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Abstract. We present an elementary proof that the spectral ra-
dius of a matrix A may be obtained using the formula

ρ(A) = lim
n→∞

‖An‖1/n,

where ‖ · ‖ represents any matrix norm.

1. Introduction

It is a well-known fact from the theory of Banach algebras that the
spectral radius of any element A is given by the formula

ρ(A) = lim
n→∞

‖An‖1/n. (1.1)

For a matrix, the spectrum is just the collection of eigenvalues, so
this formula yields a technique for estimating for the top eigenvalue.
The proof of Equation 1.1 is beautiful but advanced. See, for exam-
ple, Rudin’s treatment in his Functional Analysis. It turns out that
elementary techniques suffice to develop the formula for matrices.

2. Preliminaries

For completeness, we shall briefly introduce the major concepts re-
quired in the proof. It is expected that the reader is already familiar
with these ideas.

2.1. Norms. A norm is a mapping ‖ · ‖ from a vector space X into
the nonnegative real numbers R

+ which has three properties:

(1) ‖x‖ = 0 if and only if x = 0;
(2) ‖αx‖ = |α| ‖x‖ for any scalar α and vector x; and
(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any vectors x and y.

The most fundamental example of a norm is the Euclidean norm ‖·‖2

which corresponds to the standard topology on R
n. It is defined by

‖x‖2 = ‖(x1, x2, . . . , xn)‖2 =
√

x2
1 + x2

2 + · · ·+ x2
n.
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One particular norm we shall consider is the `∞ norm which is defined
for x in R

n by the formula

‖x‖∞ = ‖(x1, x2, . . . , xn)‖∞ = max
i

{xi}.

For a matrix A, define the infinity norm as

‖A‖∞ = max
i

∑

j|Aij|.

This norm is consistent with itself and with the `∞ vector norm. That
is,

‖AB‖∞ ≤ ‖A‖∞‖B‖∞ and

‖Ax‖∞ ≤ ‖A‖∞‖x‖∞,

where A and B are matrices and x is a vector.
Two norms ‖ · ‖ and ‖ · ‖? on a vector space X are said be equivalent

if there are positive constants C
¯

and C̄ such that

C
¯
‖x‖ ≤ ‖x‖? ≤ C̄‖x‖

for every vector x. For finite-dimensional spaces, we have the following
powerful result.

Theorem 2.1. All norms on a finite-dimensional vector space are

equivalent.

Proof. We shall demonstrate that any norm ‖ · ‖ on R
n is equivalent

to the Euclidean norm. Let {ei} be the canonical basis for R
n, so any

vector has an expression as x =
∑

xiei. First, let us check that ‖ · ‖ is
continuous with respect to the Euclidean norm. For all pairs of vectors
x and y,

‖x − y‖ = ‖
∑

(xi − yi)ei‖

≤
∑

|xi − yi| ‖ei‖

≤ maxi{‖ei‖}
∑

|xi − yi|

≤ M {
∑

(xi − yi)
2}

1/2

= M‖x − y‖2,

where M = maxi{‖ei‖}. In other words, when two vectors are nearby
with respect to the Euclidean norm, they are also nearby with respect
to any other norm. Notice that the Cauchy-Schwarz inequality for real
numbers has played a starring role at this stage.

Now, consider the unit sphere with respect to the Euclidean norm,
S = {x ∈ R

n : ‖x‖2 = 1}. This set is evidently closed and bounded
in the Euclidean topology, so the Heine-Borel theorem shows that it
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is compact. Therefore, the continuous function ‖ · ‖ attains maximum
and minimum values on S, say C

¯
and C̄. That is,

C
¯
‖x‖2 ≤ ‖x‖ ≤ C̄‖x‖2

for any x with unit Euclidean norm. But every vector y can be ex-
pressed as y = αx for some x on the Euclidean unit sphere. If we
multiply the foregoing inequality by |α| and draw the scalar into the
norms, we reach

C
¯
‖y‖2 ≤ ‖y‖ ≤ C̄‖y‖2

for any vector y.
It remains to check that the constants C

¯
and C̄ are positive. They

are clearly nonnegative since ‖ · ‖ is nonnegative, and C
¯
≤ C̄ by defi-

nition. Assume that C
¯

= 0, which implies the existence of a point x

on the Euclidean unit sphere for which ‖x‖ = 0. But then x = 0, a
contradiction. �

2.2. The spectrum of a matrix. For an n-dimensional matrix A,
consider the equation

Ax = λx, (2.1)

where x is a nonzero vector and λ is a complex number. Numbers λ

which satisfy Equation 2.1 are called eigenvalues and the corresponding
x are called eigenvectors. Nonzero vector solutions to this equation
exist if and only if

det(A − λI) = 0, (2.2)

where I is the identity matrix. The left-hand side of Equation 2.2 is
called the characteristic polynomial of A because it is a polynomial in λ

of degree n whose solutions are identical with the eigenvalues of A. The
algebraic multiplicity of an eigenvalue λ is the multiplicity of λ as a root
of the characteristic polynomial. Meanwhile, the geometric multiplicity

of λ is the number of linearly independent eigenvectors corresponding
to this eigenvalue. The geometric multiplicity of an eigenvalue never
exceeds the algebraic multiplicity. Now, the collection of eigenvalues of
a matrix, along with their geometric and algebraic multiplicities, com-
pletely determines the eigenstructure of the matrix. It turns out that all
matrices with the same eigenstructure are similar to each other. That
is, if A and B have the same eigenstructure, there exists a nonsingular
matrix S such that S−1AS = B.

We call the set of all eigenvalues of a matrix A its spectrum, which
is written as σ(A). The spectral radius ρ(A) is defined by

ρ(A) = sup{|λ| : λ ∈ σ(A)}.
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In other words, the spectral radius measures the largest magnitude
attained by any eigenvalue.

2.3. Jordan canonical form. We say that a matrix is in Jordan

canonical form if it is block-diagonal and each block has the form













λ 1
λ 1

. . . .

λ 1
λ













d×d

.

It can be shown that the lone eigenvalue of this Jordan block is λ.
Moreover, the geometric multiplicity of λ is exactly one and the alge-
braic multiplicity of λ is exactly d, the block size. The eigenvalues of a
block-diagonal matrix are simply the eigenvalues of its blocks with the
algebraic and geometric multiplicities of identical eigenvalues summed
across the blocks. Therefore, a diagonal matrix composed of Jordan
blocks has its eigenstructure laid bare. Using the foregoing facts, it
is easy to construct a matrix in Jordan canonical form which has any
eigenstructure whatsoever. Therefore, every matrix is similar to a ma-
trix in Jordan canonical form.

Define the choose function
(

n
k

)

according to the following convention:

(

n

k

)

=

{

n!
k!(n−k)!

when k = 0, . . . , n and

0 otherwise.

Lemma 2.1. If J is a Jordan block with eigenvalue λ, then the com-

ponents of its nth power satisfy

(Jn)ij =

(

n

j − i

)

λn−j+i. (2.3)

Proof. For n = 1, it is straightforward to verify that Equation 2.3 yields

J1 =













λ 1
λ 1

. . . .

λ 1
λ













d×d
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Now, for arbitrary indices i and j, use induction to calculate that

(

Jn+1
)

ij
=

d
∑

k=1

(Jn)ik Jkj

=

d
∑

k=1

{(

n

k − i

)

λn−k+i

}{(

1

j − k

)

λ1−j+k

}

=

(

n

j − i

)

λ(n−j+i)+1 +

(

n

j − (i + 1)

)

λn−j+(i+1)

=

(

n + 1

j − i

)

λ(n+1)−j+i

as advertised. �

3. The spectral radius formula

First, we prove the following special case.

Theorem 3.1. For any matrix A, the spectral radius formula holds for

the infinity matrix norm:

‖An‖1/n
∞

−→ ρ(A).

Proof. Throughout this argument, we shall denote the `∞ vector and
matrix norms by ‖ · ‖.

Let S be a similarity transform such that S−1AS has Jordan form:

J = S−1AS =





J1

. . .
Js



 .

Using the consistency of ‖ · ‖, we develop the following bounds.

‖An‖1/n = ‖SJnS−1‖1/n

≤
{

‖S‖‖S−1‖
}1/n

‖Jn‖1/n,

and

‖An‖1/n =

{

‖S−1‖‖SJnS−1‖‖S‖

‖S‖‖S−1‖

}1/n

≥
{

‖S‖‖S−1‖
}

−1/n
‖Jn‖1/n.

In each inequality, the former term on the right-hand side tends toward
one as n approaces infinity. Therefore, we need only investigate the
behavior of ‖Jn‖1/n.
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Now, the matrix J is block-diagonal, so its powers are also block-
diagonal with the blocks exponentiated individually:

Jn =





Jn
1

. . .
Jn

s



 .

Since we are using the infinity norm,

‖Jn‖ = max
k

{‖Jn
k ‖} .

The nth root is monotonic, so we may draw it inside the maximum to
obtain

‖Jn‖1/n = max
k

{

‖Jn
k ‖

1/n
}

.

What is the norm of an exponentiated Jordan block? Recall the fact
that the infinity norm of a matrix equals the greatest absolute row sum,
and apply it to the explicit form of Jn

k provided in Lemma 2.1.

‖Jn
k ‖ =

dk
∑

j=1

|(Jn
k )1j|

=

dk
∑

j=1

(

n

j − 1

)

|λk|
n−j+1

= |λk|
n

{

|λk|
1−dk

∑

j=1

dk

(

n

j − 1

)

|λk|
dk−j

}

,

where λk is the eigenvalue of block Jk and dk is the block size. Bound
the choose function above and below with 1 ≤

(

n
j−1

)

≤ ndk , and write

Mk = |λk|
1−dk

∑

j|λk|
dk−j to obtain the relation

Mk |λk|
n ≤ ‖Jn

k ‖ ≤ Mk ndk |λk|
n.

Extracting the nth root and taking the limit as n approaches infinity,
we reach

lim
n→∞

‖Jn
k ‖

1/n = |λk|.

A careful reader will notice that the foregoing argument does not
apply to a Jordan block Jk with a zero eigenvalue. But such a matrix
is nilpotent: placing a large exponent on Jk yields the zero matrix. The
norm of a zero matrix is zero, so we have

lim
n→∞

‖Jn
k ‖

1/n = 0.
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Combining these facts, we conclude that

lim
n→∞

‖Jn‖
1/n = max

k
{|λk|} = ρ(J).

The spectrum of the Jordan form J is identical with the spectrum of
A, which completes the proof. �

It is quite easy to bootstrap the general result from this special case.

Corollary 3.1. The spectral radius formula holds for any matrix and

any norm:

‖An‖1/n −→ ρ(A).

Proof. Theorem 2.1 on the equivalence of norms yields the inequality

C
¯
‖An‖∞ ≤ ‖An‖ ≤ C̄‖An‖∞

for positive numbers C
¯

and C̄. Extract the nth root of this inequality,
and take the limit. The root drives the constants toward one, which
leaves the relation

lim
n→∞

‖An‖1/n
∞

≤ lim
n→∞

‖An‖1/n ≤ lim
n→∞

‖An‖1/n
∞

.

Apply Theorem 3.1 to the upper and lower bounds to reach

lim
n→∞

‖An‖1/n = ρ(A).

�


