′(xn), for n ≥ 0.

The quality of this algorithm is stated in the following theorem:

Theorem 5.1.4. Assume that the functions f , f ′ and f ′′ are continuous in some neighbourhood

of x∗ and that f ′(x∗) ̸= 0. If x0 is sufficiently close to x∗, the algorithm converges to x∗ and

lim
n→∞

x∗ − xn+1

(x∗ − xn)
2 = − f ′′(x∗)

2f ′(x∗)
,

and hence the algorithm has an order of convergence equal to two.

Proof. By continuity of the map f ′, we can choose a small neighbourhood I := [x∗ − ε, x∗ + ε]

around x∗ for some ε > 0, so that the quantity

M :=
maxx∈I |f ′′(x)|
2minx∈I |f ′(x)|

is well defined. Now, a Taylor expansion up to second order of f around xn (for some n ≥ 1) gives

f(x) = f(xn) + (x− xn) f
′(xn) +

f ′′(ξ)

2
(x− xn)

2
,

for some ξ between x and xn. Therefore with x = x∗, we obtain

x∗ = xn − f(xn)

f ′(xn)
− (x∗ − xn)

2

2

f ′′(ξ)

f ′(xn)
,

which can be written as

x∗ − xn+1 = − (x∗ − xn)
2

2

f ′′(ξ)

f ′(xn)
, for n ≥ 0. (5.1.1)

Therefore |x∗ − x1| =M |x∗ − x0|2 (and clearly M |x∗ − x1| = (M |x∗ − x0|)2). Take now x0 such

that |x∗ − x0| ≤ ε and M |x∗ − x0| < 1. This implies that M |x∗ − x1| < 1 and M |x∗ − x1| <

M |x∗ − x0| so that |x∗ − x1| ≤ ε. The same inequalities then hold for |x∗ − xn| for any n ≥ 0.

Equation (5.1.1) implies by induction that

|x∗ − xn| ≤M−1 (M |x∗ − x0|)2n ,

and therefore, since M |x∗ − x0| < 1, the sequence (xn)n≥0 converges to x∗ as n tends to infinity.

Now, since the variable ξ in (5.1.1) lies between xn and x∗ we obtain the limit stated in the theorem

by continuity of the functions f ′ and f ′′.

Remark 5.1.5. The proof of the theorem sheds a light on how close the initial value x0 should be

from the root x∗. The Newton-Raphson algorithm converges much more quickly than the bisection

5.1. Solving non-linear equations 153

method, and it does not require the initial value to be in some predefined interval. However, the

convergence is local, and the algorithm requires the computation of the first derivative, which may

be computationally intensive. Note finally that if the function f is rather flat in the vicinity of x∗

then the algorithm may be computationally awkward when dividing by f ′(xn) at some step n ≥ 0.

5.1.3 The secant method

The secant method builds upon the Newton-Raphson algorithm, and uses an approximation of

the first derivative of the function f . Consider two initial estimates x0 and x1 of the root of the

equation f(x) = 0. Approximate the graph of f by the secant line determined by the two points

(x0, f(x0)) and (x1, f(x1)), and denote by x2 the intersection of this line with the horizontal axis.

Matching the slopes gives
f(x1)− f(x0)

x1 − x0
=

f(x1)

x1 − x2
,

so that

x2 = x1 − f(x1)
x1 − x0

f(x1)− f(x0)
.

We can iterate this procedure and construct the sequence (xn) by

xn+1 := xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
, for n ≥ 0.

The following theorem—we leave its proof as an exercise similar to that of Theorem 5.1.4—provides

the accuracy of this algorithm.

Theorem 5.1.6. Assume that the functions f , f ′ and f ′′ are continuous in a neighbourhood of x∗

and that f ′(x∗) ̸= 0. If the initial guesses x0 and x1 are sufficiently close to x∗, then the algorithm

converges to x∗ with an order of convergence equal to
(
1 +

√
5
)
/2.

5.1.4 The fixed-point algorithm

This last method encompasses other algorithms, in particular Newton-Raphson. This method is

in fact a reformulation of the root-finding problem and is sometimes more convenient to use. We

consider here an interval [a, b] ⊂ R and a continuous function ϕ on this interval. We wish to solve

the fixed-point problem ϕ(x) = x on [a, b]. The iteration we consider here is

xn+1 = ϕ(xn), for n ≥ 0, where we start with an initial guess x0 ∈ [a, b]. (5.1.2)

Note that taking ϕ(x) ≡ x−f(x)/f ′(x) reduces this problem to a root finding issue in the Newton-

Raphson framework. We prove a series of results concerning the quality of this algorithm. We

shall assume from now on that ϕ ([a, b]) ⊂ [a, b].

Lemma 5.1.7. With the assumptions above, the equation x = ϕ(x) has at least one solution in

the interval [a, b].

5.2. Optimisation 154

The proof simply follows by applying the intermediate value theorem to the function f defined

by f(x) := x− ϕ(x) on [a, b].

Lemma 5.1.8. Assume that there exists γ ∈ (0, 1) such that

|ϕ(x)− ϕ(y)| ≤ γ|x− y|, for all x, y in [a, b],

then the equation ϕ(x) = x has a unique solution x∗ in [a, b] and the algorithm (5.1.2) converges

to x∗ for any initial guess x0 with

|x∗ − xn| ≤
γn

1− γ
|x1 − x0| , for any n ≥ 1.

Proof. Existence follows from Lemma 5.1.7. Assume that there exists another solution y∗ ∈ [a, b].

Then |ϕ(x∗)− ϕ(y∗)| = |x∗ − y∗|, which contradicts the existence of γ ∈ (0, 1). For any n ≥ 1, we

can now write

|x∗ − xn| = |ϕ(x∗)− ϕ(xn−1)| ≤ γ |x∗ − xn−1| ≤ . . . ≤ γn |x∗ − x0| . (5.1.3)

Since γ ∈ (0, 1), this proves the convergence for any x0 ∈ [a, b]. The triangle inequality then implies

|x∗ − x0| ≤ |x∗ − x1|+ |x1 − x0| ≤ γ|x∗ − x0|+ |x1 − x0|,

so that |x∗ − x0| ≤ (1− γ)−1|x1 − x0|, and the lemma follows from (5.1.3).

The following theorem is somehow a reformulation of the above lemmas, and we leave its

straightforward proof as an exercise.

Theorem 5.1.9. Assume that ϕ ∈ C1 ([a, b]) and that

γ := max
x∈[a,b]

|ϕ′(x)| < 1.

Then the equation ϕ(x) = x has a unique solution x∗ ∈ [a, b], the sequence (xn) defined in (5.1.2)

converges to x∗ for any x0 and |x∗ − xn| ≤ γn

1−γ |x1 − x0|. Furthermore

lim
n→∞

x∗ − xn+1

x∗ − xn
= ϕ′ (x∗) .

5.2 Optimisation

5.2.1 Unconstrained optimisation

We are interested in this section in solving the following problem:

min
x∈Rn

f(x),

subject to some constraints on the variables, where f is a map from Rn to R, called the objective,

or the cost function, which we shall assume to be smooth for simplicity. We first review some

fundamental concepts of optimisation, before going into some details on some particular methods.

5.2. Optimisation 155

Definition 5.2.1. A point z ∈ Rn is called a local minimiser if the inequality f(z) ≤ f(x) holds

locally around z, i.e. if there exists some ε > 0 such that f(z) ≤ f(x) holds for all x in a ball with

centre z and radius ε.

The definition of a global minimiser follows straightforwardly. When the function f is simple

enough, it may be possible to compute the minimiser (if it exists) directly, i.e. to compute all the

values f(x) for x close enough to z. However in the general case the definition is impracticable and

we shall see some more useful results to determine whether a point is a (local) minimiser or not.

Theorem 5.2.2 (First-order conditions). If z is a local minimiser and f is of class C1 in a

neighbourhood of z, then ∇f(z) = 0.

Proof. Assume that ∇f(z) ̸= 0, and define the vector p := −∇f(z). This implies the inequality

pT∇f(z) = −∥∇f(z)∥2 < 0, and hence there exists α > 0 such that pT∇f (z + αp) < 0 for all

α ∈ [0, α]. Let now fix some α ∈ [0, α]. A Taylor expansion around the point z gives f (z + αp) =

f(z) + αpT∇f (z + α0p) for some α0 ∈ (0, α). Therefore f (z + αp) < f(z), i.e. the function f

decreases in the direction of the vector p, and the theorem follows by contradiction.

Remark 5.2.3. The statement ∇f(z) = 0 does not necessarily imply that the point z is a min-

imiser. It however defines a stationary point. For instance, consider the function f : (x1, x2) 7→ x1x2

and the point z = (0, 0). It is clear that ∇f(z) = 0 but z is not a minimiser of the function.

Example. Recall the polynomial interpolation problem: we observe a function f at some points

x1, . . . , xn, and we want to find a polynomial P of the form P (x) =
∑d−1

i=0 aix
i, for some a :=

(a0, . . . , ad−1) ∈ Rd, with d < n. We can write this as the following minimisation problem

min
a∈Rd

n∑
k=1

(f(xk)− P (xk))
2
= min

a∈Rd
ϕ (a) ,

where we can write the function ϕ as ϕ(a) := aTQa− 2bT a + c, where Q = (qij), b = (bi) and

qij :=
n∑

k=1

xi+j
k , bj :=

n∑
k=1

f(xk)x
j
k, c :=

n∑
k=1

f(xk)
2.

The first-order conditions read Qa = b.

The following theorem gives a necessary condition for the minimum:

Theorem 5.2.4 (Second-order necessary conditions). If z is a local minimiser of the function f

and the Hessian matrix ∇2f exists and is continuous in a neighbourhood of z, then ∇f(z) = 0 and

the matrix ∇2f(z) is positive semi-definite, i.e. pT∇2f(z)p ≥ 0 for any p ∈ Rn.

Proof. Assume that the Hessian is not positive semi-definite. Then there exists a vector p ∈ Rn

such that pT∇2f(z)p < 0. By continuity of the Hessian, we have pT∇2f(z + αp)p < 0 for

sufficiently small α > 0. A Taylor series expansion then gives, for some α0 ∈ [0, α],

f(z + αp) = f(z) + αpT∇f(z) + 1

2
αpT∇2f(z + α0p)p < f(z).

5.2. Optimisation 156

Again this implies that the function decreases (locally) in the direction of the vector p, which is a

contradiction and the theorem follows.

We now state the following sufficient conditions ensuring that z is a local minimiser, and we

leave the proof as an exercise.

Theorem 5.2.5 (Second-order sufficient conditions). Assume that the Hessian matrix is contin-

uous in a neighbourhood of z and that ∇f(z) = 0. Then the point z is a (strict) local minimiser if

the Hessian matrix is positive definite.

In the context of convex optimisation, many problems are simplified. Let us first recall that a

function is convex in some domain K ⊂ Rn if

f (αx + (1− α) y) ≤ αf(x) + (1− α) f(y),

for all α ∈ [0, 1] and all (x, y) ∈ K ×K. The following theorem is fundamental and clarifies how

things get simpler in a convex setting.

Theorem 5.2.6. For a convex function, any local minimiser is also global. Furthermore if the

function is differentiable, then any stationary point is a global minimiser.

Proof. Suppose that the point z is a local but not a global minimiser. There exists then z0 such

that f(z) > f(z0), and we consider the segment between z and z0 (excluding z):

L := {αz0 + (1− α) z, α ∈ (0, 1]} .

Note that the convexity of f implies that f(x) < f(z) for any x ∈ L. Fix a point x ∈ L, then

∇f(z) · (x− z) =
d

dα
f (z + α (x− z))

∣∣∣∣
α=0

= lim
α→0

f (z + α (x− z))− f(z)

α

≤ lim
α→0

αf(x) + (1− α) f(z)− f(z)

α
, by convexity

= f(x)− f(z) < 0,

and hence z cannot be a stationary point and the theorem follows by contradiction.

Exercise 54. Consider the parametric function fα(x) :=
1
2x

THαx− xTb, where

Hα :=

1 0

0 α

 and b :=

0

1

 ,

and α ∈ R. Discuss the existence of local and global minimisers.

Exercise 55. Consider the function f(x) ≡ cos(πx). Implement and discuss the application of

Newton’s algorithm to find a minimiser of f , depending on the starting point of the algorithm.

5.2. Optimisation 157

5.2.2 Line search methods

The idea of line search method is to construct a sequence (xk)k≥0 converging to the minimiser x∗

according to the rule

xk+1 = xk + αkpk, for all k ≥ 0,

where we start with an initial guess x0 and where αk is a positive scalar called the step length

and pk is a vector indicating the direction of the search. Since we want to solve a minimisation

problem, the vector pk will be a descent vector, i.e. such that the function decreases in its direction.

This procedure now requires the computation of αk and the direction vector pk. A sensible choice

for αk is to find the minimiser of the one-dimensional function ϕ defined by ϕ(α) := f (xk + αpk).

However, it is usually too computer-intensive to determine such a minimum. A lighter requirement

is to find α such that, locally, the function f decreases, i.e. find α such that f (xk + αpk) < f (xk).

This approach does not however converge to the minimiser x∗. A popular line search method is to

provide sufficient decrease to the function f via

ϕ(α) = f (xk + αpk) < f(xk) + η1α∇f(x)Tpk, (5.2.1)

for some η1 ∈ (0, 1). Note that this is tantamount to finding α such that the graph of the

function ϕ lies below the line given by the right-hand side of (5.2.1). This inequality is called the

Armijo condition and imposes a decrease of the function proportional to the step length and the

directional derivative. It can be shown that this condition can be satisfied for very small values of

the parameter α, which clearly implies a very slow convergence (if any). One can further impose

a curvature condition as

ϕ′(α) = ∇f (xk + αpk)
T
pk ≥ η2∇f (xk)T pk, (5.2.2)

for some η2 ∈ (η1, 1). We leave the geometrical interpretation of this result to the reader. Con-

ditions (5.2.1) and (5.2.2) are called the Wolfe conditions and are fundamental in determining an

optimal algorithm for the minimisation problem. The following lemma ensures the existence of

step lengths.

Lemma 5.2.7. Suppose that the function f is continuously differentiable and assume that it is

bounded along any ray {xk + αpk, α > 0}. If 0 < η1 < η2 < 1, then there exist intervals of step

lengths satisfying the Wolfe conditions (5.2.1) and (5.2.2).

Proof. By definition and assumption, the function ϕ is bounded below for any α > 0. For any

k ≥ 0, define the linear functional

Lk(α) := f(xk) + αη1p
T
k∇f(xk), for any α > 0.

5.2. Optimisation 158

It is clear that Lk is a decreasing function, and hence its graph has (at least) an intersection with

the graph of ϕ. If we denote α1 > 0 the smallest of these, it satisfies

f(xk + α1pk) = f(xk) + α1η1p
T
k∇f(xk).

The mean value theorem then implies the existence of some α2 ∈ (0, α1) such that

f(xk + α1pk)− f(xk) = α1p
T
k∇f(xk + α2pk),

and straightforward algebra shows that the point α2 satisfies the Wolfe conditions.

The importance of the Wolfe conditions is revealed in the following theorem.

Theorem 5.2.8 (Zoutendijk Theorem (see [68])). We consider the sequence (xk)k≥0 defined as

above, where αk satisfies the two Wolfe conditions (5.2.1) and (5.2.2), and pk is a descent direction.

Assume that there exists an open set K ⊂ Rn such that f ∈ C1(K) and {x : f(x) ≤ f(x0)} ⊂ K.

If there exists some constant γ > 0 such that

∥∇f(x)−∇f(y)∥ ≤ γ ∥x− y∥ , for all x, y in K,

then ∑
k≥0

(
pTk∇f(xk)
∥∇f(pk)∥

)2

<∞.

Remark 5.2.9. Note that if we denote θk the angle between the vector pk and the direction of

steepest descent −∇f(xk), then

cos (θk) = − pTk∇f(xk)
∥∇f(xk)∥ ∥∇f(pk)∥

, (5.2.3)

so that the last statement of the theorem reads
∑

k≥0 cos
2 (θk) ∥∇f(xk)∥2 < ∞, which implies

that we must have limk→∞

(
cos2 (θk) ∥∇f(xk)∥2

)
= 0. In particular, if pk is the steepest descent

direction −∇f(xk), then θk = 0, and the theorem implies that limk→∞ ∥∇f(xk)∥2 = 0, so that we

have convergence of the algorithm.

Proof of Theorem 5.2.8. From the second Wolfe condition, we have

pTk (∇f (xk+1)−∇f (xk)) ≥ (η2 − 1) pTk∇f(xk).

Since the gradient of the function f is Lipschitz continuous, Cauchy-Schwarz inequality gives

pTk (∇f (xk+1)−∇f (xk)) ≤ αkγ ∥pk∥2 ,

which can be rewritten as

αk ≥ η2 − 1

γ

pTk∇f(xk)
∥pk∥2

.

5.2. Optimisation 159

Combining this with the first Wolfe condition leads to

f(xk+1) ≤ f(xk)− η1
η2 − 1

γ

(
pTk∇f(xk)

∥pk∥

)2

,

and hence

f(xk+1) ≤ f(xk)− η cos2
(
θk ∥∇f(xk)∥2

)
,

where the angle θk is defined in (5.2.3) and where η := η1(1 − η2)/γ. We can now iterate this

inequality to obtain

f(xk+1) ≤ f(x0)− η
k∑

i=0

cos2
(
θi ∥∇f(xi)∥2

)
.

Since the function f is bounded below the theorem follows by letting k tend to infinity.

Let us look at a simplified example of the form

f(x) :=
1

2
xTQx− bTx, (5.2.4)

where Q is a symmetric positive definite matrix and b a given vector. The gradient of the function

reads ∇f(x) = Qx−b, and the unique minimiser is the solution to the matrix equation Qx = b. If

we wish to compute the optimal α in order to set up a line search algorithm, we need to minimise

the map α 7→ f(x+αpk) along a direction vector pk. It is clear that the steepest descent vector at

the point xk is given by pk = −∇f(xk). Since

f (xk − α∇f(xk)) =
1

2
(xk − α∇f(xk))T Q(xk − α∇f(xk))− bT (xk − α∇f(xk)) ,

the minimiser α∗ is clearly equal to

α∗ =
∇f(xk)T∇f(xk)
∇f(xk)TQ∇f(xk)

.

Note that this leads to a fully explicit expression for xk+1 as a function of xk. Using the fact that

the minimiser satisfies Qx∗ = b, it is easy to show that

1

2
∥x− x∗∥2Q = f(x)− f(x∗),

where the ∥ · ∥Q-norm is defined as ∥x∥2Q := xTQx. This norm is a useful tool in order to quantify

the rate of convergence of the algorithm and the following theorem provides a precise convergence

result. We refer the interested reader to [53] for full details.

Theorem 5.2.10. In the strongly convex problem (5.2.4), the error norm in the steepest descent

algorithm satisfies

∥xk+1 − x∗∥2Q ≤
(
λn − λ1
λn + λ1

)
∥xk − x∗∥2Q ,

where λ1, . . . , λn are the eigenvalues of the matrix Q.

Note that when the matrix Q is proportional to the identity matrix, then there is a unique

eigenvalue (with multiplicity n). In that case, the contour plot of the function consists of circles

and not ellipsis, and the steepest descent direction always points directly to the minimiser. In this

case, the convergence is further attained after only one iteration.

5.2. Optimisation 160

5.2.3 Minimisation via the Newton method

From the first and second order conditions proved in the previous section, the minimisation problem

minx∈Rn f(x) is tantamount to solving the non-linear equation ∇f(x) = 0, where the function f

maps Rn to R. This is indeed true as soon as the function f is convex. In the same spirit as the

Newton algorithm above, consider a Taylor expansion around a point x—close to the minimiser z—

in the direction of a vector p ∈ Rn:

f(z) = f(x + p) = f(x) + pT∇f(x) +O
(
∥p∥2

)
,

which, together with the condition ∇f(z) = 0, implies that

∇f(x) + pT∇2f(x) +O
(
∥p∥2

)
= ∇f(z) = 0.

This leads to p ≈ −
(
∇2f(x)

)−1 ∇f(x). Pick now an initial guess x0 ∈ Rn and define the sequence

(xk)k≥0 recursively by

xk+1 = xk −
(
∇2f(xk)

)−1 ∇f (xk) . (5.2.5)

Note that this is nothing else than a line search method, where the direction vector is given by

p = −
(
∇2f(xk)

)−1 ∇f (xk), and hence is indeed of steepest descent. Note further the analogy

with the Newton-Raphson developed on the real line in Section 5.1.2. This matrix equation is

highly unstable and it may be wiser to solve ∇f(xk) (xk+1 − xk) = −f (xk). We can now state the

main theorem, which is an extension of Theorem 5.1.4.

Theorem 5.2.11. Assume that f is twice continuously differentiable and that there exists z ∈ Rn

such that ∇f(z) = 0 and ∇2f(z) is positive definite, then the iteration (5.2.5) converges to z if f is

convex. Alternatively, if the function f is only locally convex in a neighbourhood of z and the initial

guess x0 lies in this neighbourhood, then the algorithm converges. Furthermore, the converges is

quadratic and the sequence (|∇f(xk)|)k≥0 converges to zero quadratically.

The proof follows similar steps as in the one-dimensional case and we omit it. We now give an

example of the Newton method in two dimensions applied to a problem arising in economic theory.

Example (Cournot equilibrium). The Cournot equilibrium is a classic problem in economic theory.

Consider two companies producing the same product in quantities q1 and q2. The total cost of

producing this product is Ci(qi) := 1
2γiq

2
i for i = 1, 2, where γ1 and γ2 are two strictly positive

constants. The price per unit of product is P (q1 + q2) = (q1 + q2)
−1/α for some α > 0. The

Cournot equilibrium corresponds to the state where both profits are maximised, where the profit

πi is defined by

πi(q1, q2) = P (q1 + q2)− Ci(qi), for i = 1, 2.

The first-order conditions read ∂q1π1(q1, q2) = ∂q2π2(q1, q2) = 0.

5.2. Optimisation 161

5.2.4 Constrained optimisation

Lagrange multipliers

Consider a function f : Rn → R and the optimisation problem

min
x∈Rn

f(x) subject to g(x) = b, (5.2.6)

where g(x) := (g1(x), . . . , gm(x)) and b ∈ Rm. Consider the Lagrange function

L (x, λ) := f(x) + λ⊤ (g(x)− b) ,

where λ := (λ1, . . . , λm) ∈ Rm are called the Lagrange multipliers. The theory of Lagrange

multipliers states that the optimisation problem (5.2.6) is tantamount to finding the stationary

points of the functional L on the extended state space Rn × Rm, i.e. to solving

∇f (x, λ) =

(
∂L

∂x1
, . . . ,

∂L

∂xn
,
∂L

∂λ1
, . . . ,

∂L

∂λm

)⊤

=

∇f(x) + Dg(x)⊤λ

g(x)− b

 = 0,

where Dg is the Jacobian matrix (∂xigj)
1≤j≤m
1≤i≤n . The Hessian of the Lagrange function reads

∇2L(x, λ) =

∇2f +
∑m

i=1 λi∇2gi (Dg)
⊤

Dg 0

 (x, λ) .

We can then solve the minimisation problem by solving the equation ∇L (x, λ) = 0 The whole

theory of constrained optimisation is a wide topic and time constraints do not allow us such a

detour. We hence leave it as the root-finding problem of the gradient of the Lagrange function on

the extended state space Rn × Rm.

General theory

We now consider the following constrained optimisation problem:

min
x∈Rn

f(x), subject to h(x) = 0,

where h = (h1, . . . , hm)⊤, with each map hi : R → (0,∞) assumed to be continuously differentiable.

For any i = 1, . . . ,m, the constraint hi(x) = 0 defines a hypersurface S ⊂ Rn. Consider now a

(smooth) curve (x(t))0≤t≤1 lying on S, a point x∗ ∈ S, such that there exists t∗ ∈ [0, 1] for which

x(t∗) = x∗. The vector ẋ(t∗) := dx(t)
dt |t=t∗ is called the tangent vector of the curve x(·) at the

point (t∗, x∗). The tangent space T at the point x∗ ∈ S is then defined as the subspace of Rn

spanned by all tangent vectors ẋ(t∗).

Definition 5.2.12. A point x ∈ Rn satisfying the constraints h(x) = 0 is called regular if the

vectors ∇h1(x), . . . ,∇hm(x) are linearly independent (the matrix ∇h has full rank).

5.2. Optimisation 162

Note that, at a point x ∈ Rn, ∇h(x) = (∇h1(x), . . .∇hm(x))
⊤
is a matrix in Mmn(R). We can

then state the following result:

Theorem 5.2.13. Let x be a regular point on the hypersurface {x : h(x) = 0}. The tangent

space T is then the nullspace of the matrix ∇h: T = {y ∈ Rn : ∇h(x)y = 0}.

Example. Let n = 2, m = 1, and consider the function h(x) ≡ x21. Therefore S := {x =

(x1, x2) ∈ R2 : h(x) = 0} = {(x1, x2) ∈ R2 : x1 = 0}. The gradient reads ∇h(x) = (2x1, 0) and is

null everywhere on the curve S, so that the set of regular points is empty, and the tangent space

at x ∈ S reads T = {(y1, y2) ∈ Rn : ∇(x)y = 2x1y1 = 0} = R2.

We can now state the first-order and second-order necessary, and the sufficient, conditions for

a minimum of f to exist:

Theorem 5.2.14. Let x∗ ∈ Rn be a local minimum of the function f satisfying the constraints

h(x) = 0, and assume that x∗ is a regular point. Then the following hold:

• there exists λ ∈ Rm such that ∇f(x∗) + λ⊤∇h(x∗) = 0; furthermore, the matrix

H(x∗) := ∇2f(x∗) + λ⊤∇2h(x∗)

is positive semidefinite on the tangent space T (x∗) = {y ∈ Rn : ∇h(x∗)y = 0}.

Theorem 5.2.15. Assume that there exists x∗ ∈ Rn and a vector λ ∈ Rm such that

h(x∗) = 0 = ∇f(x∗) + λ⊤∇h(x∗).

If furthermore there exists a positive definite matrix H(x∗) on the tangent space T (x∗), then x∗ is

a strict local minimum of f satisfying the constraints.

Chapter 6

Linear programming and duality

6.1 Separation theorems

We consider here a subset S of Rn (n ≥ 1), and define the distance to this set by

dS(z) := inf {∥s− z∥, s ∈ S} ,

where ∥ · ∥ denotes the usual Euclidian distance norm. We recall that S is said to be convex if,

for any x, y ∈ S, the line {λx+ (1− λ)y, λ ∈ [0, 1]} lies in S. A point s0 ∈ S is called the nearest

point of S to z if ∥s0 − z∥ = dS(z).

Lemma 6.1.1. Let C ⊂ Rn be a non empty closed convex set. Then, for any z ∈ Rn, there exists

a unique nearest point to z ∈ C.

Proof. Recall that a set C is closed if it contains the limit points of every convergent sequence in C.

This essentially implies the existence of a nearest point. Assume now that both x0 and x1 are

nearest points to z ∈ C, and define δ := dC(z) = ∥z − x0∥ = ∥z − x1∥, i.e. x0 and x1 both lie on

the boundary of the closed ball Bδ(z) := {y ∈ Rn : ∥y − z∥ ≤ δ}. The point (x0 + x1)/2 also lies

in C by convexity and in the interior of Bδ(z), which is a contradiction.

For any given non-zero vector a and a real number α, we define the hyperplane Ha,α ⊂ Rn by

H :=
{
x ∈ Rn : a⊤x = α

}
,

and a is called the normal vector of Ha,α. For instance, in R2, any hyperplane is a line, and in R3,

any hyperplane is a plane. We shall further define the half-spaces

H+
a,α :=

{
x ∈ Rn : a⊤x ≤ α

}
and H−

a,α :=
{
x ∈ Rn : a⊤x ≥ α

}
.

Theorem 6.1.2. Let C ⊂ Rn be a non-empty closed convex set and z ∈ Rn \ C. Then z and C can

be strongly separated, i.e., there exists a hyperplane Ha,α such that z ∈ H+
a,α and C ⊂ H−

a,α.

163

6.1. Separation theorems 164

Proof. Let p be the nearest point to z in C. For any x ∈ C, the open segment {(1− λ)p + λx, λ ∈

(0, 1)} also belongs to C by convexity, and

∥p− z + λ(x− p)∥ = ∥(1− λ)p + λx− z∥ ≥ ∥p− z∥.

Squaring both sides, we obtain, applying the triangle inequality:

∥p− z∥2 + 2λ(p− z)⊤(x− p) + λ2∥x− p∥2 ≥ ∥p− z∥2,

so that, as λ tends to zero, (z − p)⊤(x − p) ≤ 0. Define now the vector a := z − p and the real

number α := a⊤p, and consider the hyperplane

Ha,α := {x ∈ Rn : a⊤x = α} = {x ∈ Rn : (z− p)⊤x = α}.

Then clearly the set C belongs to the half space H+
a,α, while z does not; indeed,

az − α = (z− p)⊤ − a⊤p = a⊤(z− p) = (z− p)⊤(z− p) ≥ 0,

a⊤x− α = a⊤(x− p) = (z− p)⊤(x− p) ≤ 0, for any x ∈ C.

Let nowH∗ be the hyperplane parallel toHa,α (i.e. with the same normal vector) and containing

the point 1
2 (z + p). Then H∗ strongly separates z and C, and the theorem follows.

We now state and prove the following fundamental lemma. For a vector x = (x1, . . . , xn) ∈ Rn,

we shall write x ≥ On whenever xi ≥ 0 for all i = 1, . . . , n; the vector On on its own shall denote

the Rn-vector with null entries.

Theorem 6.1.3 (Farkas’ lemma). Let A ∈ Mm,n(R) and b ∈ Rm. There exists a vector x ≥ On

satisfying Ax = b if and only if for each y ∈ Rm with y⊤A ≥ On, it also holds that y⊤b ≥ 0.

Farkas’ lemma can be stated equivalently as: one of the following statements is true:

• there exists x ≥ On such that Ax = b;

• there exists y ∈ Rm such that y⊤A ≥ On and y⊤b < 0.

Proof. Let a1, . . . , an denote the column vectors of the matrix A, and define the (closed) convex

cone1 generated by these vectors:

C :=

{
n∑

i=1

λjaj : λ ≥ On

}
⊂ Rm.

Clearly, the equation Ax = b admits a non-negative solution if and only if b ∈ C. Assume now

that x is such a solution satisfying x ≥ On. If a vector y ∈ Rm is such that y⊤A ≥ On, then

y⊤b = y⊤(Ax) = (y⊤A)x ≥ 0. Conversely, if the equation Ax = b does not admit any non-negative

1Recall that C is called a convex cone if the set {λ1x1 + λ2x2 : x1, x2 ∈ C, λ1, λ2 ≥ 0} belongs to C.

6.2. Linear Programming Duality 165

solution, then b /∈ C, so that Theorem 6.1.2 implies that the vector b and the set C can be strongly

separated, i.e. there exists y ̸= Om and γ ∈ R such that

x ∈ H−
y,γ := {v ∈ Rn : y⊤v ≥ γ}, for each x ∈ C, and b ∈ H+

y,γ := {u ∈ Rm : y⊤u < γ}.

(6.1.1)

Since the null vector clearly belongs to C, necessarily γ ≤ 0. Now, y⊤x ≥ 0 for each x ∈ C: indeed,

if there exists x ∈ C such that y⊤x < 0 , then there exists λx ∈ C such that y⊤(λx) < γ for some

λ > 0, which is obviously a contradiction. Finally, for any i = 1, . . . , n, y⊤ai ≥ 0 (because ai ∈ C),

so that clearly y⊤A ≥ On. Since y⊤b < 0 by (6.1.1), the lemma follows.

Remark 6.1.4. The geometric interpretation of Farkas’ lemma2 is that the following two state-

ments are equivalent:

(i) the vector b belongs to the cone C;

(ii) it is not possible to find a hyperplane H·,0 that separates b and C,

or equivalently

(i) there exists x ≥ On such that Ax = b;

(ii) there exists a vector y ∈ Rm such that y⊤A ≥ 0 and y⊤b < 0.

6.2 Linear Programming Duality

A linear problem (which we shall call by convention the Primal Problem) has the following form:

(Primal Problem)
sup c⊤x

subject to Ax ≤ b and x ≥ On,
(6.2.1)

where c ∈ Rn, b ∈ Rm, x ∈ Rn and A ∈ Mm,n(R). The problem is called feasible if there exists

a vector x ∈ Rn such that Ax ≤ b, namely if the constraint is satisfied. A feasible solution x0 is

further said to be optimal if c⊤x0 = sup{c⊤x : Ax ≤ b}. We allow the value ±∞ for the problem,

namely −∞ whenever the problem is not feasible, and +∞ if the problem is unbounded, e.g. if

there exists a sequence of feasible solutions (xk)k∈N such that c⊤x diverges to infinity as k tends

to infinity. To each (primal) problem, one can associate a dual version, as follows:

(Dual Problem)
inf b⊤y

subject to A⊤y = c and y ≥ Om.
(6.2.2)

The first result in duality is called weak duality and states that an optimal solution for the dual

problem provides a bound on the optimal value of the primal programme.

2Gyula Farkas (March 28, 1847 December 27, 1930) was a Hungarian mathematician and physicist.

6.3. Application to the fundamental theorem of asset pricing 166

Theorem 6.2.1 (Weak Duality). Let p := max{c⊤x : Ax ≤ b} and d := min{b⊤y : A⊤y = c, y ≥

Om}. If x and y are feasible solutions for the primal and the dual problems, then c⊤x ≤ b⊤y.

Proof. The proof is straightforward: c⊤x = x⊤c ≤ x⊤
(
A⊤y

)
= (Ax)

⊤
y ≤ b⊤y.

Theorem 6.2.2 (Strong Duality).

(i) If the primal problem (6.2.1) has an optimal solution, then the dual solution has one as well,

and there is no duality gap (both problems have the same value);

(ii) If one of the problems is unbounded, then the other is not feasible; when at least one problem

is feasible, then there is no duality gap.

Proof.

Remark 6.2.3. The case b = 0 is of particular interest, since, in that case, the objective function

in the dual problem is zero. Optimal solutions and feasible solutions are therefore equivalent.

6.3 Application to the fundamental theorem of asset pricing

In the late seventies (or the twentieth century), no-arbitrage arguments became a central study

in the understanding of financial market theory. The seminal papers by Harrison, Pliska and

Kreps [37, 38, 39] were devoted to finite probability spaces (for example the Cox-Ross-Rubinstein’s

binomial model), and a full theory for general probability spaces was uncovered by Delbaen and

Schachermayer [20, 21]. We are interested here in a simple finite-dimensional framework, in which

linear programming plays a central role. Let us consider a market consisting of n assets with m

possible scenarios (finite probability space), and denote Π := (πi,j)i=1,...,m;j=1,...,n the payoff ma-

trix. A vector h ∈ Rn will denote a trading strategy, and x ∈ Rm a payoff, i.e. the outcome of a

trading strategy.

Definition 6.3.1. A risk-neutral probability is a vector y ≥ Om such that

m∑
i=1

yi = 1 and yΠ = On.

The linear programming problem reads as follows:

(Primal Problem)
max

m∑
i=1

xi

subject to x = Πh and x ≥ Om.

(6.3.1)

Definition 6.3.2. An arbitrage exists if and only if the optimal value of the linear programming

problem (6.3.1) is strictly positive.

Theorem 6.3.3. There is no arbitrage if and only if there exists a risk-neutral probability measure.

6.3. Application to the fundamental theorem of asset pricing 167

Proof. Let In and en denote respectively the identity matrix and the unit vector (in dimension n),

and rewrite the linear programming problem in the following form:

(Primal Problem) max

(On em)

h

x

 :


Π −I

−Π I

Om,n −I


h

x

 ≤ 0

 .

The corresponding dual problem can therefore be written as

(Dual Problem) min



Om

Om

Om


⊤

y1

y2

y3

 :

 Π⊤ −Π⊤ Om

−Im Im −Im



y1

y2

y3

 =

On

en

⊤

, y1, y2, y3 ≥ Om

 .

The objective function of the dual is equal to zero. Define y := y2 − y1 and z := y3, then the dual

problem simplifies to

(Dual Problem) min
{
0 : Π⊤y = On, y = z + em, z ≥ Om

}
.

Clearly, there is a feasible solution if and only if there exists3 y ∈ Ker(Π⊤) = Col(Π)⊥ such that

y ≥ em. This is then equivalent to the existence of a vector y ∈ Ker(Π⊤) such that y > Om and

(by scaling)
∑m

i=1 yi = 1, and the theorem follows.

The fundamental theorem of asset pricing ensures the existence of a risk-neutral probability in

a no-arbitrage framework. This in turn implies that (European) financial derivatives prices can be

computed by expectation of their final payoffs. We are now interested in the following problem:

(Primal Problem)’
max ε

subject to x = Πh and x ≥ εe,
(6.3.2)

where inequalities are considered component-wise. Here, the zero vector is a trivial feasible solution.

Definition 6.3.4. A dominant strategy exists if the optimal value of (6.3.2) is strictly positive.

We shall say that a pricing measure is linear if some of its components can be equal to zero.

Theorem 6.3.5. There is no dominant trading strategy if and only if there exists a linear pricing

measure.

Proof. The Primal problem (6.3.2) can be rewritten as

(Primal Problem)’ max



0

0

1

⊤


h

x

ε

 :


Π −I 0

−Π I 0

Om,n −I e


h

x

 ≤ 0

 ,

3Recall that the column space Col(Π) is the set of all possible linear combinations of its column vectors

6.4. Application to arbitrage detection 168

and the corresponding dual:

(Dual Problem)’ min
{
0 : Π⊤(y1 − y2) = 0,−y1 + y2 − y3 = 0, e⊤y3 = 1, y1, y2, y3 ≥ 0

}
.

Let y := y2 − y1 and z := y3, so that the dual reads

(Dual Problem)’ min

{
0 : Π⊤z = 0,

∑
i

zi = 1, z ≥ Om

}
,

and clearly a solution to this dual problem is a linear pricing measure.

6.4 Application to arbitrage detection

Assume that n derivatives written on some underlying stock price S are given, all with the same

maturity, but with piecewise linear payoffs ψi(·) with a single breakpoint Ki. The standard exam-

ples are Calls, Puts, Straddles, and assume that the strikes are ordered: 0 < K1 ≤ · · · < Kn. We

shall introduce a fictitious strike K0 = 0 to simplify some of the computations below. Consider also

a portfolio x = (x1, . . . , xn)
⊤, where each component represents the quantity of each derivative, so

that the payoff of the portfolio at maturity is

ψx(·) =
n∑

i=1

xiψi(·) = x⊤ψ(·).

At valuation time, say inception of the contract for example, the price of the portfolio reads

Πx =
∑
xiΠi = x⊤Π, where each Πi denotes the present value of derivative i.

Definition 6.4.1.

• The portfolio x is called an arbitrage opportunity of type A if

Πx = 0 and there exists s ≥ 0 such that ψx(s) > 0.

• The portfolio x is called an arbitrage opportunity of type B if

Πx < 0 and there exists s ≥ 0 such that ψx(s) ≥ 0.

Note that since each derivative payoff is piecewise linear with a single breakpoint, the payoff of

the whole portfolio is non-negative if and only if if it so at each breakpoint, and increasing after

the last one. Mathematically, we can state this in the following way:

Proposition 6.4.2. The function ψx is non-negative if and only if

ψx(Ki) ≥ 0 for all i = 0, . . . , n, and ψx(1 +Kn) ≥ ψx(Kn).

6.4. Application to arbitrage detection 169

We can therefore formulate the primal problem as follows:

(Primal Problem)

inf x⊤Π

subject to

 x⊤ψ(Kj) ≥ 0, for j = 0, . . . , n,

x⊤
(
ψ(1 +Kn)− ψ(Kn)

)
≥ 0.

(6.4.1)

or

(Primal Problem)
infx c

⊤x,

subject to Lx ≥ 0,

which admits, as a dual problem:

(Dual Problem)
supy 0,

subject to L⊤y = c and y ≥ 0

The following theorem is the main result of this section:

Theorem 6.4.3. There is no arbitrage if and only if the dual problem admits a strictly positive

solution.

Proof. The theorem follows directly from the following two claims:

(i) The dual problem is feasible if and only if there is no Type-B arbitrage;

(ii) Assume that there is no Type-B arbitrage; then there is no Type-A arbitrage if and only if

the dual problem admits a strictly positive solution.

Claim (i) is simple to prove: if there is no Type-B arbitrage, then clearly the primal problem

is bounded (since its optimal value is null), and therefore, by duality (Theorem 6.2.2), the dual

problem is feasible. Conversely, assuming that the dual is feasible, its optimal value is therefore

null, so is that of the primal by duality, and Type-B arbitrage cannot occur. Claim (ii) is slightly

more subtle to prove. Assume absence of Type-B arbitrage, and consider the ‘only if’ part of the

claim. Let h be a portfolio of derivatives, with payoff h at maturity and initial cost c⊤h = y⊤Lh,

where y solves the dual problem. If y > 0, then if Lh ≥ 0 (but not equal to zero), then y⊤Lh > 0,

which rules out Type-A arbitrage. Consider now the ‘if’ part of the claim, and suppose that any y

solving the dual problem has at least one null entry, say yi = 0. Denote by e = (e1, . . . , em) the

vector such that ej = 0 whenever j ̸= i and ei = 1. Therefore, the primal problem

sup
y

e⊤y, subject to L⊤y = c, y ≥ 0

has an optimal value equal to zero, and so does its dual

inf
x
c⊤x, subject to Lx ≥ e,

which precisely gives the minimum cost for a portfolio with payoff greater than e, and therefore

we have constructed an Type-A arbitrage portfolio, and the claim follows by contraposition.

6.4. Application to arbitrage detection 170

Application to Calls and Puts

We now apply the framework developed above to the case of European Call options. For a fixed

maturity, we shall show that no arbitrage (in the sense of Definition 6.4.1) is equivalent to the

convexity of the Call option prices. Assume that we can observe the Call options ψi(Kj) =

(Kj −Ki)+. The primal problem therefore reads

(Primal Problem) inf
x
c⊤x, such that Lx ≥ 0,

where c = (c(K1), . . . , c(KN))⊤, and the matrix L reads

L =


K1 −K1 0 0 · · · 0

K3 −K1 K3 −K2 0 · · · 0
...

...
. . .

. . .
...

1 · · · · · · · · · 1

 ∈ MNN (R).

Theorem 6.4.4. There is no arbitrage if and only if the (discrete) map K 7→ c(K) is decreasing,

convex and strictly positive.

Proof. From Theorem 6.4.3, there is no arbitrage if and only if the dual problem admits a strictly

positive solution. The dual constraints read
N−i∑
j=1

(Ki+j −Ki) yi+j−1 + yN c(Ki), i = 1, . . . , N − 1,

yN = c(KN).

(6.4.2)

Subtracting the (i+ 1)th equation from the ith one and dividing by ki+1 −Ki > 0, we obtain

yi + yi+1 + · · ·+ yN−1 =
c(Ki)− c(Ki+1)

Ki+1 −Ki
, for all i = 1, . . . , N − 2,

which yields, by recursion,

yi +
c(Ki+1)− c(Ki+2)

Ki+2 −Ki
=
c(Ki)− c(Ki+1)

Ki+1 −Ki
, for all i = 2, . . . , N − 2. (6.4.3)

We first prove the necessity part of the claim. Assume that there is no arbitrage opportunity (the

dual admits a strictly positive solution). Since yN > 0, from (6.4.2), c(KN) > 0 and c(KN−1) >

c(KN). Using (6.4.3), we obtain, for any i = 2, . . . , N − 2, that

c(Ki+1)− c(Ki+2)

Ki+2 −Ki
=
c(Ki)− c(Ki+1)

Ki+1 −Ki
,

which proves convexity. To prove sufficiency, we apply the exact same recursion, assuming that

convexity and the strict decreasing property holds which, from the equations above, yields that

yi > 0, for all i = 1, . . . , N − 2, so that the dual problem admits a strictly positive solution, and

arbitrage opportunities can hence not arise.

6.5. Numerical methods for LP problems 171

6.5 Numerical methods for LP problems

We conclude this section by introducing some numerical methods to solve linear programming

problems, in particular in the form of the dual problem, which we rewrite slightly as

(LP Problem)
inf c⊤x

subject to Ax = b and x ≥ On,
(6.5.1)

where A ∈ Mm,n(R) of rank m ≤ n, b ∈ Rm), c ∈ Rn, and let us denote by X := {x ∈ Rn : Ax =

b and x ≥ On} the set of feasible solutions.

Definition 6.5.1. A point x∗ ∈ X is called a vertex, or an extremal point if it cannot be decom-

posed into a (nontrivial) combination of two other points of χ, i.e. if x, y ∈ X and α ∈ (0, 1) such

that x∗ = αx + (1− α)y, then x∗ = x = y.

It is easy to see that the set X is a polyhedron (a finite intersection of halfspaces of Rn). We

call B a basis of the LP problem a submatrix of A (m columns of A), or order m and invertible,

which forms a basis of Rm. After permutations, we can write A = (B, N) where N is of size

m× (n−m), and likewise x = (xB, xN), so that

Ax = BxB +NxN .

Definition 6.5.2. A basic solution is a vector x ∈ X such that xN = 0. If one or more components

of xB is zero, we call this solution degenerate (because it may be difficult to move from one such

point to another basic solution).

Lemma 6.5.3. The vertices of the polyhedron X are the basic solutions.

This lemma is the building block for the following fundamental result:

Proposition 6.5.4. If the LP programme has an optimal solution, then there exists an optimal

basic solution.

6.5.1 The simplex method

Let x∗ denote a basic feasible solution (i.e. a vertex). Then x∗N = 0 and x∗B = B−1b ≥ 0, which

follows from

Ax = BxB +NxN = b if and only if xB = B−1 (b−NxN) ≥ 0.

Let us now decompose the cost function on the basis (B,N) as c = (cB, cN), and let x be an

admissible solution different from x∗. Then

cx∗ ≤ cx ⇐⇒ cBx
∗
B ≤ cBx + cNxN ⇐⇒ cBB

−1b ≤ cBB
−1 (b−NxN) + cNxN (6.5.2)

6.5. Numerical methods for LP problems 172

Proposition 6.5.5. Assume that x∗ is non degenerate (i.e. B−1b > 0). Then x∗ is optimal if

and only if the vector of reduced costs c̃N := cN −N⊤ (B−1
)⊤

cB is non negative.

Proof.

Appendix A

Useful tools in probability theory

and PDE

A.1 Essentials of probability theory

We provide here a brief overview of standard results in probability theory and convergence of

random variables needed in these lecture notes. The reader is invited to consult [64] for instance

for a more thorough treatment of the subject.

A.1.1 PDF, CDF and characteristic functions

In the following, (Ω,F ,P) shall denote a probability space and X a random variable defined on it.

We define the cumulative distribution function F : R → [0, 1] of S by

F (x) := P (X ≤ x) , for all x ∈ R.

The function F is increasing and right-continuous and satisfies the identities lim
x→−∞

F (x) = 0 and

lim
x→∞

F (x) = 1. If the function F is absolutely continuous, then the random variable X has a

probability density function f : R → R+ defined by f(x) = F ′(x), for all real number x. Note that

this in particular implies the equality F (x) =
∫ x

−∞ f(u)du. Recall that a function F : D ⊂ R → R

is said to be absolutely continuous if for any ε > 0, there exists δ > 0 such that the implication∑
n

|bn − an| < δ =⇒
∑
n

|F (bn)− F (an)| < δ

holds for any sequence of pairwise disjoint intervals (an, bn) ⊂ D. Define now the characteristic

function ϕ : R → C of the random variable X by

ϕ(u) := E
(
eiuX

)
.

173

A.1. Essentials of probability theory 174

Note that it is well defined for all real number u and that we always have |ϕ(u)| ≤ 1. Extending

it to the complex plane (u ∈ C) is more subtle and shall be dealt with in Chapter 4, along with

some properties of characteristic functions.

A.1.2 Gaussian distribution

A random variable X is said to have a Gaussian distribution (or Normal distribution) with mean

µ ∈ R and variance σ2 > 0, and we write X ∼ N
(
µ, σ2

)
if and only if its density reads

f(x) =
1

σ
√
2π

exp

(
−1

2
(x− µ)

2

)
, for all x ∈ R.

For such a random variable, the following identities are obvious:

E
(
eiuX

)
= exp

(
iµu− 1

2
u2σ2

)
, and E

(
euX

)
= exp

(
µu+

1

2
u2σ2

)
,

for all u ∈ R. The first quantity is the characteristic function whereas the second one is the Laplace

transform or the random variable. If X ∈ N
(
µ, σ2

)
, then the random variable Y := exp(X) is

said to be lognormal and

E(Y) = exp

(
µ+

1

2
σ2

)
and E

(
Y 2
)
= exp

(
2µ+ 2σ2

)
.

A.1.3 Convergence of random variables

We recall here the different types of convergence for family of random variables (Xn)n≥1 defined

on a probability space (Ω,F ,P). We shall denote Fn : R → [0, 1] the corresponding cumulative

distribution functions and fn : R → R+ their densities whenever they exist. We start with a

definition of convergence for functions, which we shall use repeatedly.

Definition A.1.1. Let (hn)n≥1 be a family of functions from R to R. We say that the family

converges pointwise to a function h : R → R if and only if the equality lim
n→∞

hn(x) = h(x) holds

for all real number x.

Convergence in distribution

This is the weakest form of convergence, and is the one appearing in the central limit theorem.

Definition A.1.2. The family (Xn)n≥1 converges in distribution—or weakly or in law—to a

random variableX if and only if the family (Fn)n≥1 converges pointwise to a function F : R → [0, 1],

i.e. the equality

lim
n→∞

Fn(x) = F (x),

holds for all real number x where F is continuous. Furthermore, the function F is the CDF of the

random variable X.

A.1. Essentials of probability theory 175

Example. Consider the family (Xn)n≥1 such that each Xn is uniformly distributed on the interval[
0, n−1

]
. We then have Fn(x) = nx11{x∈[0,1/n]} + 11{x≥1/n}. It is clear that the family of random

variable converges weakly to the degenerate random variable X = 0. However, for any n ≥ 1, we

have Fn(0) = 0 and F (0) = 1. The function F is not continuous at 1, but the definition still holds.

Example. Weak convergence does not imply convergence of the densities, even when they exist.

Consider the family such that fn(x) =
(
1− cos (2πnx)

)
11{x∈(0,1)}.

Even though convergence in law is a weak form of convergence, it has a number of fundamental

consequences for applications. We list them here without proof and refer the interested reader

to [6] for details

Corollary A.1.3. Assume that the family (Xn)n≥1 converges weakly to the random variable X.

Then the following statements hold

1. limn→∞ E (h(Xn)) = E (h(X)) for all bounded and continuous function h.

2. limn→∞ E (h(Xn)) = E (h(X)) for all Lipschitz function h.

3. limP (Xn ∈ A) = P (X ∈ A) for all continuity sets A of X.

4. (Continous mapping theorem). The sequence (h(Xn))n≥1 converges in law to h(X) for every

continuous function h.

The following theorem shall be of fundamental importance in many applications, and we there-

fore state it separately.

Theorem A.1.4 (Lévy’s continuity theorem). The family (Xn)n≥1 converges weakly to the random

variable X if and only if the sequence of characteristic functions ϕn converges pointwise to the

characteristic function ϕ of X and ϕ is is continuous at the origin.

Convergence in probability

Definition A.1.5. The family (Xn)n≥1 converges in probability to the random variable X if, for

all ε > 0, we have

lim
n→∞

P (|Xn −X| ≥ ε) = 0.

Remark A.1.6. The continuous mapping theorem still holds under this form of convergence.

Almost sure convergence

This form of convergence is the strongest form of convergence and can be seen as an analogue for

random variables of the pointwise convergence for functions.

Definition A.1.7. The family (Xn)n≥1 converges almost surely to the random variable X if

P
(
lim
n→∞

Xn = X
)
= 1.

A.1. Essentials of probability theory 176

Convergence in mean

Definition A.1.8. Let r ∈ N∗. The family (Xn)n≥1 converges in the Lr norm to the random

variable X if the r-th absolute moments of Xn and X exist for all n ≥ 1 and if

lim
n→∞

E (|Xn −X|r) = 0.

Properties

• Almost sure convergence implies convergence in probability.

• Convergence in probability implies weak convergence.

• Convergence in the Lr norm implies convergence in probability.

• For any r ≥ s ≥ 1, convergence in the Lr norm implies convergence in the Ls norm.

A.1.4 Central limit theorem and Berry-Esséen inequality

Let (Xi)i=1...,n form a sequence of independent and identically distributed random variables with

finite mean µ and finite variance σ2 > 0, and define the sequences of random variables (Xn)n≥1

and (Zn)n≥1 by

Xn :=
n∑

i=1

Xi and Zn :=
Xn − nµ

σ
√
n

, for each n ≥ 1. (A.1.1)

Recall now the central limit theorem:

Theorem A.1.9 (Central limit theorem). The family (Zn)n≥1 converges in distribution to a

Gaussian distribution with zero mean and unit variance. In particular for any a < b, we have

lim
n→∞

P (Zn ∈ [a, b]) = N (b)−N (a).

The central limit theorem provides information about the limiting behaviour of the probabilities,

but does not tell anything aboug the rate of convergence or the error made when approximating

the Gaussian distribution by the distribution of Zn for n ≥ 1 fixed. The following theorem, proved

by Berry [5] and Esséen [28] gives such estimates

Theorem A.1.10. Assume that E
(
|X|3

)
<∞. Then there exists a strictly positive universal (i.e.

independent of n) constant C such that

sup
x

|P (Zn ≤ x)−N (x)| ≤ Cρ√
n
,

where ρ := E

(
|X1 − µ|3

σ3

)
.

A.2. Useful tools in linear algebra 177

A.2 Useful tools in linear algebra

Let n ∈ N and consider a matrix A = (aij)1≤i,j≤n ∈ Mn(R).

Definition A.2.1. The matrix A is said to be positive definite (respectively positive semi-definite)

if xtAx > 0 (resp ≥ 0) for all non null vector x ∈ Rn.

For a matrix A ∈ Mn(R), we define its principal minors as

∆1 := a11, ∆2 := det

a11 a12

a21 a22

 , . . . , ∆n := det(A).

Proposition A.2.2. The following statements are equivalent:

(i) A is positive definite;

(ii) all the eigenvalues of A are positive;

(iii) all leading principal minors of A are positive.

Exercise 56. Let S ⊂ Rn be a convex and open set. Let f be a continuously differentiable

function on S. Recall that the function f is convex in S if for any two points x and y in S, the

following inequality holds:

f (αx + (1− α)y) ≤ αf(x) + (1− α)f(y), for any α ∈ [0, 1].

Show the following:

(i) f is convex if and only if f(y) ≥ f(x) +∇f(x)T · (y − x) for all (x, y) ∈ S × S;

(ii) if f is twice continuously differentiable on S, then f is convex if and only if the matrix ∇2f(x)

is positive semi-definite for all x ∈ S.

Definition A.2.3. The spectral radius ρ of a matrix A ∈ Mn(R) is defined by ρ(A) := max1≤i≤n λi,

where λ1, . . . , λn are the eigenvalues of A.

A.3 Useful tools in analysis

Theorem A.3.1 (Fubini theorem on R or C). Let A and B be two subsets of C and f : A×B → C

a function. If
∫
A×B

|f(x, y)| d(x, y) <∞ then∫
A

∫
B

f(x, y)dxdy =

∫
B

∫
A

f(x, y)dydx =

∫
A×B

f(x, y)d(x, y).

Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables. New York: Dover Publications, 1972.

[2] L.B.G. Andersen, P. Jäckel and C. Kahl. Simulation of Square-Root Processes. Encyclopedia

of Quantitative Finance, 2010.

[3] K.E. Atkinson. An introduction to numerical analysis, Second Edition. Wiley, 1989.

[4] D. H. Bailey and P. N. Swarztrauber. The fractional Fourier transform and applications.

SIAM Review,33: 389-404, 1991.

[5] A.C. Berry. The Accuracy of the Gaussian Approximation to the Sum of Independent Vari-

ates. Transactions of the American Mathematical Society, 49 (1): 122-136, 1941.

[6] P. Billingsley. Convergence of probability measures (2nd ed.). John Wiley & Sons, 1999.

[7] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities. Journal of Po-

litical Economy, 81 (3): 637-654, 1973.

[8] P. Boyle. Option Valuation Using a Three-Jump Process. International Options Journal 3,

7-12, 1986.

[9] P. Carr, H. Geman, D. Madan and M. Yor. Stochastic volatility for Lévy processes. Mathe-

matical Finance, 13(3): 345-382, 2003.

[10] P. Carr and D. Madan. Option valuation using the fast Fourier transform. Journal of Com-

putational Finance, 2 (4): 61-73, 1999.

[11] P. Carr and D. Madan. Saddlepoint Methods for Option Pricing. Journal of Computational

Finance, 13 (1): 4961, 2009.

[12] A.L. Cauchy. Cours d’analyse de l’Ecole Royale Polytechnique. Imprimerie royale, 1821.

Reissued by Cambridge University Press, 2009.

178

Bibliography 179

[13] R. Cont and E. Voltchkova. A finite difference scheme for option pricing in jump diffusion and

exponential Lévy models. SIAM Journal On Numerical Analysis, 43(4): 1596-1626, 2005.

[14] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier

series. Mathematics of Computation, 19: 297-301, 1965.

[15] M. Cooney. Report on the accuracy and efficiency of the fitted methods for solving the Black-

Scholes equation for European and American options. Working report, Datasim Education

Ltd, Dublin, 2000.

[16] R. Courant, K. Friedrichs and H. Lewy. Über die partiellen Differenzengleichungen der math-

ematischen Physik. Mathematische Annalen, 100 (1): 32-74, 1928.

[17] J.C. Cox, J.E. Ingersoll and S.A. Ross. A Theory of the Term Structure of Interest Rates.

Econometrica, 53: 385-407.

[18] J.C. Cox, S.A. Ross and M. Rubinstein. Option Pricing: A Simplified Approach. Journal of

Financial Economics, 7: 229-263, 1979.

[19] J.Crank and P. Nicolson. A Practical Method for Numerical Evaluation of Solutions of Partial

Differential Equations of Heat Conduction Type. Proceedings of the Cambridge Philosophical

Society 43: 50-67, 1947.

[20] F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset

pricing. Math Ann, 300(1): 463-520, 1994.

[21] F. Delbaen and W. Schachermayer. The Mathematics of arbitrage. Springer, 2008.

[22] J. Douglas and H.H. Rachford. On the numerical solution of heat conduction problems in

two and three space variables. Transactions of the AMS, 82:421-439, 1956.

[23] D. Duffie, D. Filipovic, and W. Schachermayer. Affine processes and applications in finance.

The Annals of Applied Probability, 13(3): 984-1053, 2003.

[24] D. Duffie, J. Pan, and K. Singleton. Transform analysis and asset pricing for affine jump-

diffusions. Econometrica, 68(6): 1343-1376, 2000.

[25] D.J. Duffy. Uniformly convergent difference schemes for problems with a small parameter in

the leading derivative. PhD thesis, Trinity College, Dublin, Ireland, 1980.

[26] D.J. Duffy. A Critique of the Crank-Nicolson scheme strenghts and weaknesses for financial

instrument pricing. Wilmott Magazine, July-August, 2004

[27] D.J. Duffy. Finite Difference Methods in Financial Engineering. Wiley, Chichester, 2006.

Bibliography 180

[28] C.G. Esséen. A moment inequality with an application to the central limit theorem. Skand.

Aktuarietidskr., 39: 160170, 1956.

[29] F. Fang and K. Osterlee. A novel pricing method for European options based on Fourier-

cosine series expansions. SIAM Journal of Scientific Computing, 31: 826-848, 2008.

[30] W. Feller. Two Singular Diusion Problems. Annals of Mathematics 54 (1), 1951.

[31] W. Gander and W. Gautschi. Adaptive Quadrature Revisited. BIT, 40: 84-101, 2000.

[32] I. M.Gelfand. Normierte Ringe. Mat. Sbornik, 9: 3-24, 1941.

[33] J. Gil-Pelaez. Note on the inversion theorem. Biometrika, 38 (3-4): 481-482, 1951.

[34] P. Glasserman. Monte Carlo methods in financial engineering, Springer-Verlag, 2003.

[35] L. Grafakos. Classical Fourier Analysis. Springer, 249 (2nd edition), 2008.

[36] J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Prince-

ton University Bulletin, 13, 49-52, 1902.

[37] J.M. Harrison and D. M. Kreps. Martingales and arbitrage in multiperiod securities markets.

Journal of Economic Theory, 20: 381-408, 1979.

[38] J.M. Harrison and S. R. Pliska. Martingales and stochastic integrals in the theory of contin-

uous trading. Stochastic Processes and their Applications, 11: 215-260, 1981.

[39] J.M. Harrison and S. R. Pliska. A stochastic calculus model of continuous trading: Complete

markets. Stochastic Processes and their Applications, 15: 313-316, 1983.

[40] S.L. Heston. A closed-form solution for options with stochastic volatility with applications

to bond and currency options. Review of Financial Studies, 6: 237-343, 1993.

[41] A. Hadjidimos. Successive Overrelaxation (SOR) and related methods. Journal of Computa-

tional and Applied Mathematics, 123: 177-199, 2000.

[42] J.C. Hull and A. White. Numerical procedures for implementing term structure models I:

Single-factor models. Journal of Derivatives, 2 (1): 7-16, 1994.

[43] A.M. Ilin. Differencing scheme for a differential equation with a small parameter affecting

the highest derivative. Mathematical notes of the Academy of Sciences of the USSR, 6(2):

237-248, 1969.

[44] E. Isaacson and H. Keller. Analysis of numerical methods. Wiley, New-York, 1966.

[45] S. Karlin and H. Taylor. A Second course in Stochastic processes. Academic Press, 1981.

Bibliography 181

[46] B. Kamrad and P. Ritchken. Multinomial Approximating Models for Options with k State

Variables. Management Science, 37 (12): 1640-1652, 1991.

[47] M. Keller-Ressel. Moment Explosions and Long-Term Behavior of Affine Stochastic Volatility

Models. Mathematical Finance, 21(1): 73-98, 2011.

[48] P. Kloeden and E. Platen. Numerical solutions of stochastic differential equations. Springer-

Verlag, New-York, 1999.

[49] D.E. Knuth. The Art of computer programming, volume II: Seminumerical algorithms. Third

Edition, Addison Wesley Longman, Reading, Mass, 1998.

[50] S. Kou and H. Wang. Option pricing under a double exponential jump diffusion model.

Management Science, 50(9): 1178-1192, 2004.

[51] H. J. Kushner and P. Dupuis. Numerical Methods for Stochastic Control Problems in Con-

tinuous Time. Springer, 2001.

[52] R. W. Lee. Option Pricing by Transform Methods: Extensions, Unification, and Error Con-

trol. Journal of Computational Finance, 7 (3): 51-86, 2004.

[53] D.G. Luenberger, Y. Ye. Linear and nonlinear programming. Springer, 2010.

[54] R. Lugannani and S.O. Rice. Saddlepoint approximations for the distribution of the sum of

independent random variables. Advances in Applied Probability, 12: 475-490, 1980.

[55] G. Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National

Academy of Sciences, 61:25-28, 1968.

[56] R. Merton. The Theory of Rational Option Pricing. Bell Journal of Economics and Man-

agement Science, 4(1): 141-183, 1973.

[57] R.C. Merton. Option pricing when underlying stock returns are discontinuous. Journal of

Financial Economics, 3: 125-144, 1976.

[58] D.W. Peaceman and H.H. Rachford. The numerical solution of parabolic and elliptic differ-

ential equations. Journal of SIAM, 3: 28-41, 1955.

[59] B. Flannery, W.H. Press, S. Teukolsky and W. Vetterling. Numerical Recipes. Cambridge

University Press, Third Edition, 2007.

[60] J.C. Strikwerda. Finite difference schemes and partial differential equations, Second Edition.

Chapman and Hall, Pacific Grove, 1989.

[61] L.G. Ixaru and G. Vanden Berghe. Exponential Fitting. Springer Netherlands, 2004.

Bibliography 182

[62] O. Vasicek. An equilibrium characterization of the term structure Journal of Financial Eco-

nomics, 5: 177-188, 1977.

[63] K. Weierstrass. Zur Theorie der Potenzreihen. Werke, 1:67-74, 1894.

[64] D. Williams. Probability with martingales. Cambridge University Press, 1991.

[65] A.T.A Wood, J.G. Booth and R.W. Butler. Saddlepoint approximations with nonnormal

limit distributions. Journal of the American Statistical Association, 88: 680-686, 1993.

[66] Zeliade Systems. Heston 2010. www.zeliade.com/whitepapers/zwp-0004.pdf, 2011.

[67] A.H. Zemanian. Generalized integral transformations. Dover, New York, 1987.

[68] G. Zoutendijk. Methods of feasible directions. Elsevier, Amsterdam, 1960

[69] K. R. Zvan, P.A. Forsyth and K. Vetzal. Robust Numerical Methods for PDE Models of

Asian Options. Journal of Computational Finance, 1:39-78, 1998.

http://www.zeliade.com/whitepapers/zwp-0004.pdf

	Some considerations on algorithms and convergence
	A concise introduction to arbitrage and option pricing
	European options
	American options
	Exotic options

	Lattice (tree) methods
	Binomial trees
	One-period binomial tree
	Multi-period binomial tree
	From discrete to continuous time
	Kushner theorem for Markov chains
	Reconciling the discrete and continuous time
	Examples of models
	Convergence of CRR to the Black-Scholes model

	Adding dividends

	Trinomial trees
	Boyle model
	Kamrad-Ritchken model

	Overture on stability analysis

	Monte Carlo methods
	Generating random variables
	Uniform random number generator
	Generating uniform random variables

	Normally distributed random variables and correlation
	Convolution method
	Box-Muller method
	Correlated Gaussian random variables

	General methods

	Random paths simulation and option pricing
	Simulation and estimation error
	Variance reduction methods
	Option pricing
	Application: European down and out barrier option under Black-Scholes
	Application: Bond pricing with the CIR model

	Finite difference methods for PDEs
	Reminder on PDEs and the Black-Scholes heat equation
	Review of PDEs and their classification
	The Black-Scholes heat equation
	Derivation of the Black-Scholes PDE
	Reduction of the Black-Scholes PDE to the heat equation
	Direct solution of the heat equation
	Separation of variables and Sturm-Liouville problems

	Digression: why are we interested in PDEs?
	Discretisation schemes
	Explicit scheme
	Implicit scheme
	Crank-Nicolson scheme
	Generalisation to -schemes
	A critique of the Crank-Nicolson scheme

	Exponentially fitted schemes
	Multi-step schemes
	Non-uniform grids
	Direct approach
	Coordinate transformation

	Stability and convergence analysis
	A Fourier transform approach
	Application to -schemes

	Convergence analysis via matrices
	A crash course of matrix norms
	Convergence analysis

	PDEs for path-dependent options
	The American case: Problem class
	The Asian case

	Solving general second-order linear parabolic partial differential equations
	Applications to -schemes

	Two-dimensional PDEs
	-schemes for the two-dimensional heat equation
	Explicit scheme
	Implicit scheme
	Crank-Nicolson

	The ADI method

	Divergence: solving one-dimensional PDEs via eigenfunction expansions
	Finite differences for PIDEs
	A quick review of SDE with jumps
	Poisson, Compound Poisson and Lévy processes
	Stochastic differential equation with jumps
	Lévy processes

	The pricing PIDE
	Finite differences
	Truncating the integral
	Finite difference schemes
	A working example: the CGMY model

	Numerical solution of systems of linear equations
	Gaussian elimination
	LU decomposition
	Solving the system

	Cholesky decomposition
	Banded matrices
	Iterative methods
	Jacobi iteration
	Gauss-Seidel iteration
	Successive Over Relaxation method (SOR)

	Fourier and integration methods
	A primer on characteristic functions
	Fourier transforms and their inverses
	Reminder on Lp spaces
	Fourier transforms on Schwartz space
	Fourier transforms on L1(R)

	Characteristic functions
	Examples
	Black-Scholes
	Poisson processes
	Compound Poisson processes
	Affine processes

	Pricing using characteristic functions
	The Black-Scholes formula revisited
	Option pricing with characteristic functions
	A note on bond pricing

	Pricing via saddlepoint approximation
	The Lugannani-Rice approximation
	The Gaussian base
	Non-Gaussian bases

	Pricing with the Lugannani-Rice approximation

	Numerical integration and quadrature methods
	A primer on polynomial interpolation
	Lagrange polynomials
	Interpolation error
	Orthogonal polynomials
	Interpolation via splines

	Numerical integration via quadrature
	Newton-Cotes formulae
	Newton-Cotes integration error
	Gaussian quadratures
	Adaptive quadrature
	Numerical integration example

	Fast Fourier transform methods
	The FFT algorithm
	Application to option pricing

	Fractional FFT methods
	Sine / Cosine methods
	Description of the method
	Application to option pricing

	Model calibration
	Solving non-linear equations
	Bisection method
	Newton-Raphson method
	The secant method
	The fixed-point algorithm

	Optimisation
	Unconstrained optimisation
	Line search methods
	Minimisation via the Newton method
	Constrained optimisation
	Lagrange multipliers
	General theory

	Linear programming and duality
	Separation theorems
	Linear Programming Duality
	Application to the fundamental theorem of asset pricing
	Application to arbitrage detection
	Application to Calls and Puts

	Numerical methods for LP problems
	The simplex method

	Useful tools in probability theory and PDE
	Essentials of probability theory
	PDF, CDF and characteristic functions
	Gaussian distribution
	Convergence of random variables
	Convergence in distribution
	Convergence in probability
	Almost sure convergence
	Convergence in mean
	Properties

	Central limit theorem and Berry-Esséen inequality

	Useful tools in linear algebra
	Useful tools in analysis

