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a b s t r a c t

We propose a second order accurate numerical finite difference method to replace the
classical schemes used to solve PDEs in financial engineering. We name it Modified Fully
Implicit method. The motivation for doing so stems from the accuracy loss while trying to
stabilize the solution via the up-wind scheme in the convective term aswell as the fact that
spurious oscillations solutions occurwhen volatilities are low (this is actually the range that
is commonly observed in interest rate markets). Unlike the classical schemes, our method
covers the whole spectrum of volatilities in the interest rate dynamics.

We obtain analytical and numerical results for pricing and hedging a zero-coupon bond
and an Asian interest rate option. In the case of the Asian option, we compare the realistic
discrete compounding interest rate scheme (associated with the Modified Fully Implicit
method) with the continuous compounding scheme (often exploited in the literature),
obtaining relative discrepancies between prices exceeding 50%. This indicates that the
former scheme is more appropriate then the latter to price more complicate derivatives
than straight bonds.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Before the 1980s, fixed income markets were composed primarily by vanilla bonds and simple structured financial
instruments. Thus, their valuations were easy and direct, done frequently via closed-form mathematical formulas (e.g. [1]).
Thenceforth, markets have become sophisticated as more complex products aiming to reduce or share risks appear,
complicating the pricing and hedging engines. The fast growth of financial market instruments over recent decades has
spawned many challenging mathematical problems to be solved, from the underlying stochastic modeling to solutions
through computational methods.

Fixed income derivatives are contracts which have payoff, contingent on the evolution of interest rates. They are traded
in the equity, commodity, currency and credit markets along with hybrid derivatives engineered over the counter [2]. The
valuation of interest rate derivative contracts is a very important subject in modern financial theory and practice. The
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financial health of banks, governments and industrial companies are very sensitive to changes in the term structure of
the interest rates. It has become mandatory nowadays to quantify and control the risk exposure to prices of interest rate
associated contracts.

A large amount of academic literature has been dedicated to the pricing and hedging of such instruments. Vasicek [3]
has introduced a Gaussian stochastic process to model the spot rate dynamics. He also developed a simple closed-form
solution to compute the prices of zero-coupon bonds. Jamshidian [4] has extended the results to options on bonds, which
is automatically adapted to price interest rate caps and floors and Hübner [5] used Jamshidian’s approach to express the
swaptionprices. Additionally, closed-formexpressions have beendeveloped to price suchproducts based onother stochastic
processes (see e.g. [6–8]).

However, it is a hard task to extend the results and find analytical solutions to more complex structures, even in the
Gaussian model. The callable bond is an example. It is a financial instrument commonly issued by banks and non-financial
companies. Hence, such contracts must be priced by numerical techniques. Several computational approaches, such as
Fourier methods [9], Monte Carlo simulation [10] and tree methods [11] can be used to price complex derivatives, but
due to its efficiency in computing accurate pricing and hedging values and its flexibility in the modeling process, partial
differential equations have become a very popular choice. Some recent developments in the field of financial engineering
designed for specific purposes can be found (i) in [12], for pricing discrete double barrier option via PDE transforms, (ii)
in [13], for pricing discrete monitored barrier options in the Black–Scholes scenario, where the authors mix the Laplace
Transform and the finite difference method, (iii) in [14], where a meshfree method is used to calculate the prices and the
greeks of European, Asian and Barrier options, and (vi) in [15], where quadrature methods are applied to price discretely
monitored Barrier options.

To improve financial engineering, we propose a new numerical finite difference method to replace the classical schemes
used to solve PDEs (see e.g. [16–18]). The motivation for doing so stems from the fact that spurious oscillations solutions
occur when volatilities are low (i.e., when the Peclet number is high) and serious collateral matters appear in attempts
to correct the problem. Actually, low volatilities are the range observed in interest rate markets, and unlike the classical
schemes, our method covers the whole spectrum of volatilities in the interest rate dynamics.

Our method is devised as a version of the Fully Implicit method (see, e.g., [16,18]), and extended to provide hedges along
with prices. One of the modifications we introduced is inspired in a technique that appears in [19]. That method adapts to
the Black–Scholes dynamics, while ours fit the interest rate derivatives with Vasicek, CIR [7] and other types of short-rate
models. Our numerical scheme is first order accurate in time, second order accurate in space and consistent. Moreover, it
possesses the quality of being unconditionally stable. We name it Modified Fully Implicit (Interest Rate) Method.

We show the good performance of the method, pricing a zero-coupon bond and another type of interest rate derivative
security named IDI (Interbank Deposit Rate Index) option, both in the Vasicek dynamic. Namely, we perform a convergence
analysis by considering both continuously compounded and daily compounded rate of interest to model the money market
account and the updating of the IDI path.1

The ID index updating is built up discretely based on the overnight DI rate, which is an annualized rate over one day
period. It is calculated and published daily, and represents the average rate of inter-bank overnight transactions [20].
Based on a martingale approach, closed form solutions to price an IDI contract are available in the literature, assuming
for mathematical tractability reasons that the updating of the IDI is continuous in time. In this scenario, a one-factor model
was developed in [21] to price the IDI option via the short rate dynamics as given in [3]. A multi-factor Gaussian model was
developed in [22] to price the IDI option and bond prices. Also, [23] proposed to incorporate the potential changes in the
targeting rates via pure jump process.

Carrying on the evaluation of our finite difference scheme, we demonstrate its advantages considering the following
approaches on a pricing problem of an IDI call option with the Vasicek dynamic.

• We obtain the estimates of the prices (and hedges) according to the Modified Fully Implicit method, and consider
updating the IDI path discretely. This updating rule allow us to track realistically the evolution of the index and to achieve
the exact pay-off representation.

• We obtain the prices via the closed form expressions given in [21], assuming a continuously compounded interest rate,
which is actually an idealization for mathematical tractability.

So, our approach corresponds to obtaining approximate prices for the exact problem (with respect to the payoff) while
that of [21] corresponds to obtaining an exact price for the approximate problem. The results of this comparative analysis
corroborate the conjecture of Tankov and Cont [24], which asserts that, typically, the former scenario yields better results
than the latter. Indeed, via numerical simulations, we observe meaningful relative discrepancies in the prices for some
prescribed examples whose parameters are good representatives of the market. So, using one or other method makes a
difference. Now, neither price represents a benchmark. The benchmark should correspond to a framework that models the

1 IDI is the shorthand of Interbank Deposit Rate Index. The IDI option is a financial option of Asian type and, as such, the payoff depends on the path
followed by the short term interest rate. It presents cheaper prices than the standard options and it is less sensitive to extrememarket conditions that may
prevail close to the expiration day—due to random crashes or outright manipulation. So, it is commonly used by corporations to manage interest rate risk.
Actually, it is a standardized derivative product traded at the Securities and Futures Exchange in the Brazilian fixed income market.
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IDI discretely and provides the exact solution for the price. However, the Modified Fully Implicit method can be refined to
approach the benchmark. On the other hand, all short ratemodelwhich adopts the IDI continuously compounded hypothesis
(as in [22,23,21]) is obviously inconsistent with refinements with respect to the index updating, so they cannot approach
the benchmark. Since the continuous updating procedure for calls produces a more expensive payoff than the discretely
updating one, it is reasonable to expect prices to bemore expensive in the former than the latter procedure. The simulations
indicate more than this in fact. They show that, starting with a reasonable refined mesh, our call prices are cheaper than
those of the continuous updating case of [21] and, as the mesh is refined, our prices move further downwards approaching
the benchmark—and away from the prices of [21]. Analogous conclusions are obtained with a put option.

In the case of bonds, a comparative study of the continuous versus the discrete compounding interest scheme shows
that the relative discrepancies between prices do not exceed 5% (in the typical range of interest rates). This is actually an
expected result. However, in the case of the IDI call and put options, we find that the relative discrepancies between prices
exceed 50%, when we consider the realistic discrete compound interest rate scheme (associated with the Modified Fully
Implicit method) versus the continuous compounding scheme (often exploited in the literature). This immediately suggests
that the former scheme is more appropriate then the latter, whenever the interest rate derivatives are more complicated
than straight bonds.

Hence, the study carried out in this paper, in conjunction with the numerical simulations performed with the above
derivatives, indicate that, in fact, our method is reliable and highly competitive. It straightforwardly adapts to other interest
rate derivative securities, e.g., bond options, swaptions, caps and floors, adjusting the appropriate terminal condition. Via
minor changes in the functions assigned to the jump conditions, the method fits other types of path-dependent options, as
well as coupon bonds, coupon bond options and callable bonds.

We organize the article as follows: In Section 2 we present the motivation of the discrete daily monitoring approach and
derive the analytical delta of the IDI call option. In Section 3 we present the partial differential equation that will be used to
price the IDI call option and justify a coordinate transformation for the PDE. In Section 4 we revise the standard numerical
discretizations commonly applied to such PDE and propose a scheme that is second order accurate and unconditional stable
to convective dominant parabolic equations. A convergence study is performed numerically. Section 5 presents the pricing
and hedging results, highlighting the discrepancies between the continuous and discrete updating approaches. Section 6
concludes the article.

2. The IDI option pricing problem

We consider the problem of pricing an IDI option, assuming that the ID index y accumulates discretely according to

y(tn) = y(t0)
n

i=1

(1 + DI(ti−1))
1

252 , n = 1, . . . ,N, (1)

where ti denotes the end of day i and DI(·) assigns the DI rate, i.e., the average of the interbank rate of a one-day-period,
calculated daily and expressed as the effective rate per annum. A detailed definition of the DI rate can be found in [20].
Correspondingly, the discretely monitored pay-off for the call option with maturity in T = tN is given by

max (y(tN) − K , 0) . (2)

We also suppose that the instantaneous short-term interest rate r-which shapes the DI rate, in the sense that DI(ti) = r(ti)
evolves according to Vasicek model (see [3])

dr(t) = a(b − r(t))dt + σdWt . (3)

This Ornstein/Uhlenbeck stochastic process pulls the short rate to a level b at a rate a against with a normally distributed
random term σdWt , where Wt is a standard Brownian motion.

The discrete updating scheme mentioned above is consistent with reality. An idealization for mathematical tractability
is to assume that the IDI index accumulates continuously according to

y(t) = y(0)e
 t
0 rudu, t ∈ [0, T ] (4)

instead of (1). Correspondingly, the continuously monitored pay-off for the call option with maturity in T is given by

max(y(T ) − K , 0), (5)

which stands as the counterpart of (2). Hence, concerning this important aspect, the framework we adopt here is more
realistic than that usually found in the literature. Under the hypothesis of continuous compound interest rate, [21] developed
a closed-form solution for the price of an ID call option with maturity in T , where the short rate also follows the Vasicek
model.

It is well known that, using the above hypothesis, zero-coupon bond prices are very similar to those of the daily
compounded interest. However this is not the case when dealing with assets like Asian interest rate options. The results
obtained in this paper corroborate this with respect to pricing theoretical IDI options.
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For later use, the price of an IDI call option with maturity in T at time t , in the continuously compounded hypothesis, is
given by

C(r(t), y(t), t, T ) = y(t)Φ(h) − KP(r(t), t, T )Φ(h − k) (6)

whereN(·) denotes the cumulative standard normal distribution function, K is the strike, P(r(t), t, T ) is a zero-coupon bond
price, y(t) is the ID index at the current time and

h =

y(t)
P(r(t),t,T )K +

k2
2

k
(7)

k2 = σ 2 (4e−aτ
− e−2aτ

+ 2aτ)

2a3
, (8)

where the parameters σ and a are defined in Eq. (3) and τ = T − t . As shown in [3], the price at time t of a zero-coupon
bond that pays 1 at time T is

P(r(t), t, T ) = α(t, T )e−β(t,T )r(t), (9)

where,

β(t, T ) =
1 − e−a(τ )

a
(10)

and

α(t, T ) = exp


(β(t, T ) − τ)(a2b − 0.5σ 2)

a2
−

σ 2B(t, T )2

4a


. (11)

2.1. The hedging problem

We now obtain the delta of the IDI call option. Since the IDI is an index and not a physical asset that can be bought and
sold,we evaluate the infinitesimal changes in the price of the IDI optionwith respect to a change in thewhole term-structure.
That is to say, our replicating portfolio will be composed by zero coupon bonds withmaturity at time T and amoneymarket
account. By deriving the price C(t, T ) of the IDI option (as given by (6)) with respect to the price P(t, T ) of the zero coupon
bond, we obtain

∂C
∂P(t, T )

= y(t)
∂Φ(h)

∂P(t, T )
−


KΦ(h − k) + KP(t, T )

∂Φ(h − k)
∂P(t, T )


= −KΦ(h − k) (12)

where
∂Φ(x)

∂P(t, T )
= φ(x)

∂x
∂P(t, T )

and φ(x) =
1

√
2π

e−
x2
2 .

The last equality stems from the fact that

log


φ(h − k) ∂(h−k)

∂P(t,T )

φ(h) ∂(h)
∂P(t,T )


=

1
2
[(h)2 − (h − k)2]

=
1
2
[(h) + (h − k)][(h) − (h − k)] = h.k −

k2

2

= log


y(t)
K .P(t, T )


+

k2

2
−

k2

2
. (13)

Hence, the delta hedge of the IDI option in the continuous compound interest scenario is given by

∆(t) =
∂C

∂P(t, T )
= −KΦ(h − k). (14)

We also develop a version of (14) to be used in our numerical approach, where the more realistic discrete compound
interest is considered. As it ought to be, this version does not require knowledge of the price values C given by (6)—which
stems from the continuous compound assumption for the interest rate. So, since we intend to use the zero coupon bond to
hedge the IDI option, we assume that the price of the IDI option at time t depends on the current level y(t) of the index and
the price P̆(t, T ) of a bondwith samematurity as that of the option. Both quantities are obtained via our numerical approach,
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assuming the discrete updating status (we recall that very small changes occur in the price of a bond if we switch from the
continuous to the discrete updating case, so the zero coupon bond prices could have been taken from [3]). We denote this
price by ŭ. We have that

du =
∂u

∂y(t)
dy(t) +

∂u
∂P(t, T )

dP(t, T ), (15)

so the delta hedge is given by

∆̆(t) =

du
dr −

∂u
∂y(t)

dy(t)
dr

dP(t,T )

dr

=

du
dr

dP(t,T )

dr

. (16)

3. PDE formulation

Our aim is to price a financial contract assuming that the price is a function of three variables, namely, the time t and
the current values of the interest rate r and the ID index y. We assume that u(t, r(t), y(t)) ∈ C1,2,0(R × R × R) and that
the ID index accumulates daily. Following the steps of [25] and applying Ito’s lemma (see e.g. [26]), we set up a portfolio π
containing two similar contracts with different maturities, obtaining

dπt =
∂u1

∂t
dt +

∂u1

∂r
dr +

σ 2

2
∂2u1

∂r2
dt − ∆


∂u2

∂t
dt +

∂u2

∂r
dr(t) +

σ 2

2
∂2u2

∂r2
dt


. (17)

Although we are modeling a path-dependent option, the portfolio (17) exhibits a classical shape. This is so because the
stochastic differential equation for the IDI degenerates, in the sense that dy = 0.

We point out that the quantity given by (1) changes only at a set of discrete jump times Ω = (t1, . . . , tN) that represent
the end of the trading days.

Let the market price of risk be λ = 0. The usual no-arbitrage argument implies that the price of the IDI option
u = u(t, r, y) at time t ∉ Ω , i.e., when the IDI remains constant, is given by

∂u
∂t

+ a(b − r(t))
∂u
∂r

+
σ 2

2
∂2u
∂r2

= r(t)u. (18)

Across each tn ∈ Ω , absence of arbitrage ensures that the price of the option is continuous [27,28]. This is mathematically
represented by the following jump condition:

u(tn − ϵ, r, y−) = u(tn + ϵ, r, y+), (19)

where y+
= y−

[(1 + r)
1

252 ], and 0 < ϵ ≪ 1. We could alternatively derive the PDE (18) by using the Discounted
Feynman–Kac Theorem [26].

To ensure uniqueness of solutionwe prescribed arbitrary functions to describe how the PDEmust behave at the extremes
of the domain. In the case of the IDI option we chose the following Neumann boundary conditions:

∂u(−∞)

∂r
=

∂u(+∞)

∂r
= 0. (20)

We know that the dynamics (3) allows negative and positive infinite values for r with non-zero probabilities. Hence, the
conditions given by (20) ensure that an infinitesimal change in r at the boundaries does not change the value of the option.
This is intuitive because the IDI option price is actually insensitive to changes in extreme negative or positive values of r .
This fact can also be verified in Eq. (6). Latter wewill revisit the issue concerning the appropriate value for the right extreme
boundary when dealing with a truncated domain.

The terminal condition is the pay-off of the option, which in the case of a call, is

u(T , r, y) = max(y − K , 0), (21)

and, in the case of a put, is

u(T ; r; y) = max(K − y, 0), (22)

where K is the strike price and y is viewed as (2).
As it happens with the Asian–Parisian stock options [28], we have that away from monitored times the PDE (18) has no

y dependence. The terminal condition (21) implies that a set of independent one-dimensional PDEs must be solved. The IDI
Option price is calculated via (18) backwards in time from the terminal condition (21) up to the first tn ∈ Ω . We apply, in
the sequel, the jump condition to find the option value at t−n . Using these values as the new terminal condition we repeat
the process N + 1 times to meet the current value of the option, where N is the cardinality of the set (Ω).
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3.1. Coordinate transformations

Finding a solution to (18) is a well-known problem in physics and finance. Numerically speaking, it is inconvenient if
the sign of the convective term changes and the volatility is very low, which are common facts in interest rate derivatives.
Financially speaking, it is undesirable to have the same precision for all points in the grid, because we are pricing a product
based on the current interest rate. So, in the same lines as in [18], we first propose a change of variable that allows us
to retrieve the solution in a nonuniform grid in r , which becomes thinner in some desirable or needed region. Then we
appropriately modify a finite difference scheme to overcome the drawbacks of a convective dominant PDE.

The ‘‘proximity’’ of the left nonzero probability boundary to the actual level of interest rates suggests that small errors at
the left boundary lead to inaccurate results near the strike price, where a sharp gradient occurs in conditional derivatives.
So we specified a new variable x = ln(rd + c), where d > 0 and c are constants such that c > −dmin(r).

Now, we have that

∂u
∂r

=
∂u
∂x

∂x
∂r

=
∂u
∂x


d

rd + c


(23)

and

∂2u
∂r2

=


∂x
∂r

2
∂2u
∂x2

+
∂2x
∂r2

∂u
∂x

=


d2

(rd + c)2


∂2u
∂x2

−


d2

(rd + c)2


∂u
∂x

, (24)

so we get the transformed PDE in the new coordinate x

∂u
∂t

+


a(db − ex + c)

ex
−

σ 2d2

2e2x


∂u
∂x

+


σ 2d2

2e2x


∂2u
∂x2

=


ex − c

d


u (25)

with the following boundary conditions:

∂u(min(x))
∂x

= 0 (26)

and

∂u(max(x))
∂x

=
(T − t)

T
ex

d
θ. (27)

We emphasize that we could set the derivative of the right boundary in r equal to zero, as we said before, except when
dealing with a very large domain. For computational cost justifications we appropriately choose ∂u

∂r =
(T−t)

T θ based on some
model or market data θ which results in the previous boundary condition (27) in the new variable x.

The terminal condition does not depend on r directly and remains the same. The new jump condition is obtained
substituting the value of r in the new coordinate system.

4. Finite difference methods

We now address the above problems via finite difference methods. We do so due to (i) uncommon features that appear
in problems involving interest rate derivatives, (ii) the huge amount of works using this technique, and (iii) the lower
computational effort to price and hedge options in comparison with Monte Carlo simulation methods. Unlike the Monte
Carlo, finite difference methods allow us to observe the option prices considering the domain of r as a whole and provide
reliable results that can be used as benchmark when there is no closed-form solution [18].

The finite difference method consists of the discretization of the spatial domain x over some finite interval [xmin, xmax]

with J points and in approximating the derivatives of the PDE by its incremental ratio 1x, which converges to the derivative
as 1x → 0. The method consists of replacing the derivatives in (25) by their numerical values at a finite number of points
[18,29].

The forward, backward and central first spatial derivative is respectively approximated by

∂+

x un
j =

∂u
∂x

+ O(1x) =
u(xj + 1x, tn) − u(xj, tn)

1x
,

∂−

x un
j =

∂u
∂x

+ O(1x) =
u(xj, tn) − u(xj − 1x, tn)

1x
and

∂0
x u

n
j =

∂u
∂x

+ O(1x2) =
u(xj + 1x, tn) − u(xj − 1x, tn)

21x
,

where un
j = u(xj, tn) and O(g(δ)) denotes the functions o(·) with the property of having o(δ)

(g(δ)) → 0 as δ → 0.
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The central second spatial derivative is approximated by the second order stencil

∂−

x ∂+

x un
j =

∂2u
∂x2

+ O(1x2) =
u(xj + 1x, tn) − 2u(xj, tn) + u(xj − 1x, tn)

1x2
.

Approximations for the forward and central first temporal derivative are:

∂+

t un
j =

∂u
∂t

+ O(1t) =
u(xj, tn + 1t) − u(xj, tn)

1t
and

∂0
t u

n
j =

∂u
∂t

+ O(1t2) =
u(xj, tn + 1t) − u(xj, tn − 1t)

21t
.

These simple definitions allow us to construct a variety of finite difference schemes for the PDE (25). Here, 1t means the
length of the time lag between n and n + 1 and 1x is the distance between the spatial grid points j and j + 1.

Inwhat follows,wepresent three specific finite difference schemes that are candidates to solve the interest rate derivative
pricing problem.We briefly show their limitations and disadvantages, and conclude that theModified Fully Implicit method
we provide in Section 5 eliminates the limitations mentioned above and enables us to use it without parameter restrictions.

4.1. Crank–Nicolson method

The most famous method to solve parabolic PDE is the Crank–Nicolson method, which is of order O(1t2, 1r2). The
method consists of approximating the spatial derivatives by the average2

∂u
∂r

≈
1
2


∂0
r u

n+1
j + ∂0

r u
n
j


and

∂2u
∂r2

≈
1
2


∂−

r ∂+

r un+1
j + ∂−

r ∂+

r un
j


.

We applied the above method to the Vasicek type PDE (18) with terminal condition given by

u(r, T ) = 1, (28)

and boundary conditions given by

∂u
∂r

(rmin, t) = 0 (29)

and

∂u
∂r

(rmax, t) = 0 (30)

to solve a bond pricing problem. As can be noted from 1, the method produces an oscillating solution in the most common
case of convective dominant PDE. Particularly in this example, we havematurity of the zero-coupon bond equal to five years,
and σ = 0.005, a = 0.8, b = 0.1. We adopt J = 100 and 5 daily steps.

Conceptually, two (J + 1) × (J + 1)-dimensional matrices, denoted P and L are defined, as well as system

Pun+1
= Lun (31)

where P and L are (J + 1) × (J + 1) matrices.
D. Duffy listed in [17] some drawbacks of the Crank–Nicolson methods in finance. An important drawback is that the

resulting tridiagonal matrix P for the PDE (25) reads as

P = tridiag

−

µj

41r
+

Sj
21r2

;
1

1t
−

Sj
1r2

− r;
µj

41r
+

Sj
21r2


, (32)

L = tridiag


µj

41r
−

Sj
21r2

;
1

1t
+

Sj
1r2

; −
µj

41r
−

Sj
21r2


(33)

where µ and S, are respectively

µ =
1
2


a(b − rj) + a(b − rj+1)


(34)

2 For the sake of simplicity, we chose to deal with the original spatial variable r first rather than the transformed x.
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Fig. 1. Zero-coupon bond prices—Crank–Nicolson method.

and

S =
σ 2

2
. (35)

That is to say, the mean-reversion feature of the Vasicek model runs into difficulties in assuring the negativeness of the off-
diagonal entries of the matrix P when volatility dominates the convective term or when the short-term rate is lower than
the mean b. This implies having some negative entries of P−1, which result in spurious oscillations (see [30]). As a result, we
can see that the Crank–Nicolson solution

un+1
=

1
1t

P−1(Lun) (36)

is not positive-preserving. Thus, we see that the method is not adequate to estimate prices in the fixed-income scenario.

4.2. Up-wind method

To produce oscillations free solutions, a common way-out is to approximate the first order spatial derivative of the
Crank–Nicolson method by the upwind scheme:

∂u
∂r

=


∂+

r un
j se

a(b − r)
21r

≥
σ 2

21r2

∂−

r un
j se

a(b − r)
21r

<
σ 2

21r2
,

which simply means adding an artificial volatility

±
a(b − r)1r

2
(37)

to σ 2

2 -the coefficient of ∂2u
∂r2

. This technique eliminates possible negative values in the off-diagonal entries from the P-matrix.
Another numerical treatment based on flux limiters can be found in [31,32].

There are two main problems with this strategy. The first one is that the numerical solution is now first-order accurate
in time and space. Consequently it has slower convergence rates. The second one is that the solution would eventually be
mischaracterized due to the numerical diffusion introduced above, which is of order O(1r).

We can compare the solutions to the PDE (25) as given by the Crank–Nicolson method (Fig. 1), the Up-wind strategy
(Fig. 2) and analytically (Fig. 2). Fig. 3 shows indeed that the method produces spurious oscillations free solutions for any
time to maturity.

However, inspection of Fig. 2 shows that, in order to prevent the spurious scenario, the numerical diffusion introduced
in the up-wind scheme mischaracterizes the solution. Again, we see that this approach is not adequate for pricing in the
interest-rate market.

4.3. Fully Implicit method

The use of the fully implicit scheme faces identical problems as those of the Crank–Nicolson P-matrix. We define µ and
S in the transformed variable x as

µ =


a(db − ex + c)

ex
−

σ 2d2

2e2x


(38)
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Fig. 2. Zero-coupon bond prices—up wind method.

Fig. 3. Zero-coupon bond prices surface—up wind method.

and

S =
σ 2d2

2e2x
. (39)

The discretization of the PDE (25) in this case is:

∂−

t un+1
j + µj∂

0
x u

n+1
j + Sj∂+

x ∂−

x un+1
j =


exj − c

d


un+1
j . (40)

This leads us to (J + 1) × (J + 1)-dimensional matrix P that governs the system

un+1
=

1
1t

P−1(un
+ D). (41)

The vector D has (J − 1) zero entries, and is either zero for Neumann boundary conditions or stems from the Dirichlet
boundary conditions. The above fully implicit discretization is of order O(1t, 1x2). Again, the matrix P has a tridiagonal
form with entries

0 ≥


µj

21x
−

Sj
1x2


, (42)

0 <


1

1t
+

2Sj
1x2

+
exj − c

d


and (43)

0 ≥


−

µj

21x
−

Sj
1x2


, (44)

where in (43) are pointed the diagonal elements, and in (42) and (44) respectively the off-diagonal elements of P , for any
choice of a, b, σ ≥ 0 and −

c
d < r .



A.J. da Silva et al. / Journal of Computational and Applied Mathematics 297 (2016) 98–116 107

Fig. 4. Zero-coupon bond prices—fully implicit method.

Fig. 4 exhibits the spurious oscillating solution for a zero-coupon bond price with maturity in two years and parameters
a = 0.8, b = 0.1 and σ = 0.005.

It is now convenient to introduce the following definitions (see [33,30,34]).

Definition 1. A matrix whose off-diagonal entries are less than or equal to zero is called Z-matrix. Formally:

Zn×n
= {Q = (qij) ∈ Rn×n

: qij ≤ 0, i ≠ j}.

Proposition 1. If a matrix Q ∈ Zn×n, then the following assertions are equivalent to ‘‘Q is a non-singular M-matrix’’.

– Q has all positive diagonal elements and there exists a positive diagonalmatrixW such that QW is strictly diagonally dominant;
– Q is inverse-positive, that is, A−1 exists and A−1

≥ 0;
– Q is positive stable, that is, the real part of each eigenvalue of Q is positive.

Therefore, we cannot guarantee that the matrix P of the PDE (40) is an M-matrix ∀ σ , b and a, 1x ≪ 1. In the case of
a non-M-matrix, there are some negative entries of P−1 leading to an oscillatory solution. So again, as in the cases of the
previous methods, the fully implicit scheme does not lead to reliable pricing estimates of interest-rate derivatives.

5. Modified Fully Implicit method

To overcome the restrictions of the fully implicit method, we introduce a function f = f (σ , b, a, c, x, 1r) appropriately
chosen, given by

f =
1
2δ


a(b + c + 1)

ex
+

d2σ 2

2e2x
+ 1


, (45)

which, in conjunction with a new reaction term prescribed as

Gj =


exj − c

d


un+1
j + 4fun+1

j − 2f (un+1
j−1 + un+1

j+1 ), (46)

yields the modified version of the PDE (40), namely

∂−

t un+1
j + µj∂

0
x u

n+1
j + Sj∂+

x ∂−

x un+1
j = Gj (47)

and the corresponding system of equations

un+1
=

1
1t

P̄−1(un
+ D). (48)

In this case P̄ = (p̄ij) turns out to be such that

p̄j,j−1 ≤ 0, (49)
p̄j,j > 0 and (50)

p̄j,j+1 ≤ 0. (51)
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Fig. 5. Zero-coupon bond price. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Moreover,

p̄j,j >

j≠i

|p̄i,j|, (52)

so that P̄ becomes an M-matrix.
A similar idea is suggested in [19] for the stock-options case. The following proposition shows that the modified version

of the fully implicit scheme – given by (40) with its right side replaced by (46) – is in fact free of spurious oscillations.

Theorem 1. The matrix P̄ satisfies inequalities (49)–(51) and is strictly diagonally dominant.

Proof. Relying on the modified version of the fully implicit method associated with PDE (25), and bearing in mind that µ
and S are given by (38) and (39), it follows that

0 ≥


µj

21x
−

Sj
1x2

− 2fj


, (53)

0 <


1

1t
+

2Sj
1x2

+
exj − c

d
+ 4fj


and (54)

0 ≥


−

µj

21x
−

Sj
1x2

− 2fj


; (55)

for any choice of a, b, σ ≥ 0, −
c
d < r and some δ ≪ 1. �

From Proposition 1, P̄ is an M-matrix, so that P̄−1
≥ 0. So, the solution u provided by the finite difference scheme (47) is

positivity-preserving, being the initial conditions a nonnegative vector, hence negative prices are precluded.

5.1. Stability

We show that u is stable and a non-increasing function in t ∈ [0, T ] (simulation results are provided in Figs. 5 and 12).
First, let us state an auxiliary lemma and a result of conditional stability.

Lemma 1. Assume that Q is diagonally dominant by rows and set α = mink(|qkk| −


j≠k |qkj|). Then ∥Q−1
∥∞ < 1

α
.

Proof. See [35]. �

Proposition 2. Under the (very) mild condition

0 <
2S
1x2

+
ex − c

d
+ 4f −

µ

1x
(56)

the solution u is stable. So, it is spurious oscillations free and we say that u is conditionally stable.

Proof. The left side of

1
1t

1 1
1t +

2S
1x2

+
ex−c
d + 4f −

µ

1x

 < 1 (57)
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is an upper bound for the spectral radius of the iteration matrix
 1

1t P̄
−1

. So, (57) suffices to render u stable Moreover, (56)

implies (57). �

We have that (56) expresses no interplay between 1x and 1t . Hence, we can say that the method is unconditionally
stablewith respect to1t , whenever1x satisfies (56). Actually, this fact strongly suggests that themethod is unconditionally
stable. We performed several computational tests using a variety of parameters and, in all of them, (56) was satisfied by a
huge margin. Thus, for all practical means, we can assert that the method is unconditionally stable. Additional support for
the assertion of unconditional stability is provided by the strong sufficient condition

0 <
2S
1x2

+ r iff min r ≤ r < 0. (58)

To see that (58) indeed implies (56), notice that S and 4f − µ/1x are nonnegative numbers and (56) is always satisfied
whenever r ≥ 0 (also recall that r = (ex − c)/d). Note that the negative values of r – which typically occur in the Vasicek
scenario – are the focus in (58). Expression (58) also writes

σ

1x
>

r +

c
d

√
−r iff min r ≤ r < 0, (59)

where we use the fact that S =
σ 2

2(r+ c
d )2

(see (39)). If we consider the extended range −
c
d ≤ r < 0, we can easily derive the

point of maximum of the right side of (59) given by r∗
= −

c
3d , so (59) becomes

1x <
σ

2
 c
3d

3/2 . (60)

This (strong) sufficient condition is very simple and only depends on σ and the parameters used to adjust the negative range
of r , namely, c and d. It clearly shows that low volatilities are more difficult to handle. Again, we entered several values of
σ , c and d, and the values allowed for 1xwere far beyond the usually required ones.

Proposition 3. The solution of (48) satisfies the discrete maximum principle.

Proof. Applying the sup-norm ∥ · ∥∞, using Lemma 1 and the conditional stability property of u, we have

∥un+1
∥∞ =

1
1t

∥P̄−1un
∥∞

≤
1

1t
1 1

1t +
2S

1x2
+

ex−c
d + 4f −

µ

1x

∥un
∥∞

≤ ∥un
∥∞. �

5.2. Consistency and convergence

Theorem 2. The Modified Fully Implicit method associated with PDE (47) is of order of accuracy O(1t, 1x2).

Proof. The term (46) gives

(exj − c)
d

u(tn, xj) +
(exj − c)

d
1t

∂u
∂t

(ξt , x) − f (1x)2


∂2u
∂x2

(t, ξ ′

x) +
∂2u
∂x2

(t, ξ ′′

x )


,

where tn ≤ ξt ≤ tn+1t , xj ≤ ξ ′
x ≤ xj+1x and xj−1x ≤ ξ ′′

x ≤ xj. It follows that (46) has order of accuracy O(1t, 1x2). In turn,
relying on the definitions of ∂−

t un+1
j , ∂0

x u
n+1
j and ∂−

x ∂+
x un+1

j , it follows that the left side of (40) also has order of accuracy
O(1t, 1x2). �

The Lax Theorem states that if a finite difference scheme is consistent (e.g., in the sense of Theorem 2) and stable, then it
is convergent [18].

6. Numerical results

In this section, we address two pricing problems in the Vasicek dynamic. The first aims to demonstrate the good
performance and the properties of the Modified Fully Implicit method as described in Section 5, addressing a zero-coupon
bond and the IDI option. The second aims a comparative analysis addressing the prices of the IDI option according to our
approach and that of [21].
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Table 1
Modified Fully Implicit method spatial convergence rate.

N 1x ϵ − log(1x) − log(ϵ)

200 0.02482 0.01295 1.60509 1.88770
400 0.01244 0.00327 1.90504 2.48572
600 0.00830 0.00142 2.08078 2.84924
800 0.00623 0.00078 2.20553 3.10777

6.1. Convergence study

Assuming a continuous compound interest rate, we calculate the discrepancy between the price P(rj, 0, T ) of the bond
given by the closed-form expression (9) and the price u0

j given by the Modified Fully Implicit method with the prescribed
terminal condition of a zero-coupon bond. The solutions are respectively represented by the dashed dark line and red line
in Fig. 5. The error measure we adopt is

ϵ =

 1
N

N
j=1

(u0
j − P(rj, 0, T ))2, (61)

where the subscript j assigns the spatial grid of the interest rates.
In the simulationsweuse1t = 0.00099206 (four time-steps per day) and δ = 11×10−4. Table 1 illustrates discrepancies

for solutions with 200, 400, 600 and 800 spatial grid points and parameters set as a = 0.1, b = 0.1 and σ = 0.02 in a
1-year zero-coupon bond price problem. Columns 2 and 3 show that if ∆ → 0 then ϵx → 0.

To numerically estimate the order of convergence of the method, let us find q such that

ϵ ≤ C1xq, (62)

for constant C .
The (log× log) plot of Fig. 6 stems from Table 1 and shows that q = 2.03 in the domain of interest r ∈ (−0.25, 0.65)

implied by x ∈ (−5, −0.01), c = 0.3 and d = 1.1.
We also tested the convergence rate of the method using the IDI option assuming daily updating. Since in this case the

limit value of the price is not available, we look at ratios of differences between u0
J computed for different J ’s, given by

q = log2

 u0
J − u0

J
2

u0
J
2

− u0
J
4

 . (63)

For rj = 0.1 and starting with J = 1600 grid points we obtained q = 2.02. To confirm the performance of the method for
the case where the limit value of the price is not available, we replicated the above procedure for the zero-coupon bond (we
did not use the prices given by the closed-form expression (9)). Again, a consistent rate was obtained, namely q = 1.997.

All the results above corroborate the early consistency analysis and the method’s good performance.
As a lead-in to the next section, where our main results appear, we consider two zero-coupon bond pricing problems,

where the sole difference between them is adopting a daily compounded interest in one problem and a continuously
compounded interest in the other. Again the Modified Fully Implicit method is applied, now in conjunction with the
algorithm described at the end of Section 3. The comparison can be seen in Fig. 5 where the blue line refers to the daily
compounded case and the red line (afore-mentioned) stands for the continuously compounded case. In this particular
example, the relative discrepancy (defined in the same lines as in Eq. (65)) did not exceed 10% in the whole interest rate
domain. In contrast to this, we will see that the prices in the IDI case differ significantly if one adopts the continuous or the
discrete updating scheme.

The small discrepancies we found here are in fact a well known result when interest rates are deterministic. However,
we believe this is the first time this result is observed for stochastic interest rates following the Vasicek dynamic.

We remind that, in the zero-coupon bond case, the discrete compound yields can be straightforwardly obtained from the
continuous compounding case. However, this is not the case when dealing with complex types of interest rate derivatives
(e.g., callable bonds). For these types of derivatives, the PDE technique using discretely compounded interest rates can indeed
be helpful.

6.2. Pricing

We compare the prices of IDI call options under the Vasicek model, considering the following approaches:

• We obtain the estimates of the prices according to the Modified Fully Implicit method (45) and the coordinate
transformation (23)–(25), and consider updating the IDI path discretely. This updating rule allows us to track realistically
the evolution of the index and to achieve the exact pay-off representation.
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Fig. 6. Convergence rate analysis.

Fig. 7. IDI call option prices. Relative discrepancy = 45.88% at r = 10%.

Fig. 8. IDI call option prices. Relative discrepancy = 50.96% at r = 10%.

• We solve the closed form expressions given in [21] for prices, assuming a continuously compounded interest rate, which
is actually an idealization for mathematical tractability.

The numerical results of cases I, II, III and IV are summarized in Fig. 7, 8, 9, 10, respectively, where we set a = 0.1265,
b = 0.0802 and σ = 0.0218 in the Vasicek model. This calibration stemmed from the Brazilian overnight interest rate
data from 2002 to 2014 and was produced via the General Method of Moments [36]. The initial value of the IDI is 100.000
points. TheModified Fully Implicit method is usedwith 800 grid points for the ID index and a spatial mesh of 400 grid points
for the interest rate. We use 5 steps per day with a daily jump condition at the last step, which satisfies the mild stability
conditions required. Cases I and II (resp. cases III and IV) refer to a call option (resp. put option). Cases I and III (resp. II and
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Fig. 9. IDI put option prices. Relative discrepancy = 54.8% at r = 10%.

Fig. 10. IDI call option prices. Relative discrepancy = 38.62% at r = 10%.

Fig. 11. IDI call option prices with meshes of 100, 150, 250, 400 and 600 points: Strike = 100 900, σ = 0.1, a = 0.2, b = 0.1, T = 20 days.

IV) have maturity in 252 days (resp. 504 days) and strike K = 109.550 points (resp. K = 122.000 points). In the discretely
compounding approach, we use the terminal condition given by (22) (the option’s payoff) to solve the prices of the put (in
lieu of that given by (21) of the call). For the continuous compound approach, we use the put–call parity to produce the
prices Π of the put, namely,

Π(rj, t, T ) = C(rj, t, T ) + K · P(rj, t, T ) − y(0), (64)

where y(0) = 100.00, P(rj, t, T ) is the zero-coupon price given by (9) and C(rj, t, T ) is the IDI call option price given by (6).
Case V is summarized in Fig. 11, where we set a = 0.2, b = 0.1 and σ = 0.1 in the Vasicek model and a short maturity of
20 days. We set several refinements in this case for spatial mesh sizes with 50; 150; 250; 400 and 600 points.
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Fig. 12. How the prices of an IDI call option evolve in time (using the Modified Fully Implicit scheme). IDI(0) = 100 000, Strike = 100 900, a = 0.5, b =

0.1, σ = 0.05, T = 40 days.

The first thing to notice from the numerical data is that, unlike the zero-coupon scenario previously mentioned, the
relative discrepancy between prices obtained from the approaches under concern are not negligible at all, even with low
volatilities (cases I–IV) and short maturities (case V). The relative discrepancy between prices is here defined as

θj =
(η(rj, 0, T ) − u0

j )

u0
j

, (65)

where η stands for C or Π . So, for rj = 10%, we have θj = 45.88%, θj = 50.96%, θj = 54.8% and θj = 38.6% for cases I–V,
in that order. We recall that in the zero-coupon scenario, such relative difference did not exceed 10%. So, using one or other
method makes a difference. Notice that neither price represents a benchmark—which should correspond to a framework
that models the IDI discretely and provides the exact solution for the price. However, the Modified Fully Implicit method
can be refined to approach the benchmark. On the other hand, any short rate modeling framework which adopts the IDI
continuously compounded hypothesis – which is the case of [21] – is obviously inconsistent with refinements with respect
to the index updating, so they cannot approach the benchmark. Recalling that the discrete updating procedure for calls
(resp. puts) produces a cheaper (resp. more expensive) payoff than the continuous updating one, we expect prices to be
cheaper (resp. more expensive) in the former than the latter procedure, for a reasonable mesh refinement. Figs. 7–11 show
this indeed. Fig. 11 shows the downward movement of the prices as the spatial mesh sizes are refined in a sequence of
100, 150, 250, 400 and 600 points, leading the solutions towards cheaper call option prices, which actually represent the
benchmark. So, evenwith reasonably refinedmeshes, our call prices are cheaper than those of the continuous updating case
of [21]. As the mesh is refined, our prices move further downwards, approaching the benchmark and simultaneously move
further away from the prices of [21].

With a view to showing how prices evolve in time, Fig. 12 provides the prices of an IDI call option considering a sequence
of 8 time changes. Again, we change the problem parameters, now to a = 0.5, b = 0.1, σ = 0.05 and T = 40. We do this
to show that the method is not biased toward any specific parametrization. The time sequence starts from t = 0 and ends
at t = 40 days—where prices actually coincide with the option’s payoff, in this case with strike K = 100.900. As above, the
Modified Fully Implicit method is used with 800 grid points for the ID index and a spatial mesh of 400 grid points for the
interest rate. The example gives another indication of fitness of the method, in that a sort of rotation of the solution surface
is observed as t varies. This is an intrinsic feature of Asian-style options in any market (see [37]).

6.3. Hedging

Before we present the main result of this section, which is summarized in Fig. 16, it is worth addressing some aspects –
with respect to a certain replicating portfolio and the hedging error – which are inherent to the interest rate scenario and
differmuch from those of stockmarkets. Themotivation for doing so is that notmuch information of this kind is found in the
fixed income literature. Also, parallel to the conclusions we obtained in Section 6.2, it gives us a glimpse on how the results
may bemisleading using the classical approach. In what follows in this section, we set the initial IDI value IDI(0) = 100.000,
strike K = 109 500, the Vasicek parameters a = 0.1265, b = 0.0802 and σ = 0.0218, and maturity in T = 252 days.

So, we create a discrete (one daily rebalance) self financing delta hedging strategy based on the zero coupon bond, in the
short position of the IDI call option. Figs. 13 and 14 address the continuous updating of the ID index. The classical tools are
used to build the strategy, namely the prices given by Eq. (6) and the deltas according to (14). Fig. 13 and the left panel of
Fig. 14 illustrate one realization of the hedging strategy.

The left panel of Fig. 13 shows that the values of the delta-derived replicating portfolio tracks very well the option prices
over time. The right panel shows the delta values while the left panel of Fig. 14 shows the borrowings in the bank account.
The delta in the negative fieldmeans that the tradermust sell |∆| bondswhose unit value is P(t, T ) and deposit the proceeds
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Fig. 13. Continuous updating of the IDI & [21]: Replicating portfolio and delta values.

Fig. 14. Continuous updating of the IDI & [21]: bank account and hedging error.

in a bank account earning the risk-free DI rate. This is the opposite to what occurs in other interest rate derivatives (e.g.,
bond options), since there the issuer must settle his/her liability by delivering an asset – the bond – while in the IDI option
he/she must deliver money in cash.

The right panel of Fig. 14 shows the hedging error, which denotes the difference between the portfolio value at the
expiration time and the payoff of the IDI call. This error stems from the discreteness of the hedging strategy. The histogram in
the figure was generated from 10.000 Monte Carlo simulations. Its mean is approximately zero and, due to the discreteness
of the strategy, the trader will have to deal with gains and losses that have an approximate normal distribution to settle
his/her liability. The good performance observed is an expected result, since the closed form expressions of [21] correspond
to this exact modeling framework, i.e., the Vasicek model and a continuously compounded ID index. In contrast, the use of
the closed form expressions when a discretely updating of the index is adopted – and this is actually the real life situation
– produces a relative hedging error around 40% which is in accordance with the experiments of Section 6.2. This is a very
large error indeed; traders are usually aware of this and perform some compensations in the option prices. Fig. 15 illustrates
these aspects.

Let us now return to the main subject of the section, which refers to the comparison of the deltas obtained according to
the modeling frameworks described at the beginning of Section 6.2, i.e.,

– Under the assumption of a discrete updating of the ID index, we use the Modified Fully Implicit method with a spatial
mesh size of 400 points to obtain the price estimates u of the IDI option, in conjunctionwith Eq. (16) to calculate the delta.
A fourth order accurate central finite difference scheme was used to obtain numerically the derivatives for Eq. (16).

– We use the closed form expression (Eq. (6)) for the prices and calculate the delta according to (14), in which case a
continuous updating scheme is assumed.

Fig. 16 illustrates the analytical and numerical deltas with respect to the short-term rate at time t . The discrepancies
exhibited strongly suggest that the updating of cumulative interest rate indexes should be treated realistically when pricing
and hedging options.
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Fig. 15. IDI call option hedging error: discrete updating of the IDI & [21].

Fig. 16. IDI call option deltas.

7. Conclusions

We provide a new numerical finite difference method for pricing and hedging derivatives in the fixed income markets.
The Modified Fully Implicit (interest rate) method—as we call it, is unconditionally stable and consistent, and at the same
time exhibits high accuracy in obtaining estimates of prices and hedges. These qualities are preserved in thewhole spectrum
of volatilities that occurs in the interest rate dynamics.

We benefited from the good results that the numerical method gives, allowing the updating procedure of the interest to
be discrete – which in fact is the realistic approach – rather than continuous. The results that we have obtained suggest that
this scheme, which corresponds to obtaining estimates of prices for the‘exact’ problem (referring to the discrete updating
procedure of Asian options), is more efficient than that of obtaining ‘exact’ prices – via closed form expressions – for the
approximate problem (referring to the continuous updating procedure).

We considered the Vasicek model in this work. The method however can be adapted to other types of models (e.g., CIR
and Sandmann–Sondermann) with modifications of modest proportions. A complementary study on this subject matter is
under way.
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