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1 Introduction

We have seen that in general there is no arbitrage if and only if there exists an equivalent

local martingale measure. In this case, the price of an asset is the discounted price of the

payoff under this new probability.

In most of the models that we have seen, such as Black Scholes, the discounted underlying

asset has always been a martingale under the pricing probability.

However, what does happen if this asset was instead a strict local martingale ?

It has been shown that in these cases, the uniqueness of the solution of the Black-Scholes

equation is no longer verified. The difference of the multiple solutions is termed as financial

bubble and the option price that allows no arbitrage may be one of these solutions. Numer-

ically, our problem is to find a numerical solution that converges to the option price under

the lack of uniqueness of Black Scholes PDE.

2 Problem Formulation

Consider that the model of the stock price X under the pricing measure is as follow (assuming

interest rate is equal to 0) :

dXt = α(Xt, t)dW

with α locally Hölder continuous with exponent 1/2 satisfying α(x) > 0 for all x ∈ R+ and

α(0) = 0

Denoting g a non-negative payoff function (we consider pay-offs of at most linear growth

only) , the price of the option is given by u(Xt, t) where

u(x, t) = Extg(XT ) (1)

It is a solution to the Black-Scholes equation given by :

 ut(x, t) + 1
2α

2(x)uxx(x, t) = 0 if (x,t) ∈ (0,∞) ∗ [0, T )
u(x, T ) = g(x)
u(0, t) = g(0)

(2)

And it is the unique one when α(Xt, t) is of at most linear growth.

However, that doesn’t hold anymore as soon as the linear bound of α(Xt, t) is violated. In-

deed, in this case, the stock price is a strict local martingale and therefore there are multiple

solutions to the Black Scholes equation of at most linear growth.
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Example :

Over all this coursework, we will use the Constant Elasticity of Variance (CEV) model,

which gives the stock price as :

dXt = σXγ
t dW

Where γ ≥ 0 and σ > 0

If γ > 1 then X is a strict local martingale.

In this case and when g≡id the price of the option is always given by

u(x, t) = ExtXT

which is solution to (1) and u(x, t) < x because X is a strict positive local martingale and

hence a supermartingale. On the other hand, u = x is clearly also a solution to (2). Hence

uniqueness doesn’t hold anymore. This underlines our main problem and the paper [1] and

[2] suggest methods to find the no arbitrage price of the asset numerically despite the lack

of uniqueness.

Most numerical methods are set up on a finite grid and determines a unique solution to

Black-Scholes PDE thanks to the boundary condition. Then, we have to find boundary

conditions that give a solution that converge to the no arbitrage price and with a good rate

of convergence.

The two articles give different ways to tackle this issue :

- Add a Neumann condition at the spatial boundary

- Consider a class of rebate barrier option to approximate the option price

3 Numerical Methods

In both of these methods, several results have been used to prove that the numerical solution

converges to the no arbitrage price solution.

Assumptions

(A-1): The payoff is non negative

(A-2): The payoff is of at most linear growth i.e it is a measurable function that verify

ϕ(x, t) ≤ K(1 + |x|ε), ∀(x, t) ∈ Q := R+ ∗ (0, T ) with ε ≤ 1

(A-3): The payoff is non decreasing
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3.1 Neumann Boundary Conditions

Proposition 3.1.1 Assume (A-1) and (A-2). The option price u given by (1) is the smallest

non-negative classical solution of (2)

To take this proposition into account, we will take another characterization of u by consid-

ering this new partial differential equation (uM denotes its unique solution). What changes

is that we add a Neumann boundary space condition where x=M.


uMt (x, t) + 1

2α
2(x)uMxx(x, t) = 0 if (x,t) ∈ (0,M) ∗ [0, T )

uM (x, T ) = g(x) if x ∈ [0,M ]
uM (0, t) = g(0) if t ∈ [0, T )
uMx (M, t) = 0 if t ∈ [0, T )

(3)

We extend the domain of definition by setting uM (x, t) = uM (M, t) when x ≥M .

Theorem 3.1.2 Assume (A-1), (A-2) and (A-3). Then uM is increasing in M, and:

u(x, t) = lim
M→+∞

uM (x, t)

Sketch of the proof

- Show that uM is increasing : The monotonicity of g implies that uMt (x) is non-decreasing.

Then use the Maximum principle.

- Define

ū(x, t) := lim
M→+∞

uM (x, t)

We know that uM ≤ u for all M (Maximun principle) so ū ≤ u. Now we know that ū (in-

terior Schauder estimates) solves (3) and that it is non-negative and smaller than u. Apply

proposition 3.1.1.

In this way, thanks to this new boundary condition, we got a solution that is convergent to

the no arbitrage price of the option given in (1).

3.2 Considering rebate options

Another way to solve the problem is to consider up-rebate options of barrier M with :

- a rebate payoff g(M)

- a terminal payoff f(X(T ))

That gives us the rebate option price :
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uM (x, t) = Ext[g(M)1τM6T + f(X(T )1τM=T ] (4)

where the stopping time τM is the first hitting time of the stock price X to the barrier M .

We will, in fact, find the numerical price of the rebate option and show that it is convergent

to the no arbitrage price (1) of the European option solving (2) when M tends to infinity

when g and f are well specified.

Proposition 3.2.1

Assume (A-2) for the terminal payoff f and that the rebate payoff g is strictly sublinear.

then :

lim
M→+∞

uM (x, t) = u(x, t)

For the proof which is long, see[2]

Then the rebate option price is solution of the PDE :


ut(x, t) + 1

2α(x)2uxx(x, t) = 0 on (0,M) ∗ [0, T )
u(x, T ) = f(x) if x ∈ [0,M ]
u(0, t) = f(0) if t ∈ (0, T )
u(M, t) = g(M) if t ∈ (0, T )

(5)

The choice of g(M) = f(M) may not always be possible. When we have g(M) 6= f(M)

and the boundary-terminal condition is discontinuous, then we can not expect the unique

solution of (5) being continuous up to the boundary. Furthermore, this discontinuity and

the singularity at the corner propagate the numerical errors throughout the entire domain.

That is why it is crucial to consider an alternative choice for (4) by revising the terminal

payoff as following to avoid this problem.

We consider:

- a zero rebate payoff g(M) = 0

- a revised terminal payoff defined by

fM = f(x)1x≤M/2 + 2f(x)(M−x)
M 1M/2<x≤M

In this case the rebate option price becomes :

ũM (x, t) = Ext[f
M (X(T ))1τM=T ] (6)

And it is associated to PDE


ut(x, t) + 1

2α(x)2uxx(x, t) = 0 on (0,M) ∗ [0, T )
u(x, T ) = fM (x) if x ∈ [0,M ]
u(0, t) = fM (0) if t ∈ (0, T )
u(M, t) = 0 if t ∈ (0, T )

(7)
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This revised payoff function fM makes the terminal-boundary data continuous at the corner

(M,T ) and also preserves the Hölder regularity of the original payoff function f.

Although (7) is degenerate at x=0, one can show that it still has a unique solution. Moreover,

this solution is given by (6) and it can be shown that this solution converges to the desired

value of u. Indeed, we have the following theorem :

Theorem 3.2.2 Assume (A-1) and (A-2). Then ũM given in (6) is the unique classical

solution of PDE (7) and :

lim
M→+∞

ũM (x, t) = u(x, t)∀(x, t) ∈ QM

In addition, ifε < 1 then it can be shown that the rate of convergence is of O(M−1+ε)

3.3 Implementation

3.3.1 Scheme

To implement the numerical solutions, we use the following grid:

• the space axis is divided into J intervals of length h = M / J : for j = 0,1,...,J, we

define xj := jh.

• the time axis is divided into N intervals of length ∆t = T / N : for n = 0,1,...,T, we

define tn := n∆t.

We approximate the spatial derivative by centered second-order finite differences and we used

the θ-scheme for the time-derivative. Denoting unj = uM (xj , t
n), and un = (un1 , ...u

n
J−1)′,

the discretization of the PDE leads to the following equation:

(IJ−1 − θ∆t
α2

2h2
A)un = (IJ−1 + (1− θ)∆t α

2

2h2
A)un+1

where A is a tridiagonal matrix : A = TJ−1(1,−2, 1). Notice that α is a function of x, so

each line j of the matrix A will be multiplied by a different coefficient α2(j).

The vector un is calculated backward in time, starting from uN (for j = 1, ..., J-1 ,

uNj = g(xj)).
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3.3.2 Boundary Conditions

You may have notice the absence of vector bn as in the lecture notes in the previous scheme.

Indeed to take into account the boundary conditions that we consider in this problem, it is

sufficient to slightly modify the matrix A according to the case:

• the Dirichlet condition uM (0, t) = g(0) if t ∈ [0, T ) does not have any influence on

the previous equation given the fact that whatever the payoff function is, it is always

equal to 0 for x=0.

• the Dirichlet condition uM (M, t) = 0 if t ∈ (0, T ) does not have any influence on the

previous equation.

• the Neumann condition uMx (M, t) = 0 if t ∈ [0, T ) can be approximated as uM (M, t) =

uM (M − h, t), thus unJ−1 = unJ for all n. It follows that for j=J-1, and for all n,

unj+1 − 2unj + unj−1 = −unj + unj−1: in the last line of the matrix A, the ”-2” becomes

a ”-1”.

3.3.3 Choice of θ

The discretization of the PDE leads to the following conclusions:

• if θ 6= 1
2 then the accuracy in unj is of O(∆t+ h2)

• if θ = 1
2 (Crank-Nicolson scheme) then the accuracy in unj is of O(∆t2 + h2)

Moreover, a matrix analysis shows that the θ -scheme is unconditionally stable in the L2-

norm if θ ∈ [1/2, 1]. Thus the choice of the Crank-Nicolson scheme could seem to be the best

one. However, this stability result might not hold true in the L∞-norm: it can be shown

that if the condition
(1−θ)∆tα2(xj)

h2 ≤ 1 is not satisfied, the numerical solution might oscillate

and even take negative values (see [5] and [6] for further discussion). An example of this

instability will be shown in the results.

In order to avoid such spurious oscillations, we finally chose θ=1 (Implicit Scheme).

3.3.4 Numerical results

In this paper we will present the results obtained in Matlab for the following parameters:

σ=1, γ=2 (CEV-1 model, for which a closed-form formula exists and will be taken as

reference, see [4]), K=5, h=0.05, T=0.5 and ∆t=0.005. h and ∆t where chosen such that

the error coming from the scheme was negligible in comparison to the error arising from

the choice of M. For the two approaches the numerical methods has been plot for different
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values of M: M=2m10, m=1,2,3,4,5,6. We also computed the mean square error ε(M) :=

1
J−1

J−1∑
j=1

(u(xj , 0)− u0
j )

2 between the analytical and the numerical solutions.

Figure 1: Solution to the Problem (3) (Neumann Boundary Condition)

As the plots suggests the numerical solution converges as M increases. However an increase

in M has of course a computational cost: the computational time may become considerable.

The choice of θ=1/2 led to oscillatory solutions. It is illustrated in the figures below for

M=160 and two different values of σ: 0.1 and 1. As j increases the coefficient α2(xj) increases

and the non-oscillatory condition is no longer satisfied. When σ is higher, the oscillations

appear for smaller values of xj . Note that to avoid this behaviour, one could use an implicit

scheme for large values of xj and the Crank-Nicolson scheme for small values in order to

have a better accuracy. An other solution could be to change ∆t for sensitive values of xj .
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These methods are discussed in detail in [7].

Figure 2: Illustration of the instability issue in the L∞-norm
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The second approach (Dirichlet Boundary Conditions with a rebate payoff) gave the follow-

ing result:

Figure 3: Solution to the Problem (4) (Dirichlet Boundary Conditions with a rebate payoff)

For small values of X the solution converges as M increases, as expected. The disadvantage

of this method with regard to the first one is that the convergence as M goes to infinity is

much slower. However, the specification of the boundary conditions insures that the solution

is the desired one.
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4 Conclusion

Through this coursework, we have seen two different methods to address the numerical

vanilla option price issue in the presence of financial bubbles.These two methods give good

numerical results, and could be really accurate if the time and space step are well chosen.

However, as we have seen before, they both had their limits, the stability for the first one

and the use of a revised terminal payoff for the second one. Moreover, these methods tackle

with a different angle the issue, using different assumptions which could help to make a

choice between them.

All of this shows us that only one small change in our usual assumptions could have huge

effects on several models, limit that we should keep in mind when we apply them in the real

world.
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