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Abstract

Convexity arises quite naturally in financial risk management. In risk

preferences concerning random cash-flows, convexity corresponds to the

fundamental diversification principle. Convexity is a basic property also

of budget constraints both in classical linear models as well as in more

realistic models with transaction costs and constraints. Moreover, mod-

ern securities markets are based on trading protocols that result in convex

trading costs. The first part of this paper gives an introduction to cer-

tain basic concepts and principles of financial risk management in simple

optimization terms. The second part reviews some convex optimization

techniques used in mathematical and numerical analysis of financial opti-

mization problems.

1 Introduction

Financial risks can be managed by trading in financial markets. By appropriate
trading, individuals and financial institutions may modify their net cash-flows
to better conform to their risk preferences. For example, a home owner may be
able to achieve a more attractive risk profile for his future cash-flows by buying
a home insurance. Insurers, on the other hand, invest insurance premiums in fi-
nancial markets in order to optimize their net cash-flow structure resulting from
delivering insurance claims and collecting investment returns. The same prin-
ciple is behind the classical Black–Scholes–Merton option pricing framework,
where the seller of an option invests the premium in financial markets according
to an investment strategy whose return matches the option payout.

Traditionally, the main tools in mathematical finance have come from stochas-
tics but convex analysis is turning out to be equally useful. Techniques of con-
vex analysis allow for extending traditional models of financial markets to more
realistic ones with e.g. market frictions and constraints that are often encoun-
tered in practical applications. Moreover, the optimization perspective brings
in variational and computational techniques that have been successful in more
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traditional fields of applied mathematics such as partial differential equations
and operations research.

This paper gives a brief introduction to financial risk management from the
point of view of convex optimization. After a description of market models and
some basic problems in financial risk management, we give a brief review of
convex optimization techniques used in the analysis of such problems. We use
simple discrete time models which do not demand prior knowledge of stochas-
tic analysis beyond basic measure theory. In fact, many important issues can
be introduced already in a single-period setting where many risk management
problems reduce to finite-dimensional optimization problems. However, we do
allow for general probability spaces since they are needed in most models of
financial data. In dynamic settings, this results in infinite-dimensional opti-
mization problems. Certain aspects of convex optimization in markets models
with finite probability spaces are treated in Pliska [64] and King [40].

Convexity is often indispensable in mathematical and numerical analysis of
financial optimization problems. For example, general characterizations of the
no-arbitrage property of a perfectly liquid market model in terms of martingale
measures is largely based on separation theorems for convex sets; see Föllmer
and Schied [25] and Delbaen and Schachermayer [16] for comprehensive study
of the classical linear model of financial markets. Techniques of convex opti-
mization allow also for significant generalizations of the linear model. Models
with transaction costs and portfolio constraints have been studied e.g. in Davis
and Norman [15], Dermody and Prisman [18], Dermody and Rockafellar [19, 20],
Cvitanic and Karatzas [12, 13], Jouini and Kallal [35, 34], Kabanov [38], Föllmer
and Schied [24], Evstigneev, Schürger and Taksar [23], Dempster, Evstigneev
and Taksar [17], Schachermayer [71]. An extensive study of models with pro-
portional transaction costs can be found in Kabanov and Safarian [39]. The
present paper builds largely on the discrete-time market model introduced in
Pennanen [57], where convex analysis and the theory of normal integrands were
taken as the main tools of analysis. The model provides a flexible framework for
modeling portfolio constraints and transaction costs as well as certain illiquidity
effects that arise in modern securities markets.

Besides mathematical analysis, convex optimization offers computational
possibilities for risk management beyond the techniques of stochastic analysis
alone. Realistic models of risk management often require a combination of tech-
niques from stochastics and optimization. The presence of stochastic elements
in a model results in difficult, often infinite-dimensional optimization problems
that require specialized optimization techniques where, again, convexity plays
a key role.

This paper is organized as follows. Section 2 introduces certain basic prob-
lems in financial risk management using a simple one-period model of liquid
financial markets. Illiquidity effects arising in modern limit order markets is
discussed in Section 2.4. Section 3 gives dynamic extensions in a discrete time
setting. Section 4 gives an overview of convex duality in financial models. This
part illustrates the role of conjugate duality, theory of normal integrands and
recession analysis in the analysis of nonlinear market models. Section 5 outlines
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briefly some numerical techniques for stochastic optimization. The only novel
part of the paper is contained in Section 5.2, which gives an upper bound on
the information based complexity of static stochastic optimization problems.

2 Static models

Consider a financial market where a finite set J of assets can be traded. In this
section, we will consider static problems, where assets are traded only at two
dates, the present time t = 0 and some time t = 1 in the future. Moreover, we
assume that the market is perfectly liquid so that the unit prices of the traded
assets do not depend on our actions. The unit price of asset j ∈ J at time t will
be denoted by sjt . We will assume that the vector s0 = (sj0)j∈J of current prices

is known to us before we trade at time t = 0. The price vector s1 = (sj1)j∈J will
remain uncertain until time t = 1. We will model s1 as a random vector on a
probability space (Ω,F , P ). That is, s1 is an F- measurable function from Ω to
R

J . The linear space of equivalence classes of real-valued random variables will
be denoted by L0(Ω,F , P ).

Buying a portfolio x = (xj)j∈J of assets at time t = 0 costs s0 · x units of
cash. If we hold on to the portfolio, it will be worth s1 ·x at time t = 1. Clearly,
s1 · x is random. Here xj denotes the number of units of asset j ∈ J we hold.
It requires investing hj = sj0x

j units of cash in asset j at time t = 0. The value
of our portfolio at time t = 1 can be expressed r · h, where r = (rj)j∈J is the

random vector with components rj = sj1/s
j
0. While in practice, it is usually

more common to describe investments in terms of cash invested in each asset,
formulations in terms of units are sometimes more convenient in mathematical
analysis.

2.1 Asset-liability management

Consider the problem

minimize V(c− s1 · x) over x ∈ R
J ,

subject to s0 · x ≤ w, x ∈ D,
(ALM)

where w ∈ R is a given initial wealth, D ⊆ R
J describes portfolio constraints,

c ∈ L0(Ω,F , P ) is a random amount of cash (a claim) the agent must de-
liver at time t = 1 and the function V : L0(Ω,F , P ) → R measures the
“risk/disutility/regret” from the random net expenditure c−s1 ·x at time t = 1.
Problem (ALM) can be viewed as an asset-liability management problem where
one is trying to find a portfolio x of assets whose value matches the liabilities
described by c optimally as measured by V. We allow c to take arbitrary real
values so it may describe costs as well as income.

We will assume throughout that D is a convex set containing the origin
and that V is monotonic, normalized and convex. Monotonicity means that
V(c1) ≤ V(c2) whenever c1 ≤ c2 almost surely, i.e. one always prefers more
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cash. Normalization means that V(0) = 0. It is posed mainly for notational
convenience. As long as 0 ∈ domV, normalization can be achieved by adding a
constant to the objective. Convexity is one of the basic axioms of risk measures;
see e.g. Artzner, Delbaen, Eber and Heath [1], Föllmer and Schied [25], Pflug
and Römisch [63] or Rockafellar [68] for general discussions on quantitative risk
measurement and description of risk preferences. Here, however, the values of
V need not reflect the present values of uncertain cash-flows. Such values will
be studied in Sections 2.2 and 2.3 below.

The classical utility maximization problem corresponds to V(c) = −Eu(−c),
where E denotes the expectation and u is a concave nondecreasing function on
the real line.1 When V(c) = infα E[c + λ|c − α|2] for a positive scalar λ, we
recover the classical mean-variance criterion of Markowitz [46]. It should be
noted, however, that the mean-variance criterion is not monotonic. One could
also take

V(c) = inf
α∈R

{α+ Ev(c− α)}

for a convex function v on R as proposed by Ben-Tal and Teboulle [5, 6]. This
covers the mean-variance formulation as well as the Conditional Value at Risk
(choose v(c) = c+λ|c|2 and v(c) = max{c, 0}/(1−γ), respectively); see Rockafel-
lar and Uryasev [67, 68]. The greatest among all convex monotonic normalized
functions on L0 is2

V = δL0
−

, (1)

where L0
− := {c ∈ L0(Ω,F , P ) | c ≤ 0 P -almost surely}. This corresponds to a

completely risk averse agent who deems all losses unacceptable. Note that (1)
can be expressed as V(c) = −Eu(−c) with u = δR+

.
Problem (ALM) depends essentially on the agent’s subjective views and

preferences described by the probability distribution P and the function V,
respectively. The optimum value and solutions of (ALM) depend also on the
agent’s financial position as described by the initial wealth w and the liabilities c.
In pricing and hedging of claims as well as in determining capital requirements
for financial liabilities one is concerned with how the risk profile depends on a
given financial position. We will denote the optimum value of (ALM) by

ϕ(w, c) := inf (ALM)

The convexity of D and V imply that (ALM) is a convex optimization prob-
lem. Indeed, the objective is the composition of V with the linear function
x 7→ s1 ·x from R

J to L0(Ω,F , P ) so it is convex as a function of x. In the most
risk averse case with (1), we have

ϕ(w, c) = δC(w, c),

1Throughout, we define the expectation of a random variable as +∞ unless its positive
part has a finite expectation. The expectation is then well-defined for any random variable.

2Here and in what follows δC denotes the indicator function of a set C: δC(x) = 0 if x ∈ C

and δC(x) = +∞ otherwise.
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where

C = {(w, c) ∈ R× L0 | ∃x ∈ D : s0 · x ≤ w, c ≤ s1 · x P -a.s.}.

On the other hand, the value function can always be written in terms of C as

ϕ(w, c) = inf
d
{V(c− d) | (w, d) ∈ C} = inf

d
{V(d) | (w, c− d) ∈ C}.

The following simple fact turns out to have important consequences in fi-
nancial risk management.

Lemma 1 The value function ϕ is convex.

Proof. We have ϕ(w, c) = infd F (w, c, d), where F (w, c, d) = V(d)+δC(w, c−d).
The convexity of V and C imply that of F , which in turn implies the convexity
of ϕ; see e.g. [66, Theorem 1]. �

2.2 Capital requirements

In risk measurement, accounting, financial reporting and supervision of financial
institutions, one is often interested in determining the least amount of capital
that would suffice for “covering” a financial liability. In the one-period model
of Section 2.1, where financial liabilities are described by random cash-flows
c ∈ L0(Ω,F , P ) at time t = 1, such an amount can be defined as the optimum
value of the problem

minimize w over w ∈ R, x ∈ R
J ,

subject to s0 · x ≤ w, x ∈ D,

V(c− s1 · x) ≤ 0.

(2)

The optimum value π0(c) gives the least amount of initial capital one needs
in order to construct a hedging strategy (a portfolio) x whose value at time
t = 1 covers a sufficient part of the claim so that the risk associated with the
residual is no higher than the risk from doing nothing at all (recall that V is
normalized: V(0) = 0). The capital requirement π0(c) defines an extended-real
valued function on the space L0(Ω,F , P ) of cash-flows at time t = 1.

In the completely risk averse case with (1), the capital requirement π0 coin-
cides with the well-known superhedging cost

πsup(c) := inf{w | ∃x ∈ D : s0 · x ≤ w, c ≤ s1 · x P -a.s.}; (3)

see [25, 16, 39] and their references. Since (1) is the greatest among all convex
monotonic normalized functions on L0(Ω,F , P ), we always have π0 ≤ πsup. On
the other hand, if we ignore the existence of financial markets and assume that
all wealth is invested “under the mattress”, we get

π0(c) = inf{w | V(c− w) ≤ 0}
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which corresponds to classical premium principles from actuarial mathematics;
see e.g. Bühlmann [9]. By an appropriate choice of a trading strategy, one
may be able to lower the capital requirement. The same principle is behind
the famous Black–Scholes–Merton option pricing model [8] where the price of
an option is defined as the least amount of initial capital that allows for the
construction of a trading strategy whose terminal value equals the payout of the
option. Unlike in the Black–Scholes–Merton model, however, exact replication
is often impossible in practice so one has to define preferences concerning the
uncertain amount of wealth remaining after the delivery of the claim.

Our formulation of (2) is also motivated by modern financial supervisory
standards, such as the Solvency II Directive 2009/138/EC of the European Par-
liament, which promotes market consistent accounting principles that recognize
the risks in both assets and liabilities. The interplay between capital require-
ments and asset management was recently studied in Artzner, Delbaen and
Koch-Medona [2]. An implementation of a dynamic version of (2) (see Sec-
tion 3.2 below) to the valuation of pension insurance liabilities is described in
Hilli, Koivu and Pennanen [30].

Under mild conditions, the capital requirement π0(c) can be expressed in
terms of the value function ϕ of (ALM). This turns out to be useful both in
duality theory as well as in numerical computations.

Proposition 2 The function π0 is convex, monotonic and π0(0) ≤ 0. More-
over,

π0(c) = inf{w |ϕ(w, c) ≤ 0}

if either of the following conditions hold:

(a) The optimum in (ALM) is attained for every w and c.

(b) ϕ(w, c) is strictly decreasing in w.

Proof. The convexity is again a simple application of [66, Theorem 1] and
monotonicity is immediate while the normalization property follows from that
of V by choosing x = 0 in (2). If w > π0(c), there exists, by definition of π0, an
x ∈ D such that s0 · x ≤ w and V(c − s1 · x) ≤ 0. This implies ϕ(w, c) ≤ 0 so
we must have π0(c) ≥ inf{w |ϕ(w, c) ≤ 0}. To prove the converse, let w ∈ R be
such that ϕ(w, c) ≤ 0. It suffices to show that π0(c) ≤ w. Under condition (a),
there is an x ∈ D such that s0 · x ≤ w and V(c− s1 · x) ≤ 0. Thus, π0(c) ≤ w.
Under condition (b), we have for every w′ > w that ϕ(w′, c) < 0 so there is an
x ∈ D such that s0 · x ≤ w′ and V(c − s1 · x) ≤ 0. Thus, π0(c) ≤ w′. Since
w′ > w was arbitrary, we get π0(c) ≤ w. �

The capital requirement π0 may be interpreted much like risk measures in
[1]. In general, however, π0 lacks the “translation-invariance” property that
π0(c + α) = π0(c) + α for all α ∈ R which is often required of risk measures;
see e.g. [25]. While convexity and monotonicity of V imply the convexity and
monotonicity of π0, the same does not hold for cash-invariance. However, as long
as long the market model allows for long positions in cash, we have π0(c+α) ≤
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π0(c)+α for all α ≥ 0 as is easily verified. Such a “cash sub-additivity” property
has been recently studied in El Karoui and Ravanelli [22] and Drapeau and
Kupper [21]. The full “translation-invariance” property holds if arbitrary long
and short positions in cash are allowed. While this is a standard assumption in
financial mathematics (see Example 4 below), it rarely holds in practice.

Condition (b) in Proposition 2 is quite natural as it means that an increase
in the initial endowment always leads to a strictly preferred net position at the
end of the holding period. A sufficient condition for (a) to hold will be given in
Theorem 6 below.

In general, the value of π0(c) depends on the the risk preferences described
by V and the probability measure P describing the future development of the
financial markets and the liabilities. These are both subjective factors. In
supervisory frameworks, they should be specified according to the supervisor’s
views.

When (2) cannot be solved exactly, the capital requirement should be defined
as the least value a financial institution can achieve in (2). It then depends also
on the trading expertise of a financial institution. Institutions that are good at
hedging their liabilities can operate at lower capital.

2.3 Pricing of contingent claims

Consider now the problem of valuing a contingent claim c ∈ L0(Ω,F , P ) from
the point of view of an agent whose current financial position is given by an
initial wealth w̄ ∈ R and liabilities c̄ ∈ L0(Ω,F , P ). This time we are not looking
for the amount of wealth that allows the agent to survive with a given liability
but a price at which he would be willing to sell a claim c. It is intuitively clear
that such a price should depend on the agent’s financial position. The financial
position matters also when buying a claim. For instance, the value of a European
option to an agent probably depends on whether the agent owns the underlying
stock. Similarly, a wheat farmer is more likely to buy a futures contract on
wheat than somebody who’s income does not depend on wheat price. In fact,
most financial instruments exist because of the differences between financial
positions of different agents.

The least cash-payment at time t = 0 that would suffice as a compensation
for delivering c at time t = 1 can be expressed in the model of Section 2.1 as

π(w̄, c̄; c) = inf{w |ϕ(w̄ + w, c̄+ c) ≤ ϕ(w̄, c̄)}, (4)

where again, ϕ(w, c) denotes the optimum value of (ALM). Any price w >
π(w̄, c̄; c) would allow the agent to optimize his portfolio so that the risk with
the new financial position (w̄+w, c̄+ c) is no greater than it would be without
the trade. This kind of indifference principles in pricing of contingent claims
go back at least to Hodges and Neuberger [32]; see Carmona [10] for a recent
account. It is easily checked that the convexity of ϕ implies that π(w̄, c̄; ·) is a
convex function on L0(Ω,F , P ).
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While π gives the least price an agent would be willing to sell a claim for,
the greatest buying price for c is given by

πb(w̄, c̄; c) = sup{w |ϕ(w̄ − w, c̄− c) ≤ ϕ(w̄, c̄)}.

Clearly, πb(w̄, c̄; c) = −π(w̄, c̄;−c). When there are no constraints, i.e. when
D = R

J , we can bound the selling and buying prices of a contingent claim
between the superhedging cost πsup(c) given by (3) and the “subhedging cost”

πinf(c) := sup{w | ∃x ∈ D : s0 · x+ w ≤ 0, c+ s1 · x ≥ 0 P -a.s.}.

Clearly, πinf(c) = −πsup(−c). A claim c ∈ L0(Ω,F , P ) is said to be replicable
(or attainable; see e.g. [25]) if there is an x ∈ R

J such that s1 · x = c almost
surely.

Proposition 3 If π(w̄, c̄; 0) ≥ 0, then

πb(w̄, c̄; c) ≤ π(w̄, c̄; c).

If there are no portfolio constraints, then

π(w̄, c̄; c) ≤ πsup(c).

In particular, when both conditions hold,

πinf(c) ≤ πb(w̄, c̄; c) ≤ π(w̄, c̄; c) ≤ πsup(c)

with equalities throughout when c is replicable.

Proof. By convexity of π(w̄, c̄; ·),

π(w̄, c̄; 0) ≤
1

2
π(w̄, c̄; c) +

1

2
π(w̄, c̄;−c)

so π(w̄, c̄; 0) ≥ 0 implies −π(w̄, c̄;−c) ≤ π(w̄, c̄; c) which is the first claim.
For any w > πsup(c), there is an x′ ∈ R

J such that s0 · x′ ≤ w and c ≤
s1 ·x

′ almost surely. When there are no constraints, we can make the change of
variables x → x− x′ in (ALM) giving

ϕ(w̄, c̄) = ϕ(w̄ + s0 · x
′, c̄+ s1 · x

′).

By monotonicity of V,

ϕ(w̄, c̄) ≥ ϕ(w̄ + w, c̄+ c)

so π(w̄, c̄; c) ≤ w. Since w > πsup(c) was arbitrary, we must have π(w̄, c̄; c) ≤
πsup(c). The last claim now follows from the fact that πb(w̄, c̄; c) = −π(w̄, c̄;−c)
and πinf(c) = −πsup(−c) and by noting that if s1 ·x = c, then πsup(c) ≤ s0 ·x ≤
πinf(c). �
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The condition π(w̄, c̄; 0) ≥ 0 means that one cannot lower the initial wealth
without affecting the optimum value of (ALM). It holds, in particular, if ϕ(w, c)
is strictly decreasing in the initial endowment w. In general, selling and buying
prices depend on an agent’s financial position (w̄, c̄), future views as described
by P and risk preferences V, all of which are subjective factors. The inequality
πb(c̄; c) ≤ π(c̄; c) just means that two agents with identical characteristics have
no incentive to trade with each other. By the second part of Proposition 3,
prices of replicable claims are given by the superhedging cost πsup which is
independent of such subjective factors. Moreover, the convexity of πsup and the
concavity of πsup imply that, on the space of replicable claims, prices are linear
in c.

The pricing principle (4) assumes that one can solve (ALM) to optimality.
In practice, this may be impossible, but (4) still makes sense if one redefines
ϕ as the lowest value one can achieve in (ALM). Besides the financial position
(w̄, c̄), future views P and risk preferences V, offered prices thus depend on an
agent’s expertise in optimizing his portfolio before and after the trade.

2.4 Illiquidity

The market model considered so far describes perfectly liquid markets where the
unit price of a security does not depend on whether we are buying or selling nor
on the quantity of the traded amount. In reality, different unit prices are asso-
ciated with buying and selling and, moreover, as the traded quantities increase,
the prices start to move against us. This is often referred to a illiquidity.

Many securities are traded in limit order markets, where market participants
submit buying or selling offers characterized by limits on quantity and unit price;
see Harris [26] for a general account of various trading protocols. When buying
securities, the quantity available at the lowest submitted selling price is finite.
When buying more, one gets the second lowest price and so on. The marginal
price c(x) of buying is thus a piecewise constant nondecreasing function of the
number x of units bought. Thus, the total cost

C(x) =

∫ x

0

c(z)dz

of buying x units is a piecewise linear convex function on R+. Analogously,
the marginal price for selling securities is a nonincreasing piecewise constant
function of the number of units sold. Thus, the total revenue R(x) of selling x
units is a piecewise linear concave function on R+.

Given the cost and revenue functions C and R, the market is “cleared” by
solving the convex optimization problem

maximize R(x)− C(x) over x ∈ R+.

Optimal solutions are characterized by the market clearing condition

∂R(x)− ∂C(x) ∋ 0,
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where the set-valued mappings ∂R : R ⇒ R and ∂C : R ⇒ R are obtained
from the marginal price functions by closing the gaps in the graphs by vertical
lines. In the terminology of convex analysis, ∂R and ∂C are the subdifferentials
of R and C; see [65]. When multiple solutions exist, the greatest solution x̄
is implemented by matching x̄ units of the most generous selling and buying
offers. The prices of the remaining selling offers are then all strictly higher than
the prices of the remaining buying offers and no more trades are possible before
new offers arrive.

The offers remaining after market clearing are recorded in the so called limit
order book. It gives the marginal prices for buying or selling a given quantity at
the best available prices. Interpreting negative purchases as sales, the marginal
prices can be incorporated into a single function x 7→ s(x) giving the marginal
price for buying positive or negative quantities of the commodity. Figure 2.4
presents an example of a marginal price curve s taken from Copenhagen stock
exchange. Since the highest buying price is lower than the lowest selling price,
the marginal price curve s is a nondecreasing piecewise constant function on R.
Consequently,

S(x) =

∫ x

0

s(z)dz

defines a piecewise linear convex function on R. It gives the cost of buying x
shares. Again, negative x is interpreted as sales and a negative cost as rev-
enue. Note that the perfectly liquid market model studied earlier corresponds
to marginal prices s(x) being independent of the traded quantity x in which
case the cost function S is linear.

Sections 2.1–2.3 could be readily extended to allow for illiquidity effects. We
will do this in the next section in a dynamic setting. Another generalization of
the classical linear model of financial markets was proposed in Kabanov [38];
see also Kabanov and Safarian [39]. In Kabanov’s model, all assets are treated
symmetrically, much as in currency markets, and the trading constraints are
described in terms of “solvency cones”, which can be interpreted as the negatives
of the sets of portfolios that are freely available in the market. In the model
of limit order markets, such a set can be expressed as {x ∈ R

J |S(x) ≤ 0}. In
Kabanov’s original model the sets were polyhedral cones. Extensions to more
general convex sets were studied in Pennanen and Penner [61].

3 Dynamic models

Consider now a dynamic setting where uncertainty is still modeled by a proba-
bility space (Ω,F , P ) but now one may trade at multiple points t = 0, . . . , T in
time. The information available at time t is described by a σ-algebra Ft ⊆ F
in the sense that, at time t, we do not know which scenario ω will eventually
realize but only which element of Ft it belongs to. Assuming perfect memory,
we have Ft ⊆ Ft+1, i.e. the sequence (Ft)

T
t=0 is a filtration.

A portfolio xt chosen at time t may depend on the information observed
so far but not on information that will only be observed in the future. This
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Figure 1: Marginal price curve for shares of the Danish telecom company
TDC A/S observed in Copenhagen Stock Exchange on January 12, 2005 at
13:58:19.43. The horizontal axis gives the cumulative depth of the book mea-
sured in the number of shares. Negative order quantity corresponds to a sale.
The prices are in Danish krone. The data was provided by OMX market re-
search.

means that xt is an Ft-measurable function from Ω to R
J , or in other words,

the trading strategy x = (xt)
T
t=0 is adapted3 to the filtration (Ft)

T
t=0. The linear

space of adapted trading strategies will be denoted by N . Unless FT has only a
finite number of elements with positive probability, N is an infinite-dimensional
space. We will assume that F0 = {Ω, ∅} so that x0 is independent of ω.

The financial market will be described by an (Ft)
T
t=0-adapted sequence S =

(St)
T
t=0 of normal integrands on R

J×Ω such that St(·, ω) is convex and St(0, ω) =
0 for each ω ∈ Ω. More precisely, St is an extended real-valued function on
R

J × Ω such that ω 7→ epiSt(·, ω) is closed convex-valued and Ft-measurable4.
Such a sequence S is called a convex cost process. The value of St(x, ω) is
interpreted as the cost we would have to pay for a portfolio x ∈ R

J at time t
in state ω; see Section 2.4. The classical linear market model corresponds to
St(x, ω) = st(ω) · x, where st is an Ft-measurable R

J -valued function; see [25]
and [16] for thorough treatment for such models. Proportional transaction costs
as well as bid-ask-spreads can be represented by sublinear cost functions; see
e.g. [35, 13]. More general convex cost processes have been proposed in Çetin
and Rogers [11] and Malo and Pennanen [45].

3Some authors (e.g. [25, 16, 39]) describe trading strategies by “predictable” processes
H = (Ht)Tt=0

with Ht denoting the portfolio that was chosen at time t − 1. This is only a
notational difference with Ht = xt−1.

4A set-valued mapping ω 7→ C(ω) is Ft-measurable if {ω ∈ Ω |C(ω) ∩ U 6= ∅} ∈ Ft for
every open set U .
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The measurability condition implies that if xt : Ω → R
J is Ft-measurable,

then ω 7→ St(xt(ω), ω) is Ft-measurable as well; see [69, Corollary 14.34]. If
we are endowed with a random sequence (dt)

T
t=0 of cash-flows, then our budget

constraint can be written as

St(∆xt(ω), ω) ≤ dt(ω) P -a.s. t = 0, . . . , T,

where ∆xt := xt − xt−1. The interpretation is that the cost of updating the
portfolio from xt−1 to xt cannot be more than the amount of cash dt available
at time t.

We do not assume a priori that cash can be transferred freely in time. While
positive amounts of cash can usually be transferred easily, the same does not
apply to negative amounts, i.e. borrowing is usually more restricted that lending.
We can, however, include cash in the set J of traded assets if desired. In
particular, to model cash as a perfectly liquid asset 0 ∈ J one can set x = (x0, x̃)
and

St(x, ω) = x0 + S̃t(x̃, ω),

where S̃t represents the cost function for the remaining assets J \ {0}. This
corresponds to classical models of mathematical finance, where one of the assets
serves as a “numeraire”. A more realistic option would be to assume different
interest rates for lending and borrowing, as e.g. in Jouini and Kallal [34], and
to set

St(x, ω) = s+(ω)x+ + s−(ω)x− + S̃t(x̃, ω),

where x+ and x− denote the “units” invested in the lending and borrowing
accounts, respectively. Here s+ and s− denote the unit prices of the accounts
and they appreciate according to the different interest rates. For the above to
make sense, we have to restrict the lending positions x+ to be nonnegative and
the borrowing positions x− nonpositive. This brings us to portfolio constraints.

Portfolio constraints require that the portfolio xt(ω) chosen at a given time
t and state ω has to lie in a given set Dt(ω). We will assume that ω 7→ Dt(ω)
is Ft-measurable closed convex-valued and that 0 ∈ Dt almost surely. The
measurability condition simply means that the set Dt of feasible portfolios is
known to us at time t when we choose xt. The condition 0 ∈ Dt means that we
can always choose not to hold any of the traded assets.

3.1 Asset-liability management

When cash cannot be transferred quite freely in time, it is important to distin-
guish between payments that occur at different dates. We will denote the space
of (Ft)

T
t=0-adapted sequences of cash-flows byM := {(ct)

T
t=0 | ct ∈ L0(Ω,Ft, P )}.

The elements of M are used to model cash-flows associated with financial lia-
bilities. A typical example would be an insurance portfolio that may obligate
an insurer to claim payments over long periods of time. Simpler claims such as
European options correspond to processes c ∈ M with ct = 0 for all but one t.

Consider an agent whose financial position is described by a sequence of
cash-flows c ∈ M in the sense that the agent has to deliver a random amount

12



ct of cash at time t. Allowing c to take both positive and negative values,
endowments and liabilities can be modeled in a unified manner. In particular,
−c0 may be interpreted as an initial endowment while the subsequent payments
ct, t = 1, . . . , T may be interpreted as the cash-flows associated with financial
liabilities. Problem (ALM) can be generalized to the dynamic setting as follows

minimize

T
∑

t=0

Vt(St(∆xt) + ct) over x ∈ ND, (ALM-d)

where x−1 := 0,
ND := {x ∈ N , |xt ∈ Dt, xT = 0},

and Vt : L
0(Ω,Ft, P ) → R are monotonic, normalized, convex functions describ-

ing the “risk/disutility/regret” from the expenditure St(∆xt) + ct at time t.
Problem (ALM-d) may be viewed as a discrete time version of the classical

Merton problem of optimal consumption [47] with illiquidity effects and a “ran-
dom endowment” −c. On the other hand, when Vt = δL0

−

for t < T , we can

write (ALM-d) as

minimize VT (ST (∆xT ) + cT ) over x ∈ ND,

subject to St(∆xt) + ct ≤ 0, t = 0, . . . , T − 1.
(5)

When T = 1, St(x, ω) = st(ω) · x, c0 = −w, c1 = c, we recover the one-
period problem (ALM). With the traditional model of liquid markets, problem
(ALM-d) can be written in terms of stochastic integrals.

Example 4 (Liquid markets and stochastic integration) Assume that there
is a perfectly liquid asset (numeraire), say 0 ∈ J , such that

St(x, ω) = s0t (ω)x
0 + S̃t(x̃, ω),

Dt(ω) = R× D̃t(ω),

where x = (x0, x̃) and S̃ and D̃ are the cost process and the constraints for
the remaining risky assets J̃ = J \ {0}. Expressing all costs in terms of the
numeraire, we may assume s0 ≡ 1. We can then use the budget constraint to
substitute out the numeraire from problem (5). Indeed, defining

x0
t = x0

t−1 − S̃t(∆x̃t)− ct t = 0, . . . , T − 1,

the budget constraint holds as an equality for t = 0, . . . , T − 1 and

x0
T−1 = −

T−1
∑

t=0

S̃t(∆x̃t)−
T−1
∑

t=0

ct.

Substituting x0
T−1 in the objective (and recalling that xT := 0), we can write (5)

as

minimize VT

(

T
∑

t=0

S̃t(∆x̃t) +

T
∑

t=0

ct

)

over x ∈ ND.
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In the presence of a numeraire, the timing of the payments ct is thus irrelevant.
Furthermore, in the linear case S̃t(x̃, ω) = s̃t(ω) · x̃, the cumulated trading costs
can be written as the stochastic integral

T
∑

t=0

S̃t(∆x̃t) =

T
∑

t=0

s̃t ·∆x̃t = −
T−1
∑

t=0

x̃t ·∆s̃t+1.

We then obtain a discrete-time version of the utility maximization problem stud-
ied e.g. in Kramkov and Schachermayer [42] where expected utility from terminal
wealth as a function of the initial endowment was studied.

We will denote the optimum value of (ALM-d) by

ϕ(c) := inf (ALM-d).

This defines an extended real-valued convex function on the space M of (Ft)
T
t=0-

adapted cash-flows. When Vt = δL0
−

, we get ϕ = δC , where

C = {c ∈ M|∃x ∈ ND : St(∆xt) + ct ≤ 0, t = 0, . . . , T}

is the set of claim processes that one can deliver without any cost. In the
classical perfectly liquid market model described in Example 4,

C = {c ∈ M|∃x ∈ ND :
T
∑

t=0

ct ≤
T−1
∑

t=0

x̃t ·∆s̃t+1}.

This set has been extensively studied in the context of arbitrage and superhedg-
ing; see [25, 16, 39] and their references. The illiquid case has been studied in
[57, 59, 60].

3.2 Capital requirements

Capital requirements can be set in the dynamic setting with the same principles
as in the one-period model. As in Section 2.2, we are looking for the least amount
of initial capital that would allow an agent to survive a financial liability at a
given level of risk. Liabilities are now described by a sequence c ∈ M of cash
flows. In terms of the value function ϕ of problem (ALM-d), the required capital
can be expressed as

π0(c) = inf{α |ϕ(c− αp0) ≤ 0},

where p0 = (1, 0, . . . , 0). The interpretation is the same as in the one-period
setting: π0(c) gives the least amount of initial capital one would need in order
to find a hedging strategy x ∈ ND that allows for delivering c at risk no higher
than the risk of doing nothing at all. It is natural to assume that c0 = 0 since
a nonzero value of c0 would just add directly to the required initial capital.
The convexity of ϕ implies that of π0 just like in the one-period setting; see
Proposition 2.
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Assuming that the minimum in (ALM-d) is attained for every c ∈ M (see
Theorem 6 below) and that Vt = δL0

−

as in (5), the capital requirement for a

claim c ∈ M is the optimum value in the convex optimization problem

minimize S0(x0) over x ∈ ND,

subject to St(∆xt) + ct ≤ 0, t = 1, . . . , T,

VT (ST (∆xT ) + cT ) ≤ 0.

(6)

The corresponding x ∈ ND gives an optimal hedging strategy for the liabilities
c ∈ M. This approach was applied in [30] to the valuation of pension liabilities
where ct consists of the yearly pension expenditure of the Finnish private sector
pension system. The case with linear market model of Example 4 and V(c) =
Ev(c) for a convex function v with v(α) = 0 for α ∈ R− is analyzed in [25,
Section 8.2].

When VT = δL−
, we get the superhedging cost

π0(c) = inf{α | c− αp0 ∈ C}

which gives the least amount of initial capital needed for delivering c without
any risk of loosing money; see [59]. Extensive treatments of the superhedging
cost can be found in the classical perfectly liquid model in [25, 16] and in market
models with proportional transaction costs in [39].

3.3 Pricing of contingent claims

It is also straightforward to extend the pricing framework of Section 2.3 to the
dynamic setting. In the one-period setting, prices of contingent claims were
described in units of initial capital at time t = 0 that an agent would accept
as a compensation for delivering a claim at a future date. In practice, however,
much of trading consists of exchanging sequences of cash-flows. For example,
in various swap and insurance contracts premiums are paid in sequences. The
payment schedule matters since, in practice, cash cannot be transferred quite
freely in time.

Consider an agent whose current financial position is characterized by a
sequence c̄ ∈ M of cash-flows. The lowest risk he can achieve by optimally
trading in the market is given by the optimum value ϕ(c̄) of (ALM-d). Such an
agent would be willing to take on additional liabilities c ∈ M in exchange for
another sequence p ∈ M of cash-flows only if

ϕ(c̄+ c− p) ≤ ϕ(c̄),

i.e. if the trade does not worsen the best attainable risk-return profile.
In many situations, a premium process p ∈ M is given and the aim is to

find the least multiple of p that would suffice as a compensation for delivering
a claim c ∈ M. This leads to

π(c̄; c) = inf{α ∈ R |ϕ(c̄+ c− αp) ≤ ϕ(c̄)}.
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In the context of swap contracts, this would be the least “swap rate” the agent
would accept. The usual setting in financial mathematics where premiums are
paid only at the beginning is obtained as a special case when p = (1, 0, . . . , 0).
In particular, we recover the pricing function (4) of the one-period model when
T = 1, c̄ := (−w̄, c̄), c := (0, c) and p = (w, 0).

Again, the function π(c̄; ·) is convex by the convexity of ϕ. Consequently, π
can be analyzed much as in the one-period setting in Section 2.3; see [54] for
details.

4 Duality

Convex duality has long been an integral part of financial mathematics. Clas-
sical references include Harrison and Kreps [27], Harrison and Pliska [28] and
Kreps [43] where the no-arbitrage principle behind the Black–Scholes formula
was related to the existence of certain “price systems”. In Dalang, Morton and
Willinger [14] the no-arbitrage property of a linear discrete-time market model
was shown to be equivalent to the existence of a probability measure equiva-
lent to the original measure and under which market prices are martingales; see
Delbaen and Schachermayer [16] for a detailed discussion of the topic. Dual-
ity is deep-rooted in various pricing formulas, where the price of a contingent
claim is expressed in terms of expectations of its cash-flows under martingale
measures. Convex duality arises naturally also in portfolio optimization, where
a given optimization problem is related to another much like in the classical
duality frameworks of convex optimization. More generally, one can dualize a
whole class of portfolio optimization problems parameterized by initial wealth
and/or random future endowment; see e.g. Kramkov and Schachermayer [42]
and Hugonnier and Kramkov [33] and their references.

Much like classical duality frameworks of convex optimization, duality re-
lations in mathematical finance can often be traced back to the biconjugate
theorem on convex functions in dual pairs of topological vector spaces; see
Rockafellar [66]. As we have seen in the previous sections, capital require-
ments and prices of contingent claims can be expressed in terms of the optimum
value function of an appropriately parameterized portfolio optimization prob-
lem. Similarly, dual versions of the pricing formulas can be expressed in terms of
the conjugate of the optimum value function. Well-known pricing formulas and
martingale characterizations of the no-arbitrage property can then be derived
from these expressions as special cases.

To illustrate the ideas in the framework of Section 3, we will denote the
linear space of integrable claim processes by

M1 := {(ct)
T
t=0 | ct ∈ L1(Ω,Ft, P )}.

This space is in separating duality with the linear space

M∞ := {(yt)
T
t=0 | yt ∈ L∞(Ω,Ft, P )}
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of essentially bounded adapted processes y under the bilinear form

〈c, y〉 := E

T
∑

t=0

ct(ω)yt(ω).

Given a convex function f on M1, its conjugate is defined on M∞ by

f∗(y) = sup
c∈M1

{〈c, y〉 − f(c)}.

Being the pointwise supremum of continuous linear functions, f∗ is convex and
lower semicontinuous with respect to the weak topology σ(M∞,M1). The
classical biconjugate theorem (see [66, Theorem 5]) says that if f is proper
and lower semicontinuous with respect to the L1-norm, then it has the dual
representation

f(c) = sup
y∈M∞

{〈c, y〉 − f∗(y)}. (7)

To apply this to the functions π0 and π defined in Sections 3.2 and 3.3, respec-
tively, we use the following simple fact from [54].

Lemma 5 If the value function ϕ is closed, then π0 and π(c̄; ·) are closed as
soon as they are proper.

The conjugate of π0 can be written as

π∗
0(y) = sup

c

{〈c, y〉 − π0(c)}

= sup
c,α

{〈c, y〉 − α |ϕ(c− αp0) ≤ 0}

= sup
c,α

{〈c, y〉+ α〈p0, y〉 − α |ϕ(c) ≤ 0}

=

{

supc{〈c, y〉 |ϕ(c) ≤ 0} if y0 = 1,

+∞ otherwise.

If there is a c ∈ M1 such that ϕ(c) < 0 (the Slater condition), then classical
Lagrangian duality gives

sup
c

{〈c, y〉 |ϕ(c) ≤ 0} = inf
α>0

sup
c

{〈c, y〉 − αϕ(c)}

= inf
α>0

α sup
c

{〈c, y/α〉 − ϕ(c)}

= inf
α>0

αϕ∗(y/α)

and then

π∗
0(y) =

{

infα>0 αϕ
∗(y/α) if y0 = 1,

+∞ otherwise.
(8)

An expression for the conjugate of π(c̄; ·) can be derived analogously. We thus
arrive at the following two-step program for deriving dual expressions for π0

and π:
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(a) establish the closedness of ϕ,

(b) derive expressions for ϕ∗.

Step (a) implies through Lemma 5 the validity of the biconjugate relation for
π0 and π while step (b) together with (8) gives an expression for the conjugate.

The above steps can be completed when the functions Vt in the objective of
problem (ALM-d) are of the integral form

Vt(c) = Evt(c) =

∫

Ω

vt(c(ω), ω)dP (ω)

for Ft-measurable convex normal integrands vt : R×Ω → R such that vt(ω, 0) =
0. The optimum value function can then be expressed as

ϕ(c) = inf
x∈N ,d∈M

Ef(x, d, c)

where Ef : N ×M×M1 → R is the integral functional

Ef(x, d, c) =

∫

Ω

f(x(ω), d(ω), c(ω), ω)dP (ω).

associated with the convex normal integrand

f(x, d, c, ω) =

{

∑T

t=0 vt(dt, ω) if St(∆xt, ω) + ct ≤ dt, xt ∈ Dt(ω) t = 0, . . . , T ,

+∞ otherwise.

This structure allows us to extend some fundamental techniques developed for
the superreplication problem in mathematical finance; see [58, 62]. First of all,
the convexity of f implies that of Ef , which in turn implies the convexity of ϕ;
see [66, Theorem 1].

Given a market model (S,D), we obtain another market model (S∞, D∞)
by defining

S∞
t (x, ω) = sup

α>0

St(αx, ω)

α
,

D∞
t (ω) =

⋂

α>0

αDt(ω).

Indeed, the required measurability properties hold by [69, Exercises 14.54 and
14.21] while the convexity and topological properties come directly from the
definitions. Moreover, the functions S∞

t (·, ω) are positively homogeneous and
the sets D∞

t (ω) are cones. We have (S,D) = (S∞, D∞) if and only if S is
sublinear and D is conical. In the language of convex analysis, S∞

t (·, ω) is the
recession function of St(·, ω) and D∞

t (ω) is the recession cone of Dt(ω). An
early application of recession analysis to portfolio optimization can be found in
Bertsekas [7].

The following is derived in [54] from a more general result of [62].
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Theorem 6 If vt are bounded from below by an integrable function and if

{x ∈ ND∞ |S∞
t (∆xt) ≤ 0}

is a linear space, then ϕ is closed in the L1-norm topology and the infimum in
(ALM-d) is attained for every c ∈ M1.

The boundedness assumption in Theorem 6 means that there is an integrable
function m ∈ L1(Ω,F , P ) such that vt(c, ω) ≥ m(ω) for every c ∈ R, ω ∈ Ω and
t = 0, . . . , T . The linearity condition in Theorem 6 is a direct generalization of
the classical no-arbitrage condition in mathematical finance; see [60, Section 4]
or Example 9 below. Combining Theorem 6 with Lemma 5 establishes the lower
semicontinuity of π0 and π and thus, the validity of the dual representation (7)
for them.

As to the second step (b), one may use the following result from [54] which
is a straightforward application of [58, Theorem 2.2].

Lemma 7 The conjugate of the value function ϕ can be expressed as

ϕ∗(y) = σC1(y) + E

T
∑

t=0

v∗t (yt),

where C1 := {c ∈ M1 | ∃x ∈ ND : St(∆xt) + ct ≤ 0, xt ∈ Dt}.

Plugging the above expression for ϕ∗ in (8) and using the sublinearity of the
support function σC1 , we get

π∗
0(y) =

{

σC1(y) + infα>0 αE
∑T

t=0 v
∗
t (yt/α) if y0 = 1,

+∞ otherwise.
(9)

This extends the dual representation of the superhedging cost given in [59, The-
orem 5.2] which, in turn, extends classical superhedging formulas for liquid
market models. To see this, we need a concrete expression for the support
function σC1 .

To this end, we will assume that the cost process S is integrable in the
sense that St(x, ·) is integrable for every x ∈ R

J and t = 0, . . . , T . In the
linear case St(x, ω) = st(ω) · x, integrability means that the components of
the price vectors st have finite expectations. The following result from [57], is
an application of the theory of normal integrands and the Fenchel–Rockafellar
duality theorem. We will denote the linear space of (Ft)

T
t=0-adapted R

J -valued
integrable processes by

N 1 := {(wt)
T
t=0 |xt ∈ L1(Ω,Ft, P ;RJ )}.

Lemma 8 If S is integrable, then

σC1(y) = inf
w∈N 1

{

T
∑

t=0

E(ytSt)
∗(wt) +

T−1
∑

t=0

EσDt
(Et[∆wt+1])

}
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for every y ∈ M1
+ while σC1(y) = +∞ for y /∈ M1

+. Moreover, the infimum is
attained for every y ∈ M1

+.

The above results can be applied in various more specific market models. In
combination with the so called Kreps–Yan theorem, Theorem 6 and Lemma 8
also yield a short proof of the “fundamental theorem of asset pricing”; see
[58, 60]. We end this section by an interpretation of the above results in the
classical perfectly liquid market model. More examples can be found in the
above references.

Example 9 (Liquid markets) When St(x, ω) = st(ω) · x and Dt ≡ R
J , the

linearity condition in Theorem 6 means that any self-financing trading strategy
x ∈ ND satisfies st · ∆xt = 0 almost surely for all t. This is the classical
no-arbitrage condition. When St(x, ω) = st(ω) · x, we get

(ytSt)
∗(w,ω) =

{

0 if w = yt(ω)st(ω),

+∞ otherwise

and when Dt(ω) = R
J ,

σDt
(w,ω) =

{

0 if w = 0,

+∞ otherwise.

If s is integrable, Lemma 8 then gives

σC1(y) =

{

0 if ys is a martingale,

+∞ otherwise.

Moreover, if one of the assets has constant nonzero unit price (see Example 4),
then every y ∈ domσC1 with y0 = 1 is the density of a probability measure
under which the price process s is a martingale. If vt = δR−

for all t, the dual
representation (9) of the capital requirement can be written as

π0(c) = sup
Q∈P

EQ

T
∑

t=0

ct,

where P is the set of martingale measures that are absolutely continuous with
respect to P . This is a well-known expression for the superhedging cost in clas-
sical perfectly liquid market models; see e.g. [16, Section 2.4], [25, Section 5.3],
[39, Chapter 2] and the references there.

5 Numerical methods

Numerical computation of capital requirements and prices of contingent claims
come down to numerical solution of the asset-liability management problem (ALM-d).

20



Indeed, the capital requirement π0(c) = inf{α |ϕ(c − αp0) ≤ 0} discussed in
Section 3.2 can be approximated by line search algorithms where the optimum
value ϕ(c − αp0) of (ALM-d) is evaluated (approximately) for varying values
of α. This approach was used in [31] to determine capital requirements for
pension liabilities. The same technique can be applied to the pricing function
π(c̄; c) = inf{α |ϕ(c̄+ c− αp) ≤ ϕ(c̄)} discussed in Section 3.3.

This section reviews briefly some numerical techniques for convex stochastic
optimization that can be applied to (ALM) and (ALM-d) when the objective
can be expressed in terms of an expectation. For simplicity, we will only consider
the case Vt(c) = Evt(c) although functions of the form

Vt(c) = inf
α∈R

{α+ Evt(c− α)}

could be handled as well. The latter format covers e.g. the classical mean-
variance formulation and the Conditional Value at Risk; see Section 2.1.

5.1 Static models

When V(c) = Ev(c) problem (ALM) can be written concisely as

minimize Ef(x) over x ∈ X, (SP)

where f(x, ω) = v(c(ω) − s1(ω) · x, ω) and X = {x ∈ D | s0 · x ≤ w}. This is a
finite-dimensional problem but its objective involves, in general, multivariate in-
tegration. In high-dimensions, (approximate) evaluations of the objective or its
gradient may be computationally demanding. In such cases, convexity becomes
a valuable property.

Stochastic approximation algorithms proceed by updating a candidate solu-
tion by using “randomly sampled gradients” v ∈ ∂f(x, ω) where ω is randomly
drawn from the distribution P and “∂” denotes subdifferentiation with respect
to x. In the convex case, strong results have been obtained for certain vari-
ants of the stochastic approximation algorithm; see Nemirovski et al. [48, 44].
In particular, the “robust mirror descent stochastic approximation” algorithm
constructs a random point x such that the expected value of Ef(x) is guaran-
teed to be within an ε from the true minimum. For certain class of problems of
the form (SP), the required number of gradient evaluations of f is essentially
dimension-independent and grows only quadratically in 1/ε; see [36, Proposi-
tion 1.5].

Another approach is to apply deterministic optimization algorithms to a
quadrature approximation of (SP) obtained by replacing the underlying prob-
ability measure P by a finitely-supported measure (integration quadrature) of
the form

P ν =

ν
∑

i=1

piδωi ,

where δωi denotes the Dirac measure at ωi ∈ Ω and pi are scalars. Under such a
measure, the expectation becomes a finite sum so the quadrature approximation
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can be written as

minimize
ν
∑

i=1

pif(x, ωi) over x ∈ X. (10)

This approach is useful if (a) the quadrature approximation (10) is “easy” to
solve and (b) solutions of (10) are good also in the original problem (SP).

When f(·, ω) are convex and pi are positive, the quadrature approximation
will be convex as well so it can be treated by numerical techniques of convex
optimization; see e.g. Ben-Tal and Nemirovski [4], Nesterov [50] or Nemirovski
and Juditsky [36, 37]. It is worth noting that, in the context of (ALM), once
we have calculated c(ωi) and s1(ω

i) for a given quadrature, they can be reused
when evaluating the objective of (10) and its gradient for different portfolios x.
Moreover, the scenariowise components can be evaluated in parallel.

The approximation properties of (10), on the other hand, depend on the
properties of the functions f(x, ·) and the integration quadrature P ν . In the
classical Monte Carlo method, quadrature points are randomly selected from the
distribution P and pi = 1/ν for every i = 1, . . . , ν. Statistical properties of the
corresponding quadrature approximations have been studied e.g. in Shapiro [72]
and Shapiro and Nemirovski [73]. In quasi-Monte Carlo methods, the quadra-
ture points are constructed by more involved techniques that achieve guaranteed
accuracy for certain classes of integrands; see Novak and Woźniakowski [51, 52]
and their references. Combining such techniques with efficient algorithms for
convex optimization it is possible to verify the “tractability” of certain classes
of stochastic optimization problems.

5.2 Tractability in the worst case setting

The information based complexity of a given class of stochastic optimization
problems of the form (SP) is bounded by a number l if for every problem in the
class, an ε-optimal solution can constructed from the information contained in
f and its gradients evaluated at l points of X×Ω. Our aim is to identify classes
of (SP) whose information based complexity is bounded by a polynomial of the
dimensions of X and Ω and the reciprocal 1/ε of the required accuracy. We
refer the reader to [49, 75, 51] for general treatments of problem complexity in
different settings.

Stochastic approximation algorithms are examples of random algorithms
that produce random solutions. The results of [48, 36] show that certain classes
of (SP) are tractable in the randomized setting, i.e. the information based com-
plexity of (SP) is bounded by a polynomial of the problem dimension and the
reciprocal 1/ε of the required accuracy provided the quality of a random solu-
tion x is measured by the expectation of Ef(x). The purpose of this section is
to show that certain classes of (SP) are tractable also in the worst case setting,
i.e. the information based complexity of constructing deterministic ε-optimal
solutions x is bounded by a polynomial of the problem dimensions and 1/ε. As
could be expected, such “worst case” estimates require more regularity from the
considered problem class.
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Our strategy is to combine existing results on the complexity of convex
optimization and numerical integration. The information based complexity of
a class of optimization problems of the form

minimize F (x) over x ∈ X. (11)

is bounded by a number k if for every problem in the class, an ε-optimal solution
can constructed from the information obtained by evaluating F and its gradient
at k points of X. Given a seminorm L on the space of convex functions on
X, we will say that a problem of the form (11) belongs to class opt(L,X) if
it is convex and L(F ) ≤ 1. There are many well-known results on information
based complexity of opt(L,X) when L is the Lipschitz modulus of F or of its
gradient; see [36] for a recent review. Note that, as long the Lipschitz modulus
of F is finite, we can scale the variables of a problem to achieve L(F ) ≤ 1. Such
a scaling, of course, changes the feasible set X, which, in general, affects the
complexity.

The information based complexity of a class of problems of the form

evaluate

∫

Ω

ϕ(ω)dP (ω) (12)

is bounded by a number ν if every integral in the class can be evaluated to
accuracy ε using information obtained by evaluating ϕ at ν points of Ω. Given
a seminorm V on the space of integrable functions on Ω, we will say that a
problem of the form (12) belongs to class int(V, P ) if V (ϕ) ≤ 1. There are
many well-known results on information based complexity of int(V, P ) when V
is measure of “variation” or the norm on a reproducing kernel Hilbert space;
see [52]. As long as V (ϕ) is finite, we can scale the function ϕ by a constant
to achieve L(F ) ≤ 1. Such a scaling, of course, affects the interpretation of the
accuracy requirement ε.

It is known that optimal complexity of integration is attained by quadratures
of the form

ν
∑

i=1

piϕ(ωi)

where pi are real numbers; see [51, Theorem 4.7] and [52, Section 9.4]. In
order to ensure that a quadrature approximation of stochastic optimization
problem (SP) belongs to opt(L,X), we will assume that the quadrature weights
pi are nonnegative and add up to one, or in other words, that the discretized
measure P ν is a probability measure. Although most quadratures do have
positive weights, there are situations where negative weights are needed for
optimal complexity; see [52, Section 10.6].

We will say that the stochastic optimization problem of the form (SP) be-
longs to class sp(L,X, V, P ) if

sup
ω∈Ω

L(f(·, ω)) ≤ 1
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and
sup
x∈X

V (f(x, ·)) ≤ 1.

Note that, as long as the above suprema are finite, we can scale the variables
and the objective to transform the problem into sp(L,X, V, P ).

Lemma 10 Let L be a seminorm on convex functions on X and let V be a
seminorm on integrable functions on Ω. If

1. the complexity of opt(L,X) is less than k(n, ε),

2. the complexity of int(V, P ) is less than ν(d, ε) and it is attained by a prob-
ability measure P ν ,

then the complexity of sp(L,X, V, P ) is less than

l(n, d, ε) = inf
ε1,ε2

{k(n, ε1)ν(d, ε2) | ε1 + 2ε2 ≤ ε}.

Proof. Assume that (SP) belongs to class sp(L,X, V, P ) and let ε1 > 0 and
ε2 > 0 be such that ε1 + 2ε2 ≤ ε. By the second assumption, there is a finitely
supported probability measure P ν with ν ≤ ν(d, ε2) and |EP ν

ϕ − EPϕ| ≤ ε2
for all ϕ such that V (ϕ) ≤ 1. Since L is sublinear, we get

L(EP ν

f) ≤
ν
∑

i=1

piL(f(·, ωi)) ≤ sup
ω∈Ω

L(f(·, ω)) ≤ 1.

Thus, the quadrature approximation (10) belongs to opt(L,X) so, by the first
assumption, it can be solved to accuracy ε1 with k(n, ε1) gradient evaluations of
EP ν

f , or equivalently, with k(n, ε2)ν gradient evaluations of f . It thus suffices
to show that the corresponding solution is an ε-solution of (SP). Indeed, the
result then follows by minimizing over ε1 > 0 and ε2 > 0.

Let x be an ε1-solution of (10). Since V (f(x′, ·)) ≤ 1 for every x′ ∈ X, we
have, by the choice of P ν ,

|EP ν

f(x)− EP f(x)| ≤ ε2

and thus

EP f(x)− inf
x′∈X

EP f(x′) ≤ [EP ν

f(x) + ε2]− inf
x′∈X

[EP ν

f(x′)− ε2]

= EP ν

f(x)− inf
x′∈X

EP ν

f(x′) + 2ε2

≤ ε1 + 2ε2,

which completes the proof. �

A problem class is said to be tractable if its complexity is bounded from above
by a polynomial of the dimension of the underlying space and the reciprocal 1/ε
of the required accuracy. Many tractability results exist for convex optimization
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and for integration; see e.g. [49, 50, 36, 37] for convex optimization and [74, 51,
52] for numerical integration. Majority of the tractability results for numerical
integration are attained by integration quadratures with positive weights that
sum up to one.

The following corollary describes a tractable class sp(L,X, V, P ). We denote
the dimension of the decision variable x by n = |J | and we assume that the
domain Ω of integration is a subset of Rd.

Corollary 11 Assume that opt(L,X) and int(V, P ) are tractable with

d(n, ε) = c1n
a1/εb1 and ν(d, ε) = c2d

a2/εb2 ,

respectively. Then sp(L,X, V, P ) is tractable with

l(n, d, ε) = c3
na1da2

εb1+b2
,

where

c3 = c1c22
b2
(b1 + b2)

b1+b2

bb11 bb22
.

This is achieved by a quadrature with accuracy

ε2 =
b2

b1 + b2

ε

2

and by solving the quadrature approximation to accuracy

ε1 =
b1

b1 + b2
ε.

Proof. By Lemma 10,

l(n, d, ε) = c1n
a1c2d

a2 inf
ε1,ε2

{ε−b1
1 ε−b2

2 | ε1 + 2ε2 ≤ ε}

= c1n
a1c2d

a2 exp inf
ε1,ε2

{−b1 ln ε1 − b2 ln ε2 | ε1 + 2ε2 ≤ ε}

= c1n
a1c2d

a2 exp inf
ε2
{−b1 ln(ε− 2ε2)− b2 ln ε2}.

The expression in the braces is convex in ε1 and its derivative vanishes when

ε2 =
b1

b1 + b2

ε

2
.

This thus gives the minimum value and the corresponding values for ε1 = ε−2ε2
and l(n, d, ε) are found by substitution. �

The above shows that there do exist nontrivial classes of stochastic optimiza-
tion problems that are tractable in the worst case sense. Although simple, to
our knowledge these results are first of their kind. Concrete applications would
require a more careful analysis of the problem structure in terms of the regu-
larity measures L and V and complexities of the corresponding problem classes
opt(L,X) and int(V, P ).
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5.3 Dynamic models

When Vt(c) = Evt(c), the dynamic asset-liability management problem (5) can
be written as

minimize EvT (ST (∆xT ) + cT ) over x ∈ ND,

subject to St(∆xt) + ct ≤ 0, t = 0, . . . , T − 1.
(13)

A straightforward extension of quadrature approximations to the dynamic discrete-
time models leads to scenario trees, which may be viewed as nested quadrature
approximations. Scenario trees have a long history in the field of stochastic pro-
gramming but their approximation properties remain questionable. Scenario
trees correspond to the “product rule” in numerical integration which quickly
becomes useless when the dimensions (number of periods) increase. Asymptotic
consistency properties for sequences of scenario tree approximations have been
established in [53] and [55, 56], where convexity played an important role.

Galerkin methods provide a simpler computational approach which some-
times produces quite reasonable results on dynamic portfolio optimization prob-
lems. Galerkin methods are a general class of techniques for approximating
infinite-dimensional optimization problems by finite-dimensional ones. The idea
is to seek the best solution from a finite-dimensional subset of the original
infinite-dimensional feasible set. The same idea is behind e.g. the finite ele-
ment method which has been widely applied in physics and engineering. In the
context of problem (13), the Galerkin method seeks an optimal solution among
convex combinations of a finite set {xi}i∈I ⊂ ND of feasible solutions (basis
strategies) of (13). Such a problem can be written as

minimize EvT (ST (∆
∑

i∈I

αixi
T ) + cT ) over α ∈ X, (14)

where
X = {α ∈ R

I
+ |
∑

i∈I

αi = 1}.

By convexity, any convex combination of feasible solutions of (13) will auto-
matically be feasible. Problem (14) is a static stochastic optimization problem
and if vt are convex functions, then (14) is convex. We can then apply the tech-
niques outlined in the previous sections for static problems. Galerkin methods
were proposed for dynamic stochastic programs in Koivu and Pennanen [41].
The underlying idea is closely related to the affinely adjustable robust counter-
part problem proposed in Ben-Tal, Goryashko, Guslitzer and Nemirovski [3] for
dynamic robust optimization.

The success of the Galerkin method rests on the properties of the basis
strategies {xi}i∈I . Unlike in physics and engineering, where the dimension of
the integration variable ω is often moderate, we do not have systematic tech-
niques for generating basis strategies so that the Galerkin method would work
well for arbitrary instances of (13). In practice, basis strategies are sometimes
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suggested by solutions of simpler problems that can be solved by dynamic pro-
gramming techniques. Good results have been obtained in [41, 31] for asset lia-
bility management problems by using e.g. variants of so called “delta-hedging”
and “portfolio insurance” strategies with varying parameters.

Despite its simplicity, the Galerkin method can significantly improve on the
objective value produced by the basis strategies. An important advantage of the
Galerkin method over e.g. the scenario tree approach is that it always produces
feasible solutions that are easy to evaluate by simulation.

The loss of optimality with respect to the original problem, can be estimated
if one is able to construct lower bounds for the optimum value of the original
problem. In some situations, this can be done by applying Galerkin methods
to a dual problem of (13). Such a technique was proposed for optimal stopping
problems by Rogers [70] and Haugh and Kogan [29]. Extensions to more general
problem classes are described in Pennanen [58, Remark 3.1]. Convexity is essen-
tial in guaranteeing that the optimum value of the dual can indeed approximate
the optimum value of the original problem.

6 Conclusions

Many problems in financial risk management can be formulated in terms of
convex optimization. Techniques of convex analysis allow for significant exten-
sions of some fundamental results of financial mathematics to nonlinear market
models with illiquidity effects and portfolio constraints. Moreover, computa-
tional techniques of convex optimization provide new possibilities in financial
risk management beyond the scope of stochastic analysis alone. Although this
article deals mainly with asset-liability management in financial markets, convex
analysis is important also in the study of risk preferences and risk measurement;
see e.g. [1, 25, 63].

Not all financial problems are convex, however. For example, fixed costs
in trade execution as well as price impacts where trades affect the costs of
subsequent trades lead to nonconvexities. In such situations, basic results of
mathematical finance such as the “fundamental theorem of asset pricing” and
martingale representations of prices of contingent claims break down. Noncon-
vexities arise also from the widespread use of the Value at Risk measure which
lacks convexity in general. Nonconvex risk preferences are discussed in detail
in [21].

Most of the results and techniques discussed in this article are far from
complete. There is plenty of room for improvement and new developments.
This and the recent progress in mathematical finance and industrial applications
suggest that convex optimization will have a lot more to offer to financial risk
management.
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[13] J. Cvitanić and I. Karatzas. Hedging and portfolio optimization under
transaction costs: a martingale approach. Math. Finance, 6(2):133–165,
1996.

[14] R. C. Dalang, A. Morton, and W. Willinger. Equivalent martingale mea-
sures and no-arbitrage in stochastic securities market models. Stochastics
Stochastics Rep., 29(2):185–201, 1990.

28



[15] M. H. A. Davis and A. R. Norman. Portfolio selection with transaction
costs. Math. Oper. Res., 15(4):676–713, 1990.

[16] F. Delbaen andW. Schachermayer. The Mathematics of Arbitrage. Springer
Finance. Springer-Verlag, Berlin Heidelberg, 2006.

[17] M. A. H. Dempster, I. V. Evstigneev, and M. I. Taksar. Asset pricing and
hedging in financial markets with transaction costs: An approach based on
the Von Neumann–Gale model. Annals of Finance, 2(4):327–355, 2006.

[18] J. C. Dermody and E. Z. Prisman. No arbitrage and valuation in mar-
kets with realistic transaction costs. Journal of Financial & Quantitative
Analysis, 28(1):65–80, 1993.

[19] J. C. Dermody and R. T. Rockafellar. Cash stream valuation in the face
of transaction costs and taxes. Math. Finance, 1(1):31–54, 1991.

[20] J. C. Dermody and R. T. Rockafellar. Tax basis and nonlinearity in cash
stream valuation. Math. Finance, 5(2):97–119, 1995.

[21] S. Drapeau and M. Kupper. Risk preferences and their robust representa-
tion. 2010.

[22] N. El Karoui and C. Ravanelli. Cash subadditive risk measures and interest
rate ambiguity. Mathematical Finance, 19(4):561–590, 2009.

[23] I. V. Evstigneev, K. Schürger, and M. I. Taksar. On the fundamental
theorem of asset pricing: random constraints and bang-bang no-arbitrage
criteria. Math. Finance, 14(2):201–221, 2004.
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