AN ELEMENTARY PROOF OF THE SPECTRAL
RADIUS FORMULA FOR MATRICES

JOEL A. TROPP

ABSTRACT. We present an elementary proof that the spectral ra-
dius of a matrix A may be obtained using the formula

p(A) = lim [|A™[*/",

where || - || represents any matrix norm.

1. INTRODUCTION

It is a well-known fact from the theory of Banach algebras that the
spectral radius of any element A is given by the formula

p(A) = Tim [ A"/ (L1)

For a matrix, the spectrum is just the collection of eigenvalues, so
this formula yields a technique for estimating for the top eigenvalue.
The proof of Equation 1.1 is beautiful but advanced. See, for exam-
ple, Rudin’s treatment in his Functional Analysis. It turns out that
elementary techniques suffice to develop the formula for matrices.

2. PRELIMINARIES

For completeness, we shall briefly introduce the major concepts re-
quired in the proof. It is expected that the reader is already familiar
with these ideas.

2.1. Norms. A norm is a mapping || -|| from a vector space X into
the nonnegative real numbers R™ which has three properties:

(1) ||z|| = 0 if and only if z = 0;

(2) ||ax| = |a| ||z]| for any scalar o and vector z; and

(3) llz + yll < |lz|l + |ly|| for any vectors z and y.

The most fundamental example of a norm is the Euclidean norm ||-||o
which corresponds to the standard topology on R"™. It is defined by

lalle = (1,2, mallla = yfad + -+ 22,
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One particular norm we shall consider is the ¢, norm which is defined
for x in R™ by the formula

lloo = ll(@1; 22, s 200) o0 = max{z;}.
For a matrix A, define the infinity norm as
Al = max 3,4
This norm is consistent with itself and with the ¢, vector norm. That
is,

[ AB[o
[ Az

[Allool[Blloo and
[[A]loo [l

where A and B are matrices and x is a vector.
Two norms || - || and || - ||, on a vector space X are said be equivalent
if there are positive constants C' and C such that

Cllall < [zl < Cll||

<
<

for every vector x. For finite-dimensional spaces, we have the following
powerful result.

Theorem 2.1. All norms on a finite-dimensional vector space are
equivalent.

Proof. We shall demonstrate that any norm ||| on R" is equivalent
to the Euclidean norm. Let {e;} be the canonical basis for R™, so any
vector has an expression as x = Y z;¢;. First, let us check that || - || is
continuous with respect to the Euclidean norm. For all pairs of vectors
x and y,

Iz = yll = 122(x: = ya)ed]
< 2lzi —yil [l
< maxi{|le:|| } 21w — wil

< M {X(z; —y:)2}"?
= M|z — ylls,

where M = max;{||e;||}. In other words, when two vectors are nearby
with respect to the Euclidean norm, they are also nearby with respect
to any other norm. Notice that the Cauchy-Schwarz inequality for real
numbers has played a starring role at this stage.

Now, consider the unit sphere with respect to the Euclidean norm,
S = {x € R": ||z]]a = 1}. This set is evidently closed and bounded
in the Euclidean topology, so the Heine-Borel theorem shows that it
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is compact. Therefore, the continuous function || || attains maximum
and minimum values on S, say C' and C'. That is,

Cllzllz < ||zl < Cllzl2

for any x with unit Euclidean norm. But every vector y can be ex-
pressed as y = ax for some x on the Euclidean unit sphere. If we
multiply the foregoing inequality by |«| and draw the scalar into the
norms, we reach

Cliyllz < llyll < Cllyll2

for any vector y.

It remains to check that the constants C' and C' are positive. They
are clearly nonnegative since || -|| is nonnegative, and C < C by defi-
nition. Assume that C' = 0, which implies the existence of a point x
on the Euclidean unit sphere for which ||| = 0. But then x = 0, a
contradiction. d

2.2. The spectrum of a matrix. For an n-dimensional matrix A,
consider the equation

Az = Az, (2.1)

where x is a nonzero vector and A is a complex number. Numbers A
which satisfy Equation 2.1 are called eigenvalues and the corresponding
x are called eigenvectors. Nonzero vector solutions to this equation
exist if and only if

det(A — \) = 0, (2.2)

where [ is the identity matrix. The left-hand side of Equation 2.2 is
called the characteristic polynomial of A because it is a polynomial in A
of degree n whose solutions are identical with the eigenvalues of A. The
algebraic multiplicity of an eigenvalue A is the multiplicity of A as a root
of the characteristic polynomial. Meanwhile, the geometric multiplicity
of X\ is the number of linearly independent eigenvectors corresponding
to this eigenvalue. The geometric multiplicity of an eigenvalue never
exceeds the algebraic multiplicity. Now, the collection of eigenvalues of
a matrix, along with their geometric and algebraic multiplicities, com-
pletely determines the eigenstructure of the matrix. It turns out that all
matrices with the same eigenstructure are similar to each other. That
is, if A and B have the same eigenstructure, there exists a nonsingular
matrix S such that S™1AS = B.

We call the set of all eigenvalues of a matrix A its spectrum, which
is written as o(A). The spectral radius p(A) is defined by

p(A) = sup{|A[ : A € o(A)}.
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In other words, the spectral radius measures the largest magnitude
attained by any eigenvalue.

2.3. Jordan canonical form. We say that a matrix is in Jordan
canonical form if it is block-diagonal and each block has the form

dxd

Al
Al

Al

A

It can be shown that the lone eigenvalue of this Jordan block is .
Moreover, the geometric multiplicity of A is exactly one and the alge-
braic multiplicity of A is exactly d, the block size. The eigenvalues of a
block-diagonal matrix are simply the eigenvalues of its blocks with the
algebraic and geometric multiplicities of identical eigenvalues summed
across the blocks. Therefore, a diagonal matrix composed of Jordan
blocks has its eigenstructure laid bare. Using the foregoing facts, it
is easy to construct a matrix in Jordan canonical form which has any
eigenstructure whatsoever. Therefore, every matrix is similar to a ma-

trix in Jordan canonical form.

Define the choose function ("

k

(n)_{ﬁlk), when £ =0,...,n and

) according to the following convention:

k 0 otherwise.

Lemma 2.1. If J is a Jordan block with eigenvalue A, then the com-
ponents of its nth power satisfy

(J");; = ( N ) AP (2.3)

j—i
Proof. For n = 1, it is straightforward to verify that Equation 2.3 yields

dxd
A

1
Al
J' =
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Now, for arbitrary indices 7 and 7, use induction to calculate that

d
(J"), =D (I Tk

S HG )
— E] Z) n—j+i+1 | (j - (7;+ 1)))\n—j+(i+1)

as advertised. O

3. THE SPECTRAL RADIUS FORMULA

First, we prove the following special case.

Theorem 3.1. For any matrixz A, the spectral radius formula holds for
the infinity matriz norm:

1AM — p(A).

Proof. Throughout this argument, we shall denote the /., vector and
matrix norms by || - ||.
Let S be a similarity transform such that S~*AS has Jordan form:

Ji
J=S"T1AS =
I

Using the consistency of || - ||, we develop the following bounds.
||V = s ms Y
_ 1/n nil/n
< {ISIs=H " e,

and

A — {||s—1||||SJ“S—1||||S||}”"
I

1/n
> {IISIs~}
In each inequality, the former term on the rlght—hand side tends toward

one as n approaces infinity. Therefore, we need only investigate the
behavior of ||J"||*/.
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Now, the matrix J is block-diagonal, so its powers are also block-
diagonal with the blocks exponentiated individually:

U
J" =

Since we are using the infinity norm,
1771 = max {1} -

The nth root is monotonic, so we may draw it inside the maximum to
obtain

77" = max { ||}

What is the norm of an exponentiated Jordan block? Recall the fact
that the infinity norm of a matrix equals the greatest absolute row sum,
and apply it to the explicit form of J;! provided in Lemma 2.1.

dy
121 =" 1Ty,

j=1
dy, n

— Z ‘ |)\k|n—j+1
= <J - 1)

= {wll‘dk > di <j § 1) IAk|dk-j} ,

j=1

where Ay is the eigenvalue of block J,. and dj, is the block size. Bound
the choose function above and below with 1 < (jfl) < n% and write
My = | Xe["=% 37| M%7 to obtain the relation

M [ Ml < TR < My n® [ 2™

Extracting the nth root and taking the limit as n approaches infinity,
we reach

Tim T2 = .

A careful reader will notice that the foregoing argument does not
apply to a Jordan block J, with a zero eigenvalue. But such a matrix
is nilpotent: placing a large exponent on J;, yields the zero matrix. The
norm of a zero matrix is zero, so we have

Tim |77 = 0.
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Combining these facts, we conclude that
Jim 17" = max (A} = p(7).
The spectrum of the Jordan form J is identical with the spectrum of
A, which completes the proof. O

It is quite easy to bootstrap the general result from this special case.

Corollary 3.1. The spectral radius formula holds for any matriz and

any norm:
1AM — p(A).

Proof. Theorem 2.1 on the equivalence of norms yields the inequality
CllA™ oo < [IA™] < Ol Ao

for positive numbers C' and C. Extract the nth root of this inequality,
and take the limit. The root drives the constants toward one, which
leaves the relation

lim | A™[[" < lim A"V < Lim (A"
Apply Theorem 3.1 to the upper and lower bounds to reach
lim [[A”[[1/" = p(A).



