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ABSTRACT. For the standard Black-Scholes equation, there is a unique
solution of at most polynomial growth, towards which any reasonable
numerical scheme will converge. However, there are financial models for
which this uniqueness does not hold, for instance in the case of models for
financial bubbles and certain stochastic volatility models. We present a
numerical scheme to find the solution corresponding to the option price
given by the risk-neutral expectation in the presence of bubbles.

1. INTRODUCTION

Standard arbitrage theory shows that absence of arbitrage is equivalent to
the existence of an equivalent local martingale measure. In most models used
for option pricing, including for example the standard Black-Scholes model,
the discounted underlying asset is actually a martingale under the pricing
measure. However, there are notable exceptions, in which the underlying
asset is merely a local martingale. These exceptions include local volatility
models in which the volatility function is unbounded at infinity, as well
as certain stochastic volatility models with a positive correlation between
volatility and stock fluctuations, see [6].

The authors of [1] and [3] propose that a discounted underlying asset
which is a strict local martingale (i.e. a local martingale but not a martin-
gale) under the pricing measure can be used to model a financial bubble. In
these models several basic properties of option prices may fail such as the
put-call parity, the no-dominance principle and the uniqueness of solutions
to the corresponding Black-Scholes equation, compare [1], [3] and [4]. For
a discussion on existence and uniqueness of solutions to the Black-Scholes
equation in one-dimensional diffusion models with bubbles, see [2].

Numerically, it is not clear how to determine the solution corresponding
to the risk-neutral expected value. In fact, most numerical methods are set
up on a finite grid, and on each such bounded domain, the solution to the
Black-Scholes equation is uniquely determined by its boundary conditions.
Unless special care is taken when specifying these boundary conditions, the
solution will not be the one corresponding to the risk-neutral expected value.
In fact, if standard boundary conditions are imposed the desired solution will
not be obtained. Thus, for instance, if the boundary condition z— K e r(T—t)
for large values x of the underlying asset is used to determine a call option
with strike K at time T — ¢ before maturity, a solution to the Black-Scholes
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equation is indeed obtained but not the solution corresponding to the option
price given by a risk-neutral expected value.

In the present paper we provide a method to determine the option price in
models with bubbles. The method involves the solution of the Black-Scholes
equation on a bounded domain, with a Neumann boundary condition at the
spatial boundary. As the state space expands, the solution is shown to
converge to the solution given by the risk-neutral expectation. Moreover,
the method is easily implemented, and we analyse it numerically.

2. MODEL SPECIFICATION AND NUMERICALLY RELEVANT BOUNDARY
CONDITIONS

In this section we study prices of options written on an underlying stock.
We model the stock price X under the pricing measure by

(1) dXt = Oz(Xt,t) th,

where W is a standard Brownian motion and «(z,t) is a given function.
For the sake of convenience we let the interest rate be zero; generalizations
to a deterministic interest rate are straightforward. We assume that « is
continuous and locally Holder(1/2) in the z-variable, and non-zero for all
x > 0. Note, however, that we do not impose any linear bound. We also
assume that if X ever reaches zero, then it is absorbed. Financially, this
corresponds to the company going bankrupt.

For a given non-negative pay-off function g, we define the price at time ¢
of the option that pays g(Xr) at time T' to be u(Xy,t), where the function
u is given by

(2) u(z,t) = Ep19(X7).

This definition of the option price agrees with the notion of ’fair price’ in [1]
as the smallest initial endowment needed to form an admissible superrepli-
cating wealth process. Note that X is a lower bounded local martingale,
hence a supermartingale. Consequently, u(x,t) is well-defined for any pay-
off function g of at most linear growth, thus including all standard contracts
such as for example call options. In many models, notably the CEV-model
considered below, higher moments exist so u would in fact be well-defined
for a larger class of pay-off functions. However, since we consider problems
for general local volatility models, we will throughout this article consider
pay-offs of at most linear growth.
The corresponding Black-Scholes equation is

u(z,t) + 30Uz (z,t) =0 if (z,t) € (0,00) x [0,T)
(3) u(z,T) = g(x)

u(0,t) = g(0).
It is shown in [2] that if g is of at most linear growth, then the option
price u given in (2) is a classical solution to the Black-Scholes equation (3).
However, it is well-known that there are multiple solutions of at most linear
growth.

Example In the Constant Elasticity of Variance (CEV) model, the stock
price is given by
dX; = o X, dW,
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where v > 0 and o > 0 are constants. If v > 1, then X is a strict local
martingale, compare [1] and [5]. Consequently,

u(z,t) = By X7 < .

On the other hand, u = x is clearly also a solution to the corresponding
Black-Scholes equation, so uniqueness of solutions does not hold.

To determine the stochastic solution given by (2), one may employ the
following observation made in [2] and [3].

Proposition 2.1. Assume that g is non-negative and of at most linear
growth. Then the option price u given by (2) is the smallest non-negative
classical solution of (3).

Numerically it is not clear how to check that a given solution to a differ-
ential equation is the smallest non-negative one. One possibility to identify
this solution would be to replace the pay-off function g by g A M and find the
unique bounded solution to the corresponding pricing equation. When let-
ting M — oo, the smallest solution is obtained, compare [2]. This method,
however, is not straightforward to analyze numerically since, for each M, an
upper bound for the state space has to be chosen, tending to infinity with
M. Rather than investigating how to choose the state space bound rela-
tive to M, we give another characterization of u below which is generally
applicable for problems of this type and is also simple to implement.

Let ups be the unique solution to the partial differential equation

uM(z,t) + 2a?ul(2,t) =0 if (z,t) € (0,M) x [0,T)

(@) uM(2,T) = g(x) if x € [0, M]
uM(0,t) = g(0) ift €10,7T)
uM(M,t) = if t € 10,7).

Note that u™ satisfies a Neumann condition at the part of the bound-
ary where x = M. We extend the domain of definition of u™ by setting
uM(x,t) = u™(M,t) for x > M.

Theorem 2.2. Assume that the pay-off function g is mon-negative, non-
decreasing and of at most linear growth. Then uM is increasing in M, and

u(z,t) = lim uM(z,t).
(e,6) = lim w(z,1)
Proof. Assume that ¢ is non-negative and non-decreasing. To see that u®

is increasing in M, let My and M, satisfy M1 < Ms. The monotonicity of g
implies that 2 — u™2(x,t) is non-decreasing. Consequently, u"2 satisfies

up® (z,t) + Sa2ul2 (x,t) = 0 if (2,t) € (0, M) x [0,7)

uM2(2,T) = g(x) if x € [0, M1]
uM2(0,t) = g(0) if t €[0,7)
uMz(My,t) >0 ift €0,7).

Thus an application of the Maximum principle yields u™ < u2. Since u™

is increasing in M, the limit

u(x,t) := A/}lgloo uM(z,t)
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clearly exists. Moreover, by a similar argument as above, we have u™ < u
for all M, so uw < u.

On the other hand, interior Schauder estimates yield that w solves the
equation (3). Moreover, since u™ < % < wu for all M, and since u™ and
u are continuous at the boundary, we find that also @ is continuous at
the boundary, with u(xz,T) = g(x) and uw(0,t) = ¢(0). Thus the reverse
inequality is a consequence of Proposition 2.1, which proves u = w. U

Corollary 2.3. Assume that the pay-off function g can be written as the
difference of two non-negative and non-decreasing functions of at most linear
growth. Then
u(z,t) = lim uM (z,1).

M—o0
Remark Note that Corollary 2.3 covers for example the case of put options.
Indeed, (K —x)" = K —z A K.
Remark Another possibility to determine the smallest non-negative solu-
tion of (3) would be to consider barrier options with a barrier M tending
to infinity. This corresponds to solving a partial differential equation with
Dirichlet boundary condition at x = M. As M tends to infinity, the corre-
sponding solution converges to u. However, this method produces an error
of size M in supremum norm, so the convergence is slower than in the ap-
proximation using a Neumann condition.

3. NUMERICAL RESULTS

A numerical solution of (4) is computed on a grid defined by x; = jh, j =
0,1,...,J, with z; = M and h = M/J, and at discrete time points t" =
nAt, n = 0,1,...,N, for a time step At = T/N by approximating the
spatial derivative by centered second-order finite differences. The solution
is integrated in time by a #-method. Then u} approximating uM (x,t") is

N

determined backward in time starting from u; = g(x;) by the recursion

() (I —OAtA)U™ = (I + (1 — 0)AtA)u™?,

where A is the matrix with elements discretizing %aZum.

The boundary condition w2 (M, t) = 0 in (4) is approximated as u™ (M +
h,t)—uM(M,t) = 0 and consequently u'; = v}, ;. One can of course consider
alternatives for the numerical boundary condition. The disadvantage of a
Dirichlet condition is that it is unclear what boundary values to impose
(see the discussion in the Introduction). A numerical condition such as
extrapolation by letting the second difference of u™ at x; be zero leaves
the initial uév = z; unaltered and converges to the wrong solution (cf. the
Example in Sect 2.).

Following the arguments in [7, Ch. III.10], one can show that the dis-
cretization in (5) and the simplest extrapolation boundary condition is stable
in a discrete weighted lo-norm for all At if 6 satisifes 1/2 < 6 < 1 and with
time step restrictions if 0 < ¢ < 1/2. The accuracy in uj is of O(At + h?)
if # # 1/2 but for # = 1/2 we have the Crank-Nicolson method and an
accuracy of O(At? + h?). The method is also stable in the maximum norm
if (1 —0)Ata(z;)?/h?* <1 for all j, see [7, Ch. II1.11]. Furthermore, under
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the same condition the solution satisfies a discrete maximum principle: uy
has its maximum initially at n = N or at a boundary j =0 or j = J [7, Ch.
II1.11].

Stability and consistency imply that the computed solution u} converges

to uM (z;,t") when At — 0 and h — 0. Then u™ converges to u as M — oo
according to Theorem 2.2. Hence, the solution of (5) converges to u when
the solution interval is expanded.

Two model problems are solved, both using the Constant Elasticity of
Variance model with v = 2 and ¢ = 0.1. The first case in Figure 1 is the
stock option with g(z) = x, and the second case is a European call option
with strike price K = 5 in Figure 2. In this case g(z) = max(0,z — K).
The parameters in our experiments are § = 1 (the implicit Euler method),
h = 0.05, At = 0.0005, and T = 0.5. We choose h and At such that the
error compared to u due to them is much smaller than the error caused by
a finite M.

The solution is computed for M =2™-10, m =1,2,3,4,5,6. A close-up
view of the solutions is depicted in the left panels of the figures. Only the
parts of the solutions are displayed where a different M has an influence. The
solutions with M = 320 and M = 640 are on top of each other for x < 320.
The solution for a fixed x increases as M increases in agreement with the
proof of Theorem 2.2. The differences between the analytical solutions in [1]
and numerical solutions obtained by (5) are measured at ¢ = 0 by ¢ defined
by

J J
1 1
8 = 2 " hlu(a;, 0) =l = = 3 Jule,0) —
j=1 j=1

in the right panels of the figures. The slopes in Figures 1 and 2 suggest that
the difference decays as M 2.
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FIGURE 1. (a) Close-up view of the solution of the stock op-
tion example for different M. (b) The difference between the
analytical solution and the numerical solution for different
M (*). The linear curve indicates a decay ~ M ~2.
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FIGURE 2. (a) Close-up view of the solution of the call option

example for different M.

(b) The difference between the

analytical solution and the numerical solution for different
M (*). The linear curve indicates a decay ~ M 2.




