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In this paper, we discuss the numerical analysis and the pricing and hedging of European Spread options on
correlated assets when, in contrast to the standard framework and consistent with a market with imperfect
liquidity, the option trader’s trading in the stock market has a direct impact on one of the stocks price. We
consider a first-order feedback model which leads to a linear partial differential equation. The Peaceman–
Rachford scheme is applied as an alternating direction implicit method to solve the equation numerically.
We also discuss the stability and convergence of this numerical scheme. Finally, we provide a numerical
analysis of the effect of the illiquidity in the underlying asset market on the replication of an European Spread
option; compared to the Black–Scholes case, a trader generally buys less stock to replicate a call option.

Keywords: Spread option pricing; price impact; illiquid markets; Peaceman–Rachford scheme

2010 AMS Subject Classifications: 91G20; 35K15; 65M06

1. Introduction

Black and Scholes [2] and most of the work undertaken in mathematical finance assume that the
market in the underlying asset is infinitely (or perfectly) liquid, such that trading had no effect on
the price of underlying asset. In the market with finite liquidity, trading does affect the underlying
asset price, regardless of her trading size. The model we consider involves the price impact due
to the action of a large trade that may itself impact the price, independent of all the other factors
affecting the price dynamics; this is termed price impact. In the presence of such a price impact,
the most important issue is how the impact price can affect the replication of an option. This
encouraged researchers to develop the Black–Scholes model to models that involve the price
impact due to a large trader who is able to move the price by his/her actions. An excellent survey
of these research can be found in [12,16,25,41].

In [37], we investigated the effects of the full-feedback model in which price impact is fully
incorporated into the model and results in highly nonlinear partial differential equation. Our
purpose of this paper is to investigate the effects of imperfect liquidity on the replication of
an European Spread option by a typical option trader, when the hedging strategy does not take
into account the feedback effect (we term first-order feedback model). We assume that a Spread
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option is to be hedged and furthermore that the hedger holds the number of stocks dictated by
the analytical Black–Scholes delta, rather than the delta from the modified option price. This
leads to the linear partial differential equation (PDE), which is somewhat easier to solve than
the full-feedback model but still has important and interesting differences from the classical
Black–Scholes PDE.

Spread option is the simplest example of multi-assets derivative, whose payoff is the difference
between the prices of two or more assets; for instance let the prices of two underlying assets at
time t ∈ [0, T ] be S1(t) and S2(t), then the payoff function of a European Spread option with
maturity T is [S1(T) − S2(T) − k]+ (here k is the strike of the option and the function x+ is
defined as x+ = max(x, 0)). Therefore the holder of a European Spread option has the right but
not the obligation to buy the spread S1(T) − S2(T) at the prespecified price k and maturity T . In
general, there is no analytical formula for the price of multi-assets options. The only exception
is Margrabe formula for exchange options (Spread options with a strike of zero) [26]. Kirk [23]
found an analytical approximation for Spread options with k positive and close to zero.

Several Spread options are traded in the markets, e.g. fixed income Spread options, foreign
exchange and commodity Spread options. In this work, we focus on commodity Spread options.
Spread options, in commodity market, hedge the risk of price fluctuations between input and
output products. In order to price them one needs to take into account the characteristics of the
commodities prices they are written upon. During the past decades, several stochastic models for
commodity prices have been introduced. The first models assumed that the price processes follow a
geometric Brownian motion and that all the uncertainty could be summarized by one factor. Models
of this type include Cox and Schwartz [6] for pricing commodity-linked securities, Brennan and
Schwartz [3], Paddock et al. [30], and Cortazar and Schwartz [4] for valuing real assets. Mean
reverting price processes were considered by Schwartz [35]. Most models assumed that there is
a single source of randomness driving the prices of the commodities. Since empirical evidence
suggests more sources of randomness, several two- and three-factor models were subsequently
developed. In their two-factor model, Gibson and Schwartz [13] assumed that the spot price of the
commodity and the convenience yield (the difference between the interest rate and the cost of carry)
follow a joint stochastic process. Cortazar and Schwartz in [5] took a different approach; they
used all the information contained in the term structure of commodity futures prices together with
the historical volatilities of future return for different maturities. A good comparison among these
models was performed in [35]. Schwartz and Smith [36] modelled the log spot price as the sum of
two stochastic factors and they showed that this model is equivalent to the Gibson and Schwartz
[13] model. Pascheke and Prokopczuk [31] developed a continuous time factor model which allows
for higher-order autoregressive and moving average components.A review of these models is done
in [1]. There are several types of commodity Spread options, some of the popular ones are:

Crush Spread option. In the agricultural markets, the Chicago Board of Trade the so-called crush
spread which exchanges soyabeans (as a unrefined product) with a combination of soyabean
oil and soyabean meal (as the derivative products). Johnson et al. [22] studied Spread options
in the agricultural markets.
Spark Spread option. In the energy markets, spark Spread options are a spread between natural
gas and power (electricity). Girma and Paulson [14,15] studied these type of options.
Crack Spread options. A Crack Spread represents the differential between the price of crude
oil and petroleum products (gasoline or heating oil). The underlying indexes comprise futures
prices of crude oil, heating oil and unleaded gasoline. Details of Crack Spread options can be
found in the NewYork Mercantile Exchange Crack Spread Handbook [29]. Our paper is aimed
at pricing Crack Spread options. In the oil markets with finite liquidity, trading does affect the
underlying assets price. In our study, we are going to investigate the effects of price impact
when trading affects only the crude oil price and not the petroleum products. Our model is
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related to the constant convenience yield model of [35]. In their model of the commodity price,
the rate of return is affected by a stochastic convenience yield; in our model, due to the liquidity
risk, both the rate of return and the volatility of the risky asset are affected by stochastic factors.

We study in this work a splitting scheme of the alternating direction implicit (ADI) type asso-
ciated with a two-dimensional PDE (which characterizes the option price). This method has the
desirable stability features of the Crank Nicolson method, but it proceeds in two steps. The first half
step is taken implicitly in one space variable and explicitly in the other, while the second half step
reverses the explicit and implicit variables. Thus the numerical problem reduces to solving two
matrix equations. ADI method goes back to [32] and has been further developed in many works,
e.g. [18,19,42] (for financial applications see [7,24,27,28,34]). ADI schemes were not originally
developed for multi-dimensional convection–diffusion equations with mixed derivative terms. The
problems generated by the cross-derivatives were first discussed in [39,40]. Furthermore, Pospisil
and Vecer [33] applied the Peaceman–Rachford and Douglas–Rachford schemes as ADI method;
Hout and Foulon [20] investigated four splitting schemes of ADI type: the Douglas scheme,
the Craig–Sneyd (CS) scheme, the modified CS scheme and the Hundsdorfer–Verwer scheme;
Haentjens [17] investigated the effectiveness of ADI time discretization schemes in the numer-
ical solution of three-dimensional Heston–Hull–White PDE; Dang et al. [8] employed the ADI
method based on Hundsdorfer and Verwer (HV) splitting approach for pricing foreign exchange
interest rate hybrid derivatives. In this work, we use the Peaceman and Rachford scheme that was
introduced first in [32]. Since the resulting multi-dimensional linear PDE has mixed derivative
terms we have to adjust the Peaceman and Rachford scheme.

This paper is organized as follows: in Section 2, we introduce our problem and discuss the
general framework we use. In Section 3 we propose the splitting scheme of the ADI type (subse-
quently, we discuss the stability and the convergence of the scheme). In Section 4, we carry out
several numerical experiments and provide a numerical analysis. Section 5 contains the concluding
remarks.

2. The model setup

In this section we describe the setup for Spread option pricing. Our model of a financial
market, based on a filtered probability space (�, F , {Ft}t∈[0,T ], P) that satisfies the usual con-
ditions, consists of two assets. Their prices are modelled by a two-dimensional Ito-process
S(t) = (S1(t), S2(t)). All the stochastic processes in this work are assumed to be {Ft}t≥0-
adapted. Their dynamics are given by the following stochastic differential equations, in which
W(t) = (w1(t), w2(t)) is defined a two-dimensional standard Brownian motion with {Ft}t∈[0,T ]
being its natural filtration augment by all P-null sets:

dSi(t)

Si(t)
= μi(t, Si(t)) dt + σi(t, Si(t)) dwi(t); i = 1, 2, (1)

where w1 and w2 are two correlated Brownian motions with correlation ρ, μi(t, Si(t)) and
σi(t, Si(t)) are the expected return and the volatility of stock i in the absence of price impact.
It is possible to add a partial price impact for the first stock, i.e.

dS1(t) = μ1(t, S1(t))S1(t) dt + σ1(t, S1(t))S1(t) dw1(t) + λ(t, S1) df (t, S1, S2),

dS2(t) = μ2(t, S2(t))S2(t) dt + σ2(t, S2(t))S2(t) dw2(t),
(2)

where λ(t, S1) ≥ 0 is an arbitrary function and λ(t, S1) df (t, S1, S2) represents the price impact of
the investor’s trading. We see that the two-dimensional classical Black–Scholes model is a special
case of this model with λ(t, S1(t)) = 0.
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Our aim is to price a Spread option under the modified stochastic process (2), with the following
payoff at maturity T (a call at this case):

h(S1(T), S2(T)) = (S1(T) − S2(T) − k)+, (3)

where k is the strike price. In order to provide a derivation of the pricing PDE considered in
this work, we use the well-known generalized Black–Scholes equation (more details in [9]). This
leads to the following pricing PDE for the modified stochastic process incorporating the forcing
term (2)

∂V

∂t
(t, S1, S2) + 1

2(1 − λ(t, S1)(∂f /∂S1)(t, S1, S2))2

(
σ 2

1 S2
1 + λ2(t, S1)σ

2
2 S2

2

(
∂f

∂S2
(t, S1, S2)

)2

+ 2ρσ1σ2S1S2λ(t, S1)
∂f

∂S2
(t, S1, S2)

)
∂2V

∂S2
1

(t, S1, S2) + 1

2
σ 2

2 S2
2
∂2V

∂S2
2

(t, S1, S2)

+ 1

(1 − λ(t, S1)(∂f /∂S1)(t, S1, S2))

(
σ1σ2ρS1S2 + λ(t, S1)σ

2
2 S2

2
∂f

∂S2
(t, S1, S2)

)

× ∂2V

∂S1∂S2
(t, S1, S2) + r

(
S1

∂V

∂S1
(t, S1, S2) + S2

∂V

∂S2
(t, S1, S2)

)

− rV(t, S1, S2) = 0, 0 < S1, S2 < ∞, 0 ≤ t < T .
(4)

Here r is the riskless rate of the money market. Consistent with standard Black–Scholes arguments,
the drift of the modified process μ(t, S(t)) does not appear in the option pricing PDE. In the context
of markets with finite liquidity, we can define f (t, S1, S2) to be the number of extra shares traded
due to some deterministic hedging strategy, and λ(t, S1(t)) as some function dependent on how
we choose to model the form of price impact. Here, similar to [25], we consider λ(t, S1(t)) =
ελ̂(t, S1(t)), with λ̂(t, S1) a function such that λ̂(T , S1) = 0 and ε > 0 the constant price impact
coefficient. In the first-order feedback model f (t, S1, S2) in Equation (4) is

f (t, S1, S2) = ∂VBS

∂S1
(t, S1, S2),

where VBS(t, S1, S2) is the Black–Scholes value (see [16]). This leads to the following linear PDE:

∂V

∂t
(t, S1, S2) + 1

2(1 − λ(t, S1)(∂2VBS/∂S2
1)(t, S1, S2))2

×
(

σ 2
1 S2

1 + λ2(t, S1)σ
2
2 S2

2

(
∂2VBS

∂S1∂S2
(t, S1, S2)

)2

+ 2ρσ1σ2S1S2λ(t, S1)
∂2VBS

∂S1∂S2
(t, S1, S2)

)

× ∂2V

∂S2
1

(t, S1, S2) + 1

2
σ 2

2 S2
2
∂2V

∂S2
2

(t, S1, S2) + 1

(1 − λ(t, S1)(∂2VBS/∂S2
1)(t, S1, S2))

×
(

σ1σ2ρS1S2 + λ(t, S1)σ
2
2 S2

2
∂2VBS

∂S1∂S2
(t, S1, S2)

)
∂2V

∂S1∂S2
(t, S1, S2) + r

×
(

S1
∂V

∂S1
(t, S1, S2) + S2

∂V

∂S2
(t, S1, S2)

)

− rV(t, S1, S2) = 0, 0 < S1, S2 < ∞, 0 ≤ t < T .
(5)
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For investigating the treatment of boundary conditions we apply Fichera’s theory [11]. In order
to determine the subsets where boundary conditions can be imposed, we need to evaluate the
Fichera function. Equation (5) is defined on D where

D = {(t, S1, S2)|, 0 < t ≤ T , 0 < S1 < ∞, 0 < S2 < ∞}.
The corresponding coefficient matrix is

A =
⎛
⎝a11 a12 0

a21 a22 0
0 0 0

⎞
⎠ ,

where the components of A are the following:

a11 = 1

2(1 − λVBS
S1S1

)2
(σ 2

1 S2
1 + λ2σ 2

2 S2
2(V

BS
S1S2

)2 + 2ρσ1σ2S1S2λVBS
S1S2

),

a12 = 1

2(1 − λVBS
S1S1

)
(σ1σ2ρS1S2 + λσ 2

2 S2
2VBS

S1S2
),

a21 = 1

2(1 − λVBS
S1S1

)
(σ1σ2ρS1S2 + λσ 2

2 S2
2VBS

S1S2
),

a22 = 1

2
σ 2

2 S2
2 .

(6)

A is a singular matrix everywhere. For the boundaries S1 = 0, S2 = 0 and t = 0 we have the
corresponding inward normals n = (1, 0, 0), (0, 1, 0) and (0, 0, 1), and the inward normal on t = T
is (0, 0, −1). We let

∑0 be the subset of ∂D where 〈An, n〉 = 0. We observe that < An, n >= 0
at all of the boundary points so ∂D = ∑0 . The Fichera function is

h =
[

rS1 + λVBS
S1S1S1

2(1 − λVBS
S1S1

)4
(σ 2

1 S2
1 + λ2σ 2

2 S2
2(V

BS
S1S2

)2 + 2ρσ1σ2S1S2λVBS
S1S2

)

− 1

2(1 − λVBS
S1S1

)2
(2σ 2

1 S1 + 2λ2σ 2
2 S2

2VBS
S1S1S2

VBS
S1S2

+ 2ρσ1σ2S2λVBS
S1S2

+ 2ρσ1σ2S1S2λVBS
S1S1S2

)

− 1

2(1 − λVBS
S1S1

)
(ρσ1σ2S1 + 2λσ 2

2 S2VBS
S1S2

+ λσ 2
2 S2

2VBS
S1S2S2

)

+ λVBS
S1S1S2

(1 − λVBS
S1S1

)2
(σ1σ2ρS1S2 + λσ 2

2 S2
2VBS

S1S2
)

]
n1

+
[

rS2 − σ 2
2 S2 − 1

2(1 − λVBS
S1S1

)
(ρσ1σ2S2 + λσ 2

2 S2
2VBS

S1S1S2
)

+ λVBS
S1S1S1

(1 − λVBS
S1S1

)2
(σ1σ2ρS1S2 + λσ 2

2 S2
2VBS

S1S2
)

]
n2 − n3.

(7)

On S2 = 0 we see that h(S1, 0, t) = 0 and according to Fichera’s theory no boundary data
should be given. Instead the differential equation should hold on S2 = 0. On S1 = 0 we see that
h(0, S2, t) = 0 and according to Fichera’s theory no boundary data should be given. Instead the
differential equation should hold on S1 = 0. On t = 0 we see that h(S1, v, 0) = −1 so we can
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impose the payoff of the option at maturity as initial condition on Equation (5). At t = T the
differential equation holds.

Remark 2.1 In [37], we have investigated a full-feedback model, where the price impact is fully
incorporated into the model. The corresponding equation is

∂V

∂t
(t, S1, S2) + 1

2(1 − λ(t, S1)(∂2V/∂S2
1)(t, S1, S2))2

×
(

σ 2
1 S2

1 + λ2(t, S1)σ
2
2 S2

2

(
∂2V

∂S1∂S2
(t, S1, S2)

)2

+ 2ρσ1σ2S1S2λ(t, S1)
∂2V

∂S1∂S2
(t, S1, S2)

)

× ∂2V

∂S2
1

(t, S1, S2) + 1

2
σ 2

2 S2
2
∂2V

∂S2
2

(t, S1, S2) + 1

(1 − λ(t, S1)(∂2V/∂S2
1)(t, S1, S2))

×
(

σ1σ2ρS1S2 + λ(t, S1)σ
2
2 S2

2
∂2V

∂S1∂S2
(t, S1, S2)

)
∂2V

∂S1∂S2
(t, S1, S2)

+ r

(
S1

∂V

∂S1
(t, S1, S2) + S2

∂V

∂S2
(t, S1, S2)

)
− rV(t, S1, S2) = 0, 0 < S1, S2 < ∞, 0 ≤ t < T ,

V(T , S1, S2) = h(S1, S2), 0 < S1, S2 < ∞.
(8)

The first-order approximation is

V(t, S1, S2) = V 0(t, S1, S2) + εV 1(t, S1, S2) + o(ε2),

where V 0(t, S1, S2) is the Black–Scholes price for European Spread option, i.e.

∂V 0

∂t
+ σ 2

1 S2
1

2

∂2V 0

∂S2
1

+ σ 2
2 S2

2

2

∂2V 0

∂S2
2

+ σ1σ2S1S2ρ
∂2V 0

∂S1∂S2
+ r

[
S1

∂V 0

∂S1
+ S2

∂V 0

∂S2

]
− rV 0 = 0,

V 0(T , S1, S2) = max(S1(T) − S2(T) − k, 0), 0 < S1, S2 < ∞,
(9)

and V 1(t, S1, S2) is the solution of the following problem

∂V 1

∂t
+ σ 2

1 S2
1

2

∂2V 1

∂S2
1

+ σ 2
2 S2

2

2

∂2V 1

∂S2
2

+ σ1σ2S1S2ρ
∂2V 1

∂S1∂S2
+ r

[
S1

∂V 1

∂S1
+ S2

∂V 1

∂S2

]
− rV 1 = G,

V 1(T , S1, S2) = 0, 0 < S1, S2 < ∞.
(10)

Here

G = −ε

(
2ρσ1σ2S1S2

∂2V 0

∂S1∂S2

∂2V 0

∂S2
1

+ σ 2
1 S2

1

(
∂2V 0

∂S2
1

)2

+ σ 2
2 S2

2

(
∂2V 0

∂S1∂S2

)2
)

.
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3. Numerical solution of partial differential equation

3.1 The ADI

In this section, we present a numerical method for solving the pricing partial differential equation

∂V

∂t
+ 1

2(1 − λ(∂2VBS/∂x2))2

(
σ 2

1 x2 + λ2σ 2
2 y2

(
∂2VBS

∂x∂y

)2

+ 2ρσ1σ2xyλ
∂2VBS

∂x∂y

)
∂2V

∂x2

+ 1

2
σ 2

2 y2 ∂2V

∂y2
+ 1

(1 − λ(∂2VBS/∂x2))

(
σ1σ2ρxy + λσ 2

2 y2 ∂2VBS

∂x∂y

)
∂2V

∂x∂y

+ r

(
x
∂V

∂x
+ y

∂V

∂y

)
− rV = 0,

V(T , x, y) = h(x, y), 0 < x, y < ∞,

(11)

where the functions V := V(t, x, y), VBS := VBS(t, x, y) are defined on [0, T ] × [0, ∞) × [0, ∞)

and λ := λ(t, x) on [0, T ] × [0, ∞). For the sake of notation, we write the following operators:

L = ∂

∂t
+ Ax + Ay + Axy, (12)

where

AxV = 1

2(1 − λ(∂2VBS/∂x2))2

(
σ 2

1 x2 + λ2σ 2
2 y2

(
∂2VBS

∂x∂y

)2

+ 2ρσ1σ2xyλ
∂2VBS

∂x∂y

)
∂2V

∂x2

+ rx
∂V

∂x
− r�,

AyV = 1

2
σ 2

2 y2 ∂2V

∂y2
+ ry

∂V

∂y
− r(1 − �),

AxyV = 1

(1 − λ(∂2VBS/∂x2))

(
σ1σ2ρxy + λσ 2

2 y2 ∂2VBS

∂x∂y

)
∂2V

∂x∂y
,

(13)

and 0 ≤ � ≤ 1. While symmetry considerations might speak for an � = 1
2 , it is computationally

simpler to use � = 0 or � = 1, i.e. to include the rV− term fully in one of the two operators.
Hence, we can write

LV = 0, 0 < x, y < ∞, 0 < t < T ,

V(T , x, y) = h(x, y), 0 < x, y < ∞.
(14)

In order to define a numerical solution to the equation, we need to truncate the spatial domain
to a bounded area as {(x, y); 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax}. We follow [21] in choosing the upper
bounds of the domain. The upper bounds should be large enough to include the stock price limits
within which there is a price impact. Let us introduce a grid of points in the time interval and in
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the truncated spatial domain

tl = l	t, l = 0, 1, . . . , L, 	t = T

L
,

xm = m	x, m = 0, 1, . . . , M, 	x = xmax

M
,

yn = n	y, n = 0, 1, . . . , N , 	y = ymax

N
.

(15)

For the simplicity of notation, we assume that xmax = ymax and 	x = 	y. Functions V(t, x, y) and
VBS(t, x, y) at a point of the grid will be denoted as Vl

m,n = V(tl, xm, yn) and VBS,l
m,n = VBS(tl, xm, yn).

Furthermore, let us introduce the approximations

∂V

∂x
(tl, xm, yn) = Vl

m+1,n − Vl
m−1,n

2	x
+ O(	2x),

∂V

∂y
(tl, xm, yn) = Vl

m,n+1 − Vl
m,n−1

2	y
+ O(	2y),

∂2V

∂x2
(tl, xm, yn) = Vl

m+1,n − 2Vl
m,n + Vl

m−1,n

(	x)2
+ O(	2x),

∂2V

∂y2
(tl, xm, yn) = Vl

m,n+1 − 2Vl
m,n + Vl

m,n−1

(	y)2
+ O(	2y),

∂2V

∂x∂y
(tl, xm, yn) = Vl

m+1,n+1 − Vl
m−1,n+1 − Vl

m+1,n−1 + Vl
m−1,n−1

4	x	y
+ O(	2x + 	2y).

(16)

Let symbols Adx, Ady and Adx dy denote second-order approximations of the operators Ax, Ay and
Axy obtained by using Equation (16) into Equation (13).

We can use ADI because the differential operator can be split as in Equation (13). The general
idea is to split a time step in two and to take one operator or one space coordinate at a time (see
more details in [10,38]). In this work, particularly we use the Peacman–Rachford scheme.

Taking our inspiration from the Crank–Nicolson method we begin discretizing (11) in the
time-direction

Vt((l + 1/2)	t, x, y) = Vl+1 − Vl

	t
+ O(	t2),

(Ax + Ay + Axy)V = 1
2 Ax(V

l+1 + Vl) + 1
2 Ay(V

l+1 + Vl) + 1
2 Axy(V

l+1 + Vl) + O(	t2).
(17)

Insert in Equation (12), multiply by 	t, and rearrange

(I − 1
2	tAx − 1

2	tAy)V
l = (I + 1

2	tAx + 1
2	tAy)V

l+1 + 1
2	tAxy(V

l+1 + Vl) + O(	t3), (18)

where I denotes the identity operator. If we add 1
4	t2AxAyV l on the left side and 1

4	t2AxAyV l+1

on the right side then we commit an error which is O(	t3) and therefore can be included in that
term

(I − 1
2	tAx)(I − 1

2	tAy)V
l = (I + 1

2	tAx)(I + 1
2	tAy)V

l+1 + 1
2	tAxy(V

l+1 + Vl) + O(	t3).
(19)

Now, we discretize in the space coordinates replacing Ax by Adx, Ay by Ady and Axy by Adx dy

(I − 1
2	tAdx)(I − 1

2	tAdy)V
l = (I + 1

2	tAdx)(I + 1
2	tAdy)V

l+1

+ 1
2	tAdx dy(V

l+1 + Vl) + O(	t3) + O(	t	x2),
(20)
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and this gives rise to the Peaceman–Rachford method(
I − 	t

2
Adx

)
Vl+1/2 =

(
I + 	t

2
Ady

)
Vl+1 + α,

(
I − 	t

2
Ady

)
Vl =

(
I + 	t

2
Adx

)
Vl+1/2 + β,

(21)

where auxiliary function Vl+1/2 links above equations. We have introduced the values α and β to
take into account the mix derivative term because it is not obvious how this term should be split.
In order to correspond the solution (21) by the solution to Equation (20), we have the requirement
that (

I + 	t

2
Adx

)
α +

(
I − 	t

2
Adx

)
β = 1

2
	tAdx dy(V

l+1 + Vl), (22)

where a discrepancy of order O(	t3) may be allowed with reference to a similar term in
Equation (19). One of the possible choices for α and β is

α = 	t

2
Adx dyV

l+1, β = 	t

2
Adx dyV

l+1/2. (23)

Finally, the Peaceman–Rachford scheme for V in Equation (11) is obtained as follows:(
I − 	t

2
Adx

)
Vl+1/2 =

(
I + 	t

2
Ady

)
Vl+1 + 	t

2
Adx dyV

l+1,

(
I − 	t

2
Ady

)
Vl =

(
I + 	t

2
Adx

)
Vl+1/2 + 	t

2
Adx dyV

l+1/2.

(24)

In a first step we compute Vl+1/2 using Vl+1. This step is implicit in direction x. In a second step,
defined by Equation (24), we use Vl+1/2 to calculate Vl. This step is implicit in the direction of y.
We need boundary conditions to apply the algorithm, which we consider as follows:

• if x = 0 then the payoff function is 0 and so the option price is 0.
• if y = 0 then S2 = 0, and so is just the price of the option on one risky asset.

Note that due to the use of centred approximations of the derivatives, at x0 = y0 = 0, xM = xmax

and yN = ymax, there appear external fictitious nodes x−1 = −	x, y−1 = −	y, xM+1 = (M +
1)	x and yN+1 = (N + 1)	y. The approximations in these nodes are obtained by using linear
interpolation throughout the approximations obtained in the closest interior nodes of the numerical
domain. Thus we have the following relations:

Vl
−1,n = 2Vl

0,n − Vl
1,n, Vl

M+1,n = 2Vl
M,n − Vl

M−1,n, n = 0(1)N ,

Vl
m,−1 = 2Vl

m,0 − Vl
m,1, Vl

m,N+1 = 2Vl
m,N − Vl

m,N−1, m = 0(1)M,
(25)

and also

Vl
−1,N+1 = 4Vl

0,N − 2(Vl
1,N + Vl

0,N−1) + Vl
1,N−1,

Vl
M+1,−1 = 4Vl

M,0 − 2(Vl
M,1 + Vl

N−1,0) + Vl
N−1,1,

Vl
−1,−1 = 4Vl

0,0 − 2(Vl
0,1 + Vl

1,0) + Vl
1,1,

Vl
M+1,N+1 = 4Vl

M,N − 2(Vl
M,N−1 + Vl

M−1,N ) + Vl
M−1,N−1.

(26)

Now all values Vl
m,n are available. By repeating this procedure for l = L − 1, L − 2, . . . , 0, we

obtain Vm,n at all time points and can approximate the price of a Spread option at time t = 0.
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3.2 Stability and convergence of the numerical solution

In this section, we analyse stability of the Peaceman–Rachford method. In this case, we can use
the Von Neumann analysis to establish the conditions of stability. This approach was described in
Chapter 2.2 of [38]. The Von Neumann analysis is based on calculating the amplification factor
of a scheme, g, and deriving conditions under which |g| ≤ 1. For finding the amplification factor,
a simpler and equivalent procedure is to replace Vl

mn in the scheme by g−l eimθ einφ for each value
of l, n and m. The resulting equation can then be solved for the amplification factor.

Replacing Vl+1/2
mn and Vl

mn by ĝg−l eimθ einφ and g−l eimθ einφ , respectively, we have

	t

2
AdxV

l+1/2
m,n = ĝg−l eimθ einφ

(
−a1 sin2 1

2
θ + b1i sin θ

)
,

	t

2
AdyV

l
m,n = g−l eimθ einφ

(
−a2 sin2 1

2
φ + b2i sin φ − c1

)
,

	t

2
Adx dyV

0,l+1/2
m,n = −ĝg−l eimθ einφcl+1/2

2 sin θ sin φ,

	t

2
Adx dyV

0,l
m,n = −g−l eimθ einφcl

2 sin θ sin φ,

(27)

where

a1 =: a1(xm, yn, tl+1/2)

= 	t(σ 2
1 x2

m + λ2σ 2
2 y2

n(V
BS
xy (xm, yn, tl+1/2))

2 + 2ρσ1σ2xmynλVBS
xy (xm, yn, tl+1/2))

	x2(1 − λVBS
xx (xm, yn, tl+1/2))2

,

b1 =: b1(xm) = 	trxm

2	x
,

b2 =: b2(yn) = 	tryn

2	y
,

a2 =: a2(yn) = 	tσ 2
2 y2

n

	y2
,

c1 = r	t

2
,

(28)

and

cl
2 =: c2(xm, yn, tl), cl+1/2

2 =: c2(xm, yn, tl+1/2), cl+1
2 =: c2(xm, yn, tl+1),

c2(xm, yn, tl) = 	t

2	x	y(1 − λ(xm, tl)VBS
xx (xm, yn, tl))

(σ1σ2ρxmyn + λ(xm, tl)σ
2
2 y2

nVBS
xy (xm, yn, tl)).

(29)

We obtain the amplification factor as

g = 1 − a2 sin2 1
2φ + b2i sin φ − c1 − cl+1

2 sin θ sin φ

(1 + a1 sin2 1
2θ − b1i sin θ)ĝ

, (30)

where

ĝ = 1 + a2 sin2 1
2φ − b2i sin φ + c1

1 − a1 sin2 1
2θ + b1i sin θ − cl+1/2

2 sin θ sin φ
, (31)
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by arranging, we have

g =
[1 − a1 sin2 1

2θ − cl+1/2
2 sin θ sin φ + (b1 sin θ)i]

[1 − a2 sin2 1
2φ − c1 − cl+1

2 sin θ sin φ + (b2 sin φ)i]
[1 + a1 sin2 1

2θ − (b1 sin θ)i][1 + a2 sin2 1
2φ + c1 − (b2 sin φ)i] , (32)

and thus

|g(θ , φ)|2 =
[(1 − a1 sin2 1

2θ − cl+1/2
2 sin θ sin φ)2 + b2

1 sin2 θ ]
[(1 − a2 sin2 1

2φ − c1 − cl+1
2 sin θ sin φ)2 + b2

2 sin2 φ]
[(1 + a1 sin2 1

2θ)2 + b2
1 sin2 θ ][(1 + a2 sin2 1

2φ + c1)2 + b2
2 sin2 φ] . (33)

Since λ(t, S1(t)) = ελ̂(t, S1(t)) the coefficients a1, cl
2, cl+1/2

2 and cl+1
2 are continuous with respect

to ε. Therefore the amplification factor g is continuous with respect to ε as well. Thus if |g| < 1
for ε0 = 0 then there is a neighbourhood Bε0 of ε0 such that |g| ≤ 1 for all ε ∈ Bε0 . Moreover
a1 > 0 for ε0 = 0 so a1 ≥ 0 for all ε ∈ Bε0 .

For ε = 0, according to definitions (28) and (29), a2 = Ca1, cl
2 = cl+1/2

2 = cl+1
2 = Ĉa1, where

C =: C(m, n) = (σ2n/σ1m)2, Ĉ =: Ĉ(m, n) = ρσ2n/2σ1m. Since |ρ| ≤ 1 it follows that

C ≥ 4Ĉ2. (34)

Moreover b1 = ξa1, b2 = (ξn/m)a1, c1 = (ξ/m)a1, where ξ =: r/2σ 2
1 m. By replacing the above

relations in Equation (33), we find out that

lim
ξ→0

g(θ , φ)2 = (1 − a1 sin2 1
2θ − Ĉa1 sin θ sin φ)2(1 − Ca1 sin2 1

2φ − Ĉa1 sin θ sin φ)2

(1 + a1 sin2 1
2θ)2(1 + Ca1 sin2 1

2φ)2
. (35)

Hence it is enough to find the conditions for which

(1 − a1 sin2 1
2θ − Ĉa1 sin θ sin φ)2(1 − Ca1 sin2 1

2φ − Ĉa1 sin θ sin φ)2

(1 + a1 sin2 1
2θ)2(1 + Ca1 sin2 1

2φ)2
< 1. (36)

Notice that

a1 sin2 1
2θ + Ĉa1 sin θ sin φ ≤ a1| sin2 1

2θ | + Ĉa1| sin θ sin φ|
≤ a1| sin 1

2θ |[| sin 1
2θ | + 2Ĉ| cos 1

2θ sin φ|]
≤ a1[1 + 2Ĉ].

(37)

Thus 1 − a1 sin2 1
2θ − Ĉa1 sin θ sin φ ≥ 0, provided that a1[1 + 2Ĉ] ≤ 1, and

Ca1 sin2 1
2φ + Ĉa1 sin θ sin φ ≤ Ca1| sin2 1

2φ| + Ĉa1| sin θ sin φ|
≤ a1| sin 1

2φ|[C sin 1
2φ + 2Ĉ| cos 1

2φ sin θ |]
≤ a1[C + 2Ĉ].

(38)

Thus 1 − Ca1 sin2 1
2φ − Ĉa1 sin θ sin φ ≥ 0, provided that a1[C + 2Ĉ] ≤ 1. Now we should find

the conditions under which

(1 − a1 sin2 1
2θ − Ĉa1 sin θ sin φ)(1 − Ca1 sin2 1

2φ − Ĉa1 sin θ sin φ)

(1 + a1 sin2 1
2θ)(1 + Ca1 sin2 1

2φ)
< 1, (39)
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or equivalently

a1(sin2 1
2θ + Ĉ sin θ sin φ + C sin2 1

2φ)(−2 + a1Ĉ sin θ sin φ) < 0. (40)

If |y| ≤ 1, then for any x ∈ R, xy ≥ −|x|, and by Equation (34)

sin2 1
2θ + Ĉ sin θ sin φ + C sin2 1

2φ ≥ | sin 1
2θ |2 − 4Ĉ| sin 1

2θ sin 1
2φ| + 4Ĉ2| sin 1

2φ|2
= (| sin 1

2θ | − 2Ĉ| sin 1
2φ|)2 ≥ 0.

(41)

Hence Equation (40) is satisfied if a1 < 2/Ĉ. Consequently a sufficient condition for the
amplification factor to be bounded by 1, i.e. |g(θ , φ)| ≤ 1, is

a1 < A = min

{
2

Ĉ
,

1

1 + 2Ĉ
,

1

4Ĉ2 + 2Ĉ

}
or

	t

	x2
≤ A

σ 2
1 · x2

max

,
	t

	y2
≤ A

σ 2
2 · y2

max

. (42)

Although a1 involves partial derivatives of VBS the first condition can be met for ε ∈ Bε0 . By
assuming 	x = 	y and xmax = ymax, a sufficient condition for the stability of the scheme is

	t

	x2
≤ A

max{σ 2
1 , σ 2

2 }x2
max

. (43)

Thus, the Peaceman–Rachford scheme is stable if the number of steps in the time interval, L,
and in the spatial domain, M = N , satisfy inequality (43). This condition is a consequence of the
cross-derivative term in the formula for the amplification factor. In the absence of this term, the
scheme would be unconditionally stable.

The remaining issue we need to address is the convergence of the numerical method. According
to [38] the scheme is consistent and hence the scheme is convergent. Numerical results of this
convergence are investigated in the next section. Notice that according to [38] the scheme has
first-order accuracy in time and second order in space. The Peaceman–Rachford scheme in the
absence of the cross-derivative term defines an unconditionally stable scheme with a higher-order
of accuracy [O(	t2) + O(	x2)] (dependent on � of Equation (13)). However, in the presence
of the mixed derivatives, the accuracy remains [O(	t) + O(	x2)] independent of �. Although
the higher-order accuracy leads to a more efficient method, the numerical results in next section
show the efficiency of the scheme. Modified schemes which overcome this restriction attain a
higher-order of accuracy (at least O(	t2)). Craig and Sneyd [7] developed a ADI scheme the
so-called CS scheme for parabolic equation with mixed derivatives to attain a stable second-order
ADI scheme; Walfert [40] modified the CS scheme and introduced modified Craig–Sneyd (MCS)
to obtain the unconditional stability of second-order ADI schemes in the numerical solution of
finite difference discretization of multi-dimensional diffusion problems containing mixed spatial-
derivative terms; Hundsdorfer [18] and Hundsdorfer and Verwer [19] presented the HV scheme
for numerical solution of time-dependent advection–diffusion-reaction equations.

4. Numerical results

In this section, we provide numerical results of the partial liquidity effect in the underlying asset
market. We fix the values of the parameters of the marginal dynamical equations according to
Table 1.
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Table 1. Model data together with r = 0.05.

S(t0) σ Smin Smax

Asset 1 100 0.15 0 200
Asset 2 100 0.10 0 200

Table 2. Convergence of the Peaceman–Rachford method introduced in Section 3 for a call exchange option in standard
Black–Scholes model, based on different correlation and expiration date.

m l T = 0.1 T = 0.3 T = 0.5 T = 0.7 T = 1

ρ = 0.1 50 100 2.0118 3.6578 4.7508 5.6265 6.7160
100 100 2.1298 3.7181 4.7970 5.6655 6.7487
200 200 2.1555 3.7327 4.8083 5.6750 6.7566

Margrabe 2.1665 3.7516 4.8422 5.7279 6.8436
ρ = 0.5 50 100 1.5860 2.8475 3.6841 4.3553 5.1912

100 100 1.6544 2.8723 3.7012 4.3692 5.2029
200 200 1.6641 2.8773 3.7053 4.3730 5.2065

Margrabe 1.6686 2.8900 3.7304 4.4132 5.2737
ρ = 0.7 50 100 1.3525 2.3746 3.0464 3.5849 4.2560

100 210 1.3733 2.3519 3.0192 3.5578 4.2308
200 200 1.3600 2.3391 3.0087 3.5492 4.2242

Margrabe 1.3528 2.3429 3.0244 3.5782 4.2761
ρ = 0.9 50 100 1.1030 1.8391 2.3029 2.6697 3.1236

100 100 1.0500 1.7175 2.1691 2.5336 2.9897
200 200 0.9846 1.6498 2.1068 2.4766 2.9395

Margrabe 0.9356 1.6204 2.0918 2.4750 2.9580

Note: Margrabe is the result of Margrabe’s closed formula which appear in italic and the other numbers are the approximation solution of
our method. m denotes the number of steps in the spatial domain, while l is the number of time steps. The values of the parameters used
for these runs are given in Table 1.

We also assume the following price impact form

λ =
{

ε(1 − e−β(T−t)3/2
), S � S1 � S̄,

0, otherwise,

where ε is a constant price impact coefficient, T − t is time to expiry, β is a decay coefficient, S
and S̄ represent, respectively, the lower and upper limit of the stock price within which there is a
impact price.

We consider S = 60, S̄ = 140, ε = 0.01 and β = 100 for the subsequent numerical analysis.
Choosing a different value for β, S and S̄ will change the magnitude of the subsequent results,
however, the main qualitative results remain valid. At maturity T , on the line x + y = K , the
BS gamma ∂2VBS/∂x2 will blow up. However the above choice of λ guarantees that at maturity
λ(∂2VBS/∂x2) = 0.

Convergence of numerical results. For the investigation of the numerical scheme, since the
PDE (4) with λ = 0 is the standard Black–Scholes model, we can compare the numerical results
for λ = 0 with the Margrabe’s closed formula while k = 0. We fix the values of the parameters
of the marginal dynamical equations according to Table 1, and vary the values of the correla-
tion coefficient ρ. Results of this convergence study are summarized in Table 2. In comparison
of the efficiency and accuracy, we can see from the table that the agreement is excellent. We
plot the absolute error between our approximation and Margrabe’s closed formula against the
correlation in Figure 1. The numerical value of call Spread option in illiquid market is stated in
Table 3. The values of the parameters used for these runs are given in Table 1, with different
strike price.
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Figure 1. Absolute errors between our approximation and Margrabe’s closed formula. Data are in given in Table 1 with
ρ = 0.7, T = 0.7 year, m = 50 and l = 100.

Table 3. The values of a 0.4 year European call Spread option based on different correlation, and strike price
structure.

k = −15 k = −5 k = −2 k = 0 k = 2 k = 5 k = 10 k = 20

ρ = 0.1 15.0923 7.1590 5.3265 4.2927 3.4018 2.3388 1.1263 0.1904
Excess price −0.0003 −0.0004 −0.0004 −0.0003 −0.0002 −0.0001 0.0000 0.0000
ρ = 0.5 14.7990 6.2962 4.3635 3.3138 2.4476 1.4902 0.5431 0.0426
Excess price −0.0001 −0.0001 −0.0001 −0.0001 0.0000 0.0000 0.0000 0.0000
ρ = 0.7 14.7084 5.7964 3.7719 2.7073 1.8631 0.9972 0.2589 0.0055
Excess price 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ρ = 0.9 14.6832 5.2287 3.0505 1.9581 1.1513 0.4375 0.0085 0.0029
Excess price 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Note: Excess price shows the difference in call Spread option from Black–Scholes. The values of the parameters used for these runs
are given in Table 1 with m = l = 100.

Replicating cost. Now, we are ready to investigate the effects of the partial price impact (first-
order feedback model) on the replication of Spread option. We plot the time 0 difference between
the call price in the first-order feedback model and the corresponding Black–Scholes price against
the stock price S1(0) and S2(0). The difference between the amount borrowed to replicate a call
(in the first-order feedback model and the classical no impact model) at time 0 with expiration
date T = 0.1, 0.4 and 1 year, are shown, respectively, in Figures 2–4. The figures indicate that,
the Spread option price in the first-order feedback model is less than the classical Spread option
price. In other words, the trader can borrow less (for a call) or lend less (for a put) to replicate a
call or put Spread option.

Excess cost. Figure 5 shows the numerical results from the excess replicating costs above the
corresponding Black–Scholes price (obtained using the Peacman–Rachford scheme with m =
l = 100) for a call as a function of the strike price (with S1(t0) = 100, S2(t0) = 110, σ1 = 0.15,
σ2 = 0.10, r = 0.05, ρ = 0.7, T = 0.4 year). As the option becomes more and more in the money
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Figure 2. The call price difference (first-order feedback model and classical model) as a function of stock price at time
0 against S1 and S2. K = 5, σ1 = 0.3, σ2 = 0.2, r = 0.05, ρ = 0.7, T = 0.1 and m = l = 100.
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Figure 3. The call price difference (first-order feedback model and classical model) as a function of stock price at time
0 against S1 and S2. K = 5, σ1 = 0.3, σ2 = 0.2, r = 0.05, ρ = 0.7, T = 0.4 and m = l = 100.

and out of the money, the excess cost decreases and converges monotonically to zero. However, as
the option gets more and more out of the money, the trader needs to buy less stock and eventually,
when the option is far in the money and out of the money, the investor does not need to buy any
share.
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Figure 4. The call price difference (first-order feedback model and classical model) as a function of stock price at time
0 against S1 and S2. K = 5, σ1 = 0.3, σ2 = 0.2, r = 0.05, ρ = 0.7, T = 1 and m = l = 100.
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Figure 5. The replicating cost difference (first-order feedback model and classical model) against the strike price K .
S1(t0) = 100, S2(t0) = 110, σ1 = 0.15, σ2 = 0.10, r = 0.05, ρ = 0.7, T = 0.4 year and m = l = 100.
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5. Conclusion

In this work, we have investigated a model which incorporates illiquidity of the underlying asset
into the classical multi-asset Black–Scholes–Merton framework. We considered the first-order
feedback model in which only a large trader affect the underlying price and the trading strategies
of other traders do not influence the price. Since there is no analytical formula for the price of a
option within this model, we proposed the partial differential equation approach to price options.
We applied a standard ADI method (Peaceman–Rachford scheme) to solve the partial differential
equation numerically.We also discussed the stability and the convergence of the numerical scheme.
By numerical experiment, we investigated the effects of liquidity on the Spread option pricing in
the first-order feedback model. As future research we plan to investigate other schemes (including
CS, MCS and HV) and their stability.

Finally, we found out that the Spread option price in the market with finite liquidity (first-
order feedback model) is less than the Spread option price in the classical Black–Scholes–Merton
framework. Consequently one needs to borrow less (for a call) or lends less (for a put) to replicate
a call or put in a first-order feedback model.
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