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Options on individual underlyings are very liquid in a variety 
of markets. In many markets, moreover, options on linear combina-
tions of underlyings are also reasonably liquid. Of primary interest to 
us are markets with liquid spread options (that is, options on the dif-
ference of two underlyings), such as constant maturity swap (CMS) 
spread options in interest rate markets. Our discussion also naturally 
extends to other important examples such as foreign exchange markets 
with cross-rate options and equity markets with basket options, but we 
will concentrate on spread options from now on.

When spread options are available, it becomes important to be able to 
construct a joint distribution of two underlyings that is consistent with 
the spread option prices (and, naturally, with the marginal distribu-
tions of the underlyings themselves). This problem has attracted 
increased attention recently, with possible constructions proposed in 
Andersen & Piterbarg (2010) and Austing (2011). While it is very 
useful to be able to construct such distributions, these approaches 
suffer from at least two weaknesses. First, they are not guaranteed to 
produce a valid, in particular non-negative, probability density. And 
second, if these approaches fail, it does not necessarily mean that the 
joint distribution does not exist.

In this article, we derive necessary and sufficient conditions for the 
joint distribution with required properties to exist. The conditions 
turn out to have a deep financial meaning and can be formulated in 
terms of existence or absence of arbitrage among payouts of a certain 
type. From a practical perspective, we develop numerical methods to 
construct such joint distributions when they exist, and to find among 
all of them those that satisfy certain extremality criteria. Finally, we 

develop numerical methods to construct payouts that realise arbitrage 
in the case where a joint distribution does not exist.

It should be noted that our results rely on the existence of a liquid 
market in options on spread options of all strikes, and also assume no 
bid-ask spread. These assumptions clearly do not hold in practice. 
Nevertheless, such an idealised set-up is still valuable to develop a 
deeper understanding of the problem. Moreover, many trading desks 
mark spread options for a continuum of strikes for internal risk man-
agement, and the tools we develop could be used to test these marks 
for internal inconsistencies.

Existence
Let X and Y be two random variables representing two underlyings, 
and let S represent their spread. We assume their distributions are 
known from the options markets on X, Y and S.

Let f(x), g(y) be two functions; we think of them as defining payouts 
on X and Y correspondingly. In particular, the value of an option on X 
with payout f(x) is E( f(X)) (here and everywhere discounting is 
ignored as we consider a fixed time horizon).

Let us define the spread envelope of f, g by:

 
E f ,g z( ) = max

x−y=z
f x( ) + g y( ){ }

The meaning of the spread envelope should be clear – it is the small-
est function of x – y only that dominates the function f(x) + g(y) for 
all x, y:

Spread options, Farkas’s lemma 
and linear programming

How a joint distribution is constructed with given marginals is key to consistently pricing 
spread options. A classical result from probability ensures this can be done consistently 

with the principle of no arbitrage – and an easily implementable numerical approach can 
provide the opportunity for spotting arbitrage opportunities.
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E f ,g z( ) =min h z( ) : f x( ) + g y( ) ≤ h x − y( ){ }

If (X, Y) have a joint distribution such that X – Y has the same distri-
bution as S, then we would clearly have:

 
E f X( )( )+ E g Y( )( ) ≤ E E f ,g X −Y( )( )

since by the no-arbitrage principle, if one payout is dominated by 
another, the value of the corresponding option is less. It turns out that 
the reverse is also true, and that is the main theoretical result of this 
article.
■ Theorem. Let three random variables X, Y, S be given. If for any 
continuous, bounded payouts f(⋅), g(⋅) we have that:

 
E f X( )( )+ E g Y( )( ) ≤ E E f ,g S( )( )

then, and only then, there exists a joint distribution of (X, Y) such that 
it has marginals X, Y and the distribution of X – Y is the same as S.

As promised above, the result has a clear financial interpretation. It 
states that if we cannot construct an arbitrage that involves an arbitrary 
payout f of X only, g of Y only and their spread envelope (a function of 
S only), then a joint distribution exists. It can also be seen as a conse-
quence of the fundamental theorem of asset pricing (see Duffie, 2001).

We provide a direct proof in a discrete setting in the Appendix. The 
proof is based on the so-called Farkas’s lemma from convexity theory 
(see Farkas, 1902). The general statement of the theorem follows from 
the results in Gaffke & Rüschendorf (1984).

This result generalises ideas behind triangle arbitrage in spread 
options that is studied in McCloud (2011). Triangle arbitrage is based 
on the observation that:

	

X −Kx( )+ − Y −Ky( )+ ≤ X −Y − Kx −Ky( )( )+

≤ X −Kx( )+ + Ky −Y( )+ 	
(1)

for any strikes Kx, Ky, so if a joint distribution exists then the options 
on the spread must satisfy certain lower and upper bounds that depend 
on marginal distributions. Moreover, these bounds can be shown to be 
given by the Fréchet bounds on the copula that joins X and Y together 
(see McCloud, 2011, for details). The connection with our result is 
seen from the fact that the triangle inequality (1) is a special case of a 
spread envelope construction (for the lower bound we would take f(x) 
= (x – Kx)

+ and g(y) = –(y – Ky)
+ and similar for the upper bound). 

Absence of triangle arbitrage is, however, not sufficient for the exist-
ence of the joint distribution. In other words, we may have a situation 

where triangle arbitrage is absent but more general spread envelope 
arbitrage still exists1 (see Piterbarg, 2011, and below). It is an open 
question whether it is sufficient to check the no-arbitrage conditions in 
our theorem for only a subset of functions f, g.

Spread options by linear programming
Our theorem gives us a nice theoretical result with a strong financial 
interpretation, but from a practical perspective it is not very useful as it 
would be impossible to check for spread envelope arbitrage for all the 
payouts. Here, we develop a practical approach to the existence prob-
lem and related questions. Given that in actual computer calculations 
we always work with discretised quantities, we assume that X, Y are 
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discrete, with the support on the common grid {i/N, i = 0, ... , N}. We 
assume that S is on the grid ({i – N)/N, i = 0, ... , 2N}. Let us denote 
the distributions of the three random variables by:

ri = P Y = N − i( ) / N( )
cj = P X = j / N( )

dk = P S = k − N( ) / N( )

with i, j = 0, ... , N and k = 0, ... , 2N. Vectors r, c, d are non-negative 
with the elements summing up to one. Note that we label rows ri in 

reverse order (that is, r0 corresponds to the maximum value of Y) for 
convenience and to reconcile the Cartesian view of the world (with the 
y-axis pointing upward) with the matrix indexing on computers where 
the row index increases in the downward direction.
■ Existence. We can reformulate the existence question in the dis-
crete setting as follows. Let us see under what conditions on r, c, d 
there exists a matrix p = {pi,j}

N
i,j=0 such that:

	 pi, j ≥ 0, i, j = 0,...,N 	 (2)

	
pi, j = ri , i = 0,...,N

j=0

N
∑

	
(3)
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pi, j = cj , j = 0,...,N

i=0

N
∑

	
(4)

	
pi, j = dk , k = 0,...,2N

i, j( )∈Dk

∑
	

(5)

where Dk is the kth diagonal:

Dk = i, j( ) : i + j = k,0 ≤ i, j ≤ N{ }, k = 0,...,2N

While a theoretical answer is given by a discrete version of our theo-
rem, ideas behind linear programming (LP) (see Gass, 2010) give us a 
way to find a practical solution. Recall that LP is concerned with opti-
mising a linear function given a set of linear equality and inequality 
constraints. Since (2)–(5) are nothing but a set of linear equality and 
inequality constraints, the problem of finding p is just a problem of 
finding a feasible solution to an LP problem, that is, some point in the 
solution set that is not necessarily optimal. To find a feasible solution, 
another LP problem can be set up using so-called slack variables qi, i = 
0, ... , 4N + 2, where we have one for each row, column and diagonal 
constraint in (3)–(5). So we look for {pi,j}, {qi} such that:

qi →min
i=0

4N+2
∑

subject to pi, j ≥ 0, qi ≥ 0

pi, j+qi = ri , pi, j+qN+1+ j
i=0

N
∑

j=0

N
∑ = cj , pi, j+q2N+2+k = dk

i, j( )∈Dk

∑
	

(6)

The slack variables are underlined. LP problems can be solved by the 
simplex method that, basically, goes vertex to vertex improving the 
objective function. A starting point to (6) is easy to find – we can just 
take pi,j = 0 and:

We prove a discrete version of our theorem (see main text for notation). Let vectors 

c, r, d be given. We prove that if for any vectors f, g:

	
f jc j + giri ≤ dk max

ʹ′i , ʹ′j( )∈Dkk
∑

i
∑

j
∑ f ʹ′j + g ʹ′i{ }

	
(11)

then there exists a matrix p that satisfies (2)–(5).

The proof is by contradiction. Let P be the set of all matrices with non-negative 

entries, P = R+
(N+1)×(N+1) ⊂ R(N+1)×(N+1), and let S be the subset of P of matrices whose 

diagonal sums (that is, sums over Dk, k = 0, ... , 2N) are equal to d. Clearly S is not 

empty. Let R be the operator from R(N+1)×(N+1) into RN+1 that corresponds to summing 

matrix entries by row, and the same for C for columns. Let D ⊂ P be the set of all 

matrices whose row and column sums are equal to vectors r, c correspondingly, 

that is, D = {p ∈ P : Rp = r, Cp = c}. Assume D ∩ S = ∅ (that is, there is no matrix 

whose rows sum up to r, columns sum up to c and diagonals sum up to d). The set 

S is convex and so is (RS, CS) ⊂ RN+1 × RN+1. Hence there exists a hyperplane that 

separates (CS, RS) and (c, r). That is, there exist f, g ∈ RN+1 and a ∈ R such that:

  f
TCp+ gTRp < α < f Tc+ gTr for any p ∈ S

or, in scalar notation:

	  

f j pi, j + gi pi, j < α < f jc j + giri for any p ∈ S
i
∑

j
∑

j
∑

i
∑

i
∑

j
∑

	
(12)

The left-hand side can be rewritten as:

	
f j pi, j + gi pi, j = pi, j f j + gi( )

i, j
∑

j
∑

i
∑

i
∑

j
∑

	
(13)

Define p by the condition:

pi, j =
dk , i, j( ) ∈ Dk and f j + gi =max ʹ′i , ʹ′j( )∈Dk

f ʹ′j + g ʹ′i{ }
0, otherwise

⎧
⎨
⎪

⎩⎪

(if the max is not unique we just choose exactly one of the maximum points). 

Clearly p such defined has non-negative entries and each diagonal Dk has all 

zeros except one element that is equal to dk. Hence p ∈ S and (12) holds for 

such p. Substituting, using (13) and the definition of p, we obtain:

dk max
ʹ′i , ʹ′j( )∈Dk

f ʹ′j + g ʹ′i{ } < α < f jc j + giri
i
∑

j
∑

k
∑

which contradicts (11).

Appendix: proof of theorem
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qi =
ri i ≤ N

ci−N−1 N +1≤ i ≤ 2N +1
di−2N−2 2N + 2 ≤ i

⎧

⎨
⎪⎪

⎩
⎪
⎪

Then running the simplex method we will find the optimal solution to 
(6). If it satisfies qi = 0 for all i, then the original problem (2)–(5) has 
a solution given by {pi,j}. If not, the solution to (2)–(5) does not exist. 
The simplex algorithm is very efficient and can easily handle the case 
of N = 100, say (implying about 10,000 variables to optimise over).
■ Extremal solutions. Having constructed a solution, the question 
then becomes how we can find all solutions or, failing that, solutions 
with special properties. Of particular interest in that regard are solutions 
that maximise or minimise the value of some options on X, Y that are 
not locked in by the construction, that is, options other than on X, Y or 
X – Y. For example, consider options on the index X + Y. An important 
practical question is what are the potential bounds on the value of such 
an option given that the marginals and all the spread options (options 
on X – Y) are fixed. Here, too, LP gives us a practical answer.

The value of an option with the payout (X + Y – Kidx)
+ is a linear 

function in p:

T p( ) = j
N
+
N − i
N

−Kidx
⎛

⎝
⎜

⎞

⎠
⎟
+

i, j=0

N
∑ pi, j

Hence, we can find the joint density p that satisfies constraints (2)–(5) 
and maximises the value of the index option (for a given strike Kidx) by 
solving the following LP problem:

	 T p( ) →max, subject to constraints 2( ) − 5( ) 	 (7)

Likewise, the density that gives the lowest value to the index option is 
found by replacing max with min in (7). In both cases the simplex 
algorithm can start from the feasible solution found above. The dif-
ference in values of the index option under the two densities gives a 
measure of model uncertainty for the case when only options on 
marginals and the spread are traded.

To consider an example, we look at a test case where both X and Y 
are Gaussian with zero mean and volatility 1%, and S is Gaussian with 
volatility 0.77% (implying correlation of 70% between X and Y). 
Figure 1 shows the two densities obtained. The values of the at-the-
money index option in the two cases correspond to the implied 
Gaussian copula correlation of 9% (low option on index) and above 
100% (high option on index). The densities of the index X + Y in the 

two cases are shown in figure 2.
These figures also demonstrate an undesirable property of the sim-

plex method in that it would set as many elements of p to zero as it can 
(normally number of variables minus number of constraints). The 
resulting density can be quite spiky and unrealistic from the financial 
perspective. To obtain smoother densities we can modify our method 
and instead of the linear optimisation use quadratic programming 
(QP), where the objective function is quadratic while the constraints 
are still linear. Efficient numerical methods for QP also exist. To put 
this into practice, we would replace the objective function in (7) with 
something like:

 

T p( )+wsmooth pi, j − pi, j+1( )2
j
∑

i
∑ +L→min

where the smoothing terms penalise high local variations in the den-
sity. Figure 3 shows two extreme densities with the smoothness 
constraints and figure 4 shows the two corresponding densities of the 
index X + Y. The at-the-money index option value corresponds to the 
implied Gaussian copula correlation of 49% (low index option value) 
and 82% (high index option value).
■ Finding arbitrage. If no solution to (2)–(5) exists, our theorem 
implies that there is arbitrage that can be realised by trading in options 
on X, Y and X – Y. How do we find what positions we need to put on? 
Again, LP gives us a solution. We set up the following optimisation 
problem (a problem dual to (6)): find vectors f, g, h such that:

	
f jc j + giri − hkdk

k
∑

i
∑

j
∑ →max

	
(8)

subject to:

	 hk ≥ f ʹ′i + g ʹ′j for all ʹ′i , ʹ′j( ) ∈ Dk 	 (9)

for all k and:

	
fi , gj ≤1 for all i, j 	 (10)

The constraints (9) require the function h(S) to dominate f(X) + g(Y) 
for all values of the underlying random variables, and the set (10) is 
here to prevent infinite solutions. If the optimal value of the objective 
function in (8) is positive, then we have found arbitrage – we sell 
options with payouts f(X) and g(Y), buy the one with the payout h(S), 
get positive cash upfront (from (8)), and then have a position that can 
never result in a negative payout (from (9)). Note that by the optimal-
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ity property, the solution h will be the spread envelope of f and g.
In practice, the existence of bid-ask spreads will clearly complicate 

the construction of arbitrage strategies. While Peña, Vera & Zuluaga 
(2010) demonstrate how to add the consideration of bid-ask spreads 
to triangle arbitrage strategies (in the context of baskets on multiple 
underlyings), extending these ideas to arbitrary payouts that we con-
sider in this article appears to be difficult.

An example solution is shown in figures 5, 6 and 7. This corresponds 
to CMS spread option prices observed in November 2010 in the euro. 
The spread density does not admit triangle arbitrage (or, equivalently, 
spread option prices satisfy lower/upper Fréchet bounds) but exhibit 
more general spread envelope arbitrage. The arbitrage profit from this 
strategy is of the order of a few basis points and in practice will not be 
realisable due to liquidity costs, yet the example is valuable as it high-
lights potential arbitrage issues when marking spread option smiles.

Conclusion
We demonstrate that the existence of a joint distribution that is consist-
ent with the marginal distributions of two underlyings and the 
distribution of the spread between them is intimately linked to the pres-
ence or absence of arbitrage involving payouts on the underlyings and 
the spread – what we call the spread envelope arbitrage. We also propose 
practical numerical approaches based on LP to determine whether such 
a distribution exists. When it does exist, we show how to use LP meth-
ods to find densities satisfying certain optimality conditions; that allows 
us to quantify a measure of model uncertainty in non-spread two-
dimensional payouts. Moreover, we show how the LP methods could be 
used to find payouts that realise arbitrage when the joint distribution 
does not exist. While we focus on spread options, straightforward exten-
sions can be made to basket options and options on cross forex rates.

There remain a number of questions. In particular, can we meaning-
fully restrict the set of payouts for which we should check no-arbitrage 
conditions to guarantee the existence of a joint distribution? Or, more 
generally, is there a set of sufficient conditions for existence that is 
easier to check? Finally, is there a theoretical description, perhaps cop-
ula-like, of all distributions that match given marginals and the spread 
distribution? L&PR
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