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Abstract

We derive a new high-order compact finite difference scheme for option pric-
ing in stochastic volatility models. The scheme is fourth order accurate in
space and second order accurate in time. Under some restrictions, theoreti-
cal results like unconditional stability in the sense of von Neumann are pre-
sented. Where the analysis becomes too involved we validate our findings by
a numerical study. Numerical experiments for the European option pricing
problem are presented. We observe fourth order convergence for non-smooth
payoff.
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1. Introduction

The traditional approach to price derivative assets or options is to spec-
ify an asset price process exogenously by a stochastic diffusion process and
then price by no-arbitrage arguments. The seminal example of this approach
is Black & Scholes’ paper [2] on pricing of European-style options. This
approach leads to simple, explicit pricing formulas. However, empirical re-
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search has revealed that they are not able to explain important effects in real
financial markets, e.g. the volatility smile (or skew) in option prices.

In real financial markets, not only asset returns are subject to risk, but
also the estimate of the riskiness is typically subject to significant uncertainty.
To incorporate such additional source of randomness into an asset pricing
model, one has to introduce a second risk factor. This also allows to fit higher
moments of the asset return distribution. The most prominent work in this
direction is Heston model [12]. Such models are based on a two-dimensional
stochastic diffusion process with two Brownian motions with correlation ρ,
i.e., dW (1)(t)dW (2)(t) = ρ dt, on a given filtered probability space for the
stock price S = S(t) and the stochastic volatility σ = σ(t)

dS(t) = µ̄S(t) dt+
√

σ(t)S(t) dW (1)(t),

dσ(t) = a(σ(t)) dt+ b(σ(t)) dW (2)(t),

where µ̄ is the drift of the stock, a(σ) and b(σ) are the drift and the diffusion
coefficient of the stochastic volatility.

Application of Itô’s Lemma leads to partial differential equations of the
following form

Vt +
1

2
S2σVSS + ρb(σ)

√
σSVSσ +

1

2
b2(σ)Vσσ + a(σ)Vσ + rSVS − rV = 0, (1)

where r is the (constant) riskless interest rate. Equation (1) has to be solved
for S, σ > 0, 0 ≤ t ≤ T and subject to final and boundary conditions which
depend on the specific option that is to be priced.

For some models and under additional restrictions, closed form solutions
to (1) can be obtained by Fourier methods (e.g. [12], [7]). Another approach
is to derive approximate analytic expressions, see e.g. [1] and the literature
cited therein. In general, however, —even in the Heston model [12] when the
parameters in it are non constant— equation (1) has to be solved numerically.
Moreover, many (so-called American) options feature an additional early
exercise right. Then one has to solve a free boundary problem which consists
of (1) and an early exercise constraint for the option price. Also for this
problem one typically has to resort to numerical approximations.

In the mathematical literature, there are many papers on numerical meth-
ods for option pricing, mostly addressing the one-dimensional case of a single
risk factor and using standard, second order finite difference methods (see,
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e.g., [25] and the references therein). More recently, high-order finite dif-
ference schemes (fourth order in space) were proposed that use a compact
stencil (three points in space). In the present context see, e.g., [24] for linear
and [5, 6, 16] for fully nonlinear problems.

There are less works considering numerical methods for option pricing
in stochastic volatility models, i.e., for two spatial dimensions. Finite differ-
ence approaches that are used are often standard, low order methods (second
order in space) and do provide little numerical analysis or convergence re-
sults. Other approaches include finite element-finite volume [29], multigrid
[3], sparse wavelet [15], or spectral methods [28].

Let us review some of the related finite difference literature. Different
efficient methods for solving the American option pricing problem for the
Heston model are compared in [14]. The article focusses on the treatment of
the early exercise free boundary and uses a second order finite difference dis-
cretization. In [13] different, low order ADI (alternating direction implicit)
schemes are adapted to the Heston model to include the mixed spatial deriva-
tive term. While most of [24] focusses on high-order compact scheme for the
standard (one-dimensional) case, in a short remark [24, Section 5] also the
stochastic volatility (two-dimensional) case is considered. However, the final
scheme there is of second order only due to the low order approximation of
the cross diffusion term.

The originality of the present work consists in proposing a new, high-order
compact finite difference scheme for (two-dimensional) option pricing models
with stochastic volatility. It should be emphasised that although our presen-
tation is focused on the Heston model, our methodology naturally adapts to
other stochastic volatility models. We derive a new compact scheme that is
fourth order accurate in space and second order accurate in time. The sta-
bility analysis of the scheme is a difficult task due to the multi-dimensional
context, variable coefficients and the nature of the boundary conditions. Un-
der additional assumptions (zero correlation, periodic boundary conditions),
we establish theoretical results like unconditional stability in the sense of von
Neumann (for ‘frozen coefficients’). We discuss this in the numerical part.

This paper is organised as follows. In the next section, we recall the Hes-
ton model from [12] and its closed form solution for the constant parameters
case. In Section 3 we introduce new independent variables to transform the
partial differential equation to a more tractable form. In Section 4 we de-
rive the new high-order compact scheme. We analyse its necessary stability
condition in section 4.3. Numerical experiments that confirm the good prop-
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erties of the method are presented in Section 5. We give numerical results for
the European option pricing problem with non-smooth payoff and observe
fourth order convergence. Section 6 concludes.

2. Heston model

Let us recall the Heston model from [12] on which we will focus our
presentation. Consider a two-dimensional standard Brownian motion W =
(W (1),W (2)) with correlation dW (1)(t)dW (2)(t) = ρdt on a given filtered prob-
ability space. Assuming a specific form of the drift a(σ) and the diffusion
coefficient b(σ) of the stochastic volatility, the value of the underlying asset
in [12] is characterised by

dS(t) = µ̄S(t) dt+
√

σ(t)S(t) dW (1)(t),

dσ(t) = κ∗(θ∗ − σ(t)) dt+ v
√

σ(t) dW (2)(t), (2)

for 0 < t ≤ T with S(0), σ(0) > 0 and µ̄, κ∗, v and θ∗ the drift, the mean
reversion speed, the volatility of volatility and the long-run mean of σ, re-
spectively.

Note that our method carries over to other stochastic volatility models
with different choices of the drift and the diffusion coefficient of the stochastic
volatility, e.g., the GARCH diffusion model

dσ(t) = κ∗(θ∗ − σ(t)) dt+ vσ(t) dW (2)(t), (3)

or the so-called 3/2-model

dσ(t) = κ∗σ(t)(θ∗ − σ(t)) dt+ vσ(t)3/2 dW (2)(t), (4)

in a natural way (see also Remark 1 at the end of section 4.1).
In the Heston model, it follows by Itô’s lemma and standard arbitrage

arguments that any derivative asset V = V (S, σ, t) solves the following partial
differential equation

Vt +
1

2
S2σVSS + ρvσSVSσ +

1

2
v2σVσσ + rSVS

+
[

κ∗(θ∗ − σ)− λ(S, σ, t)
]

Vσ − rV = 0, (5)

which has to be solved for S, σ > 0, 0 ≤ t < T and subject to a suitable final
condition, e.g.,

V (S, σ, T ) = max(K − S, 0),
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in case of a European put option (with K denoting the strike price). In
(5), λ(S, σ, t) denotes the market price of volatility risk. While in principle
it could be estimated from market data, this is difficult in practice and the
results are controversial. Therefore, one typically assumes a risk premium
that is proportional to σ and chooses λ(S, σ, t) = λ0σ for some constant λ0.
For streamlining the presentation we restrict ourselves to this important case,
although our scheme applies to general functional forms λ = λ(S, σ, t).

The ‘boundary’ conditions in the case of the put option read as follows

V (0, σ, t) = Ke−r(T−t), T > t ≥ 0, σ > 0, (6a)

V (S, σ, t) → 0, T > t ≥ 0, σ > 0, as S → ∞, (6b)

Vσ(S, σ, t) → 0, T > t ≥ 0, S > 0, as σ → ∞. (6c)

The remaining boundary condition at σ = 0 can be obtained by looking at
the formal limit σ → 0 in (5), i.e.,

Vt + rSVS + κ∗θ∗Vσ − rV = 0, T > t ≥ 0, S > 0, as σ → 0. (6d)

This boundary condition is used frequently, e.g. in [14, 29]. Alternatively,
one can use a homogeneous Neumann condition [3], i.e.,

Vσ(S, σ, t) → 0, T > t ≥ 0, S > 0, as σ → 0. (6e)

For constant parameters, one can employ Fourier transform techniques
and obtain a system of ordinary differential equations which can be solved
analytically [12]. By inverting the transform one arrives at a closed-form
solution of (5), where the European put option price V is given by

V (S, σ, t) = Ke−r(T−t)I2 − SI1, (7)

with (k = 1, 2)

Ik =
1

2
+

1

π

∫

∞

0

Re

[

e−iξ ln(K)fk(ξ)

iξ

]

dξ, (8)

fk(ξ) = exp
(

C(T − t, ξ) + σD(T − t, ξ) + iξ lnS
)

,

C(τ, ξ) = rξiτ +
κ∗θ∗

v2

[

(b+ d)τ − 2 ln
(1− gedτ

1− g

)]

, D(τ, ξ) =
bk + dk

v2
1− edkτ

1− gedkτ
,

g =
bk + dk
bk − dk

, dk =
√

(ξ2 ∓ iξ) v2 + b2k, bk = κ∗ + λ0 − ρv(iξ + δ1k).

Here, δi,j denotes Kronecker’s delta.
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3. Transformation of the equation and boundary conditions

Under the transformation of variables

x = ln
( S

K

)

, t̃ = T − t, u = exp(rt̃)
V

K
, (9)

(we immediately drop the tilde in the following) we arrive at

ut −
1

2
σ
(

uxx + 2ρvuxσ + v2uσσ

)

+
(1

2
σ − r

)

ux −
[

κ∗θ∗ − (κ∗ + λ0)σ
]

uσ = 0, (10)

which is now posed on R × R
+ × (0, T ). We study the problem using the

modified parameters

κ = κ∗ + λ0, θ =
κ∗θ∗

κ∗ + λ0
,

which is both convenient and standard practice. For similar reasons, some
authors set the market price of volatility risk to zero. Equation (10) can then
be written as

ut −
1

2
σ
(

uxx + 2ρvuxσ + v2uσσ

)

+
(1

2
σ − r

)

ux − κ
[

θ − σ
]

uσ = 0. (11)

The problem is completed by the following initial and boundary conditions:

u(x, σ, 0) = max(1− exp(x), 0), x ∈ R, σ > 0,

u(x, σ, t) → 1, x → −∞, σ > 0, t > 0,

u(x, σ, t) → 0, x → +∞, σ > 0, t > 0,

uσ(x, σ, t) → 0, x ∈ R, σ → ∞, t > 0,

uσ(x, σ, t) → 0, x ∈ R, σ → 0, t > 0.

4. High-order compact scheme

For the discretization, we replace R by [−R1, R1] and R
+ by [L2, R2] with

R1, R2 > L2 > 0 . For simplicity, we consider a uniform grid Z = {xi ∈
[−R1, R1] : xi = ih1, i = −N, . . . , N} × {σj ∈ [L2, R2] : σj = L2 + jh2,
j = 0, . . . ,M} consisting of (2N +1)× (M +1) grid points, with R1 = Nh1,
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R2 = L2 +Mh2 and with space steps h1, h2 and time step k. Let un
i,j denote

the approximate solution of (11) in (xi, σj) at the time tn = nk and let
un = (un

i,j).
We impose artificial boundary conditions in a classical manner rigorously

studied for a class of Black-Scholes equations in [17]. The boundary con-
ditions on the grid are treated as follows. Due to the compactness of the
scheme, the treatment of the Dirichlet boundary conditions is minimal. It is
straightforward to consider Dirichlet boundary conditions without introduc-
tion of numerical error by imposing

un
−N,j = 1− ertn−Nh, un

+N,j = 0, (j = 0, . . . ,M).

At the other boundaries we impose homogeneous Neumann boundary con-
ditions. The treatment of homogeneous Neumann conditions requires more
attention. Indeed, no values are prescribed. The values of the unknown
on the boundaries must be set by extrapolation from values in the interior.
Then a numerical error is introduced, and the main consideration is that the
order of extrapolation should be high enough not to affect the overall order
of accuracy. We refer to the paper of Gustafsson [11] to discuss the influence
of the order of the approximation on the global convergence rate and justify
our choice of fourth order extrapolation formulae. By Taylor expansion, if
we cancel the first derivates on the boundaries, it is trivial to verify

un
i,0 =

18

11
un
i,1 −

9

11
un
i,2 +

2

11
un
i,3, (i = −N + 1, . . . , N − 1),

and

un
i,M =

18

11
un
i,M−1 −

9

11
un
i,M−2 +

2

11
un
i,M−3, (i = −N + 1, . . . , N − 1).

4.1. Derivation of the high-order scheme for the elliptic problem

First we introduce the high-order compact finite difference discretization
for the stationary, elliptic problem with Laplacian operator which appears
after the variable transformation y = σ/v. Equation (11) is then reduced to
the two-dimensional elliptic equation

− 1

2
vy(uxx + uyy)− ρvyuxy +

(1

2
vy − r

)

ux − κ
θ − vy

v
uy = f(x, y), (12)

with the same boundary conditions.
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The fourth order compact finite difference scheme uses a nine-point com-
putational stencil using the eight nearest neighbouring points of the reference
grid point (i, j).

The idea behind the derivation of the high-order compact scheme is to
operate on the differential equations as an auxiliary relation to obtain finite
difference approximations for high-order derivatives in the truncation error.
Inclusion of these expressions in a central difference method for equation (12)
increases the order of accuracy, typically to O(h4), while retaining a compact
stencil defined by nodes surrounding a grid point.

Introducing a uniform grid with mesh spacing h = h1 = h2 in both the
x- and y-direction, the standard central difference approximation to equa-
tion (12) at grid point (i, j) is

− 1

2
vyj

(

δ2xui,j + δ2yui,j

)

− ρvyjδxδyui,j

+
(1

2
vyj − r

)

δxui,j − κ
θ − vyj

v
δyui,j − τi,j = fi,j, (13)

where δx and δ2x (δy and δ2y , respectively) denote the first and second order
central difference approximations with respect to x (with respect to y). The
associated truncation error is given by

τi,j =
1

24
vyh2(uxxxx + uyyyy) +

1

6
ρvyh2(uxyyy + uxxxy)

+
1

12
(2 r − vy)h2uxxx +

1

6

κ(θ − vy)

v
h2uyyy +O(h4). (14)

For the sake of readability, here and in the following we omit the subindices
j and (i, j) on yj and ui,j (and its derivatives), respectively. We now seek
second-order approximations to the derivatives appearing in (14). Differen-
tiating equation (12) once with respect to x and y, respectively, yields

uxxx =− uxyy − 2ρuxxy −
2r + vy

vy
uxx + 2

κ(vy − θ)

v2y
uxy −

2

vy
fx, (15)

uyyy =− uxxy − 2ρuxyy −
1

y
uxx −

2κ(θ − vy) + v2

v2y
uyy

− 2ρ+ 2r − vy

vy
uxy +

1

y
ux +

2κ

vy
uy −

2

vy
fy. (16)
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Differentiating equations (15) and (16) with respect to y and x, respectively,
and adding the two expressions, we obtain

uxyyy + uxxxy =
vy + 2r

2vy2
uxx +

κ(θ + vy)

v2y2
uxy −

4κ(θ − vy) + v2

2v2y
uxyy

− ρv + 2r − vy

vy
uxxy − 2ρuxxyy −

1

2y
uxxx +

1

vy2
fx −

2

vy
fxy. (17)

Notice that all the terms in the right hand sides of (15)-(17) have compact
O(h2) approximations at node (i, j) using finite differences based on δx, δ

2
x,

δy, δ
2
y . We have, for example, uxxyi,j = δ2xδyui,j + O(h2). By differentiating

equation (12) twice with respect to x and y, respectively, and adding the two
expressions, we obtain

uxxxx + uyyyy = −2ρuxyyy − 2ρuxxxy − 2uxxyy + 2
(κvy − v2 − κθ)

v2y
uxxy

− (2r − vy)

vy
uxxx + 2

(κvy − v2 − κθ)

v2y
uyyy −

(−vy + 4ρv + 2r)

vy
uxyy

+ 4
κ

vy
uyy +

2

y
uxy −

2

vy
(fxx + fyy). (18)

Again, using (15)-(17), the right hand side can be approximated up to O(h2)
within the nine-point compact stencil. Substituting equations (15)-(18) into
equation (14) and simplifying yields a new expression for the error term τi,j
that consists only of terms which are either

• terms of order O(h4), or

• terms of order O(h2) multiplied by derivatives of u which can be ap-
proximated up to O(h2) within the nine-point compact stencil.

Hence, substituting the central O(h2) approximations to the derivatives in
this new expression for the error term and inserting it into (13) yields the
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following O(h4) approximation to the initial partial differential equation (12),

− 1

24

h2((vyj − 2r)2 − 4ρvr − 2κ(vyj − θ)− 2v2) + 12v2y2j
vyj

δ2xui,j

− 1

12

h2(2κ2(vyj − θ)2 − κv3yj − κθv2 − v4) + 6v4y2j
v3yj

δ2yui,j

− 1

12
h2vyj(1 + 2ρ2)δ2xδ

2
yui,j

+
h2

6

(κ(vyj − θ) + vρ(vyj − 2r))

v
δ2xδyui,j

+
h2

12

(4κρ(vyj − θ) + v(vyj − 2r))

v
δxδ

2
yui,j

− 1

6

h2(κ(vyj − 2r)(vyj − θ)− κv2yjρ− v3ρ− v2r) + 6v3y2jρ

v2yj
δxδyui,j

+
1

12

6v2y2j − 12vyjr − h2[v2 + κ(vyj − θ)]

vyj
δxui,j

+
κ

6

(6v2y2j − 6vyjθ − h2[v2 + κ(vyj − θ)])

v2yj
δyui,j

=fi,j +
h2

6

ρ

v
δxδyfi,j −

h2

6

(v2 + κ(vyj − θ))

v2yj
δyfi,j

− h2

12

(2ρv − 2r + vyj)

vyj
δxfi,j +

h2

12
δ2xfi,j +

h2

12
δ2yfi,j . (19)

The fourth order compact finite difference scheme (19) considered at the mesh
point (i, j) involves the nearest eight neighbouring mesh points. Associated
to the shape of the computational stencil, we introduce indexes for each node
from zero to nine,





ui−1,j+1 = u6

ui−1,j = u3

ui−1,j−1 = u7

ui,j+1 = u2

ui,j = u0

ui,j−1 = u4

ui+1,j+1 = u5

ui+1,j = u1

ui+1,j−1 = u8



 . (20)

With this indexing, the scheme (19) is defined by

8
∑

l=0

αlul =

8
∑

l=0

γlfl, (21)
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where the coefficients αl and γl are given by

α0 =

(

4κ2 + v2

12v
− v(2ρ2 − 5)

3h2

)

yj

− κv2 + 2κ2θ + v2r

3v2
+

−v4 + κ2θ2 − v3rρ+ v2r2

3v3yj
,

α1,3 =

(

− v

24
+

±1
6
v ∓ 1

3
κρ

h
+

v(ρ2 − 1)

3h2

)

yj ∓
κh

24
+

κ

12
+

r

6

∓ vr − κθρ

3vh
∓ (v2 − κθ)h

24vyj
− −2rvρ+ κθ + 2r2 − v2

12vyj
,

α2,4 =

(

− κ2

6v
+

±1
3
κ∓ 1

6
ρv

h
+

v(ρ2 − 1)

3h2

)

yj ∓
κ2h

12v
+

κ(v2 + 4κθ)

12v2

∓ rvρ− κθ

3vh
∓ κ(v2 − κθ)h

12v2yj
+

(2κθ + v2)(v2 − κθ)

12v3yj
,

α5,7 =

(

− κ

24
± (2ρ+ 1)(2κ+ v)

24h
− v(ρ+ 1)(2ρ+ 1)

12h2

)

yj

+
κ(ρv + 2r + θ)

24v
∓ (2ρ+ 1)(κθ + vr)

12vh
+

v2r + v3ρ− 2rκθ

24v2yj
,

α6,8 =

(

κ

24
± (2ρ− 1)(−2κ+ v)

24h
− v(2ρ− 1)(ρ− 1)

12h2

)

yj

− κ(ρv + 2r + θ)

24v
∓ (2ρ− 1)(vr − κθ)

12vh
− v2r + v3ρ− 2rκθ

24v2yj
,

and

γ0 =
2

3
, γ5 = γ7 =

ρ

24
, γ6 = γ8 = − ρ

24
,

γ1,3 =
1

12
∓ h

24
± 1

12

(r − ρv)h

vyj
, γ2,4 =

1

12
∓ 1

12

κh

v
∓ 1

12

(v2 − κθ)h

v2yj
.

When multiple indexes are used with ± and ∓ signs, the first index corre-
sponds to the upper sign.

Remark 1. The derivation of the scheme in this section can be modified
to accomodate other stochastic volatility models as, e.g., the GARCH diffu-
sion model (3) or the 3/2-model (4). Using these models the structure of
the partial differential equations (5), (11) and (12) remains the same, only
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the coefficients of the derivatives have to be modified accordingly. Similarly,
the coefficients of the derivatives in (15)-(18) have to be modified. Substi-
tuting these in the modified expression for the truncation error one obtains
equivalent O(h4) approximations as (19).

4.2. High-order scheme for the parabolic problem

The high-order compact approach presented in the previous section can be
extended to the parabolic problem directly by considering the time derivative
in place of f(x, y). Any time integrator can be implemented to solve the
problem as presented in [21]. We consider the most common class of methods
involving two times steps. For example, differencing at tµ = (1−µ)tn+µtn+1,
where 0 ≤ µ ≤ 1 and the superscript n denotes the time level, yields a class of
integrators that include the forward Euler (µ = 0), Crank-Nicolson (µ = 1/2)
and backward Euler (µ = 1) schemes. We use the notation δ+t u

n = un+1
−un

k
.

Then the resulting fully discrete difference scheme for node (i, j) at the time
level n becomes

8
∑

l=0

µαlu
n+1
l + (1− µ)αlu

n
l =

8
∑

l=0

γlδ
+
t u

n
l ,

that can be written in the form (after multiplying by 24v3h2yk)

8
∑

l=0

βlu
n+1
l =

8
∑

l=0

ζlu
n
l . (22)

The coefficients βl, ζl are numbered according to the indexes (20) and are
given by

β0 =(((2yj
2 − 8)v4 + ((−8κ− 8r)yj − 8ρr)v3 + (8κ2yj

2 + 8r2)v2

− 16κ2θvyj + 8κ2θ2)µk + 16v3yj)h
2 + (−16ρ2 + 40)yj

2v4µk

β1,3 =± ((κθv2 − v4 − κyjv
3)µk − (yj + 2ρ)v3 + 2v2r)h3 + (((−yj

2 + 2)v4

+ ((4r + 2κ)yj + 4ρr)v3 − (2κθ + 4r2)v2)µk + 2v3yj)h
2

± (4v4yj
2 + (−8yj

2κρ− 8yjr)v
3 + 8yjκθρv

2)µkh+ (8ρ2 − 8)yj
2v4µk,

β2,4 =± ((2κ2θv − 2κ2v2yj − 2v3κ)µk − 2v2yjκ + 2vκθ − 2v3)h3 + ((2v4

+ 2κyjv
3 + (−4κ2yj

2 + 2κθ)v2 + 8κ2θvyj − 4κ2θ2)µk + 2v3yj)h
2

± ((8yj
2κ+ 8yjρr)v

3 − 4v4yj
2ρ− 8v2yjκθ)µkh+ (8ρ2 − 8)yj

2v4µk,

β5,7 =((v4ρ+ (−y2κ+ κyjρ+ r)v3 + (θ + 2r)κyjv
2 − 2rκθv)µk
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+ v3ρyj)h
2 ± ((2ρ+ 1)yj

2v4 + ((2 + 4ρ)κyj
2 + (−4ρr − 2r)yj)v

3

+ (−2θ − 4θρ)κyjv
2)µkh+ (−2 − 4ρ2 − 6ρ)yj

2v4µk,

β6,8 =((−v4ρ+ (yj
2κ− κyjρ− r)v3 + (−θ − 2r)κyjv

2 + 2rκθv)µk

− v3ρyj)h
2 ± ((2ρ− 1)yj

2v4 + ((2− 4ρ)κyj
2 + (2r − 4ρr)yj)v

3

+ (4θρ− 2θ)κyjv
2)µkh+ (−4ρ2 + 6ρ− 2)yj

2v4µk,

and

ζ0 =16v3yjh
2 + (1− µ)k(((8− 2yj

2)v4 + ((8κ+ 8r)yj + 8ρr)v3

+ (−8r2 − 8κ2yj
2)v2 + 16κ2θvyj − 8κ2θ2)h2 + (−40 + 16ρ2)yj

2v4),

ζ1,3 =± (2r − (yj + 2ρ)v)v2h3 + 2v3yjh
2 + (1− µ)k(±(vκyj + v2 − κθ)v2h3

+ (v2yj
2 − (4r + 2κ)vyj + 4r2 + 2κθ − 2v2 − 4ρvr)v2h2

± ((−4v + 8κρ)v3yj
2 + (−8κθρ+ 8vr)v2yj)h+ (8v2 − 8v2ρ2)v2yj

2),

ζ2,4 =± (2vκθ − 2v2yjκ− 2v3)h3 + 2v3yjh
2 + (1− µ)k(±2(v3κ− κ2θv

+ κ2v2yj)h
3 + (4κ2v2yj

2 − (2v2 + 8κθ)κvyj + 2κθ(2κθ − v2)− 2v4)h2

± ((−8v3κ + 4v4ρ)yj
2 + (8κθv2 − 8v3ρr)yj)h+ (−8v4ρ2 + 8v4)yj

2),

ζ5,7 =v3ρyjh
2 + (1− µ)k((v3yj

2κ− v(vκθ + 2rκv + κv2ρ)yj

− v(v2r − 2rκθ + v3ρ))h2 ± (−v(2v3ρ+ v3 + 4κv2ρ+ 2v2κ)yj
2

+ v(2vκθ + 4vκθρ+ 4v2ρr + 2v2r)yj)h+ v(2v3 + 6v3ρ+ 4v3ρ2)yj
2),

ζ6,8 =− v3ρyjh
2 + (1− µ)k((−v3yj

2κ+ v(vκθ + 2rκv + κv2ρ)yj

+ v(v2r − 2rκθ + v3ρ))h2 ± (v(−2v3ρ+ v3 + 4κv2ρ− 2v2κ)yj
2

+ v(2vκθ − 4vκθρ+ 4v2ρr − 2v2r)yj)h + v(2v3 − 6v3ρ+ 4v3ρ2)yj
2).

When multiple indexes are used with ± and ∓ signs, the first index corre-
sponds to the upper sign. Choosing µ = 1/2, i.e., in the Crank-Nicolson case,
the resulting scheme is of order two in time and of order four in space.

4.3. Stability analysis

Besides the multi-dimensionality the initial-boundary-value problem (22)
features two main difficulties for its stability analysis: the coefficients are
non-constant and the boundary conditions are not periodic. In this section,
we consider the von Neumann stability analysis (see, e.g., [22]) even if the
problem considered does not satisfy periodic boundary conditions. This ap-
proach is extensively used in the literature and yields good criteria on the
robustness of the scheme. Other approaches which take into account the

13



boundary conditions like normal mode analysis [10] are beyond the scope of
the present paper (we refer to [9] for normal mode analysis for a high-order
compact scheme).

To consider the variable coefficients, the principle of ‘frozen coefficients’
(the variable coefficient problem is stable if all the ‘frozen’ problems are
stable) [10, 22] is employed. It should be noted, that in the discrete case, this
principle is far from trivial. The most general statements are given in [10, 18,
26, 23] and reference therein for hyperbolic problems. For parabolic problems
in the discrete case we refer to [20, 27]. Using the frozen coefficients approach
gives a necessary stability condition and slightly strengthened stability for
frozen coefficients is sufficient to ensure overall stability [20].

We now turn to the von Neumann stability analysis. We rewrite un
i,j as

un
i,j = gneIiz1+Ijz2, (23)

where I is the imaginary unit, gn is the amplitude at time level n, and
z1 = 2πh/λ1 and z2 = 2πh/λ2 are phase angles with wavelengths λ1 and λ2,
in the range [0, 2π[, respectively. Then the scheme is stable if for all z1 and
z2 the amplification factor G = gn+1/gn satisfies the relation

|G|2 − 1 ≤ 0. (24)

An expression for G can be found using (23) in (22).
Our aim is to prove von Neumann stability (for ‘frozen coefficients’) with-

out restrictions on the time step size. To show that (24) holds we would need
to study the (formidable) expression for the amplification factor G (not given
here) which consists of polynomials of order up to six in 13 variables. To re-
duce the high number of parameters in the following numerical analysis, we
assume here zero interest rate r = 0 and choose the parameter µ = 1/2
(Crank-Nicolson case). Even then, at present a complete analysis for non-
zero correlation seems out of reach, but we are able to show the following
result.

Theorem 1. For r = ρ = 0 and µ = 1/2 (Crank-Nicolson), the scheme (22)
satisfies the stability condition (24).

Proof. Let us define new variables

c1 = cos
(z1
2

)

, c2 = cos
(z2
2

)

, s1 = sin
(z1
2

)

, s2 = sin
(z2
2

)

,

W =
2 (θ − vy)

v
s2, V =

2vy

κ
s1,

14



which allow us to express G in terms of h, k, κ, V,W and trigonometric func-
tions only. This reduces the number of variables in the amplification factor
from ten to nine. The new variable V has constant positive sign contrary to
W .

In the new variables the stability criterion (24) of the scheme can be
written as

−8kh2(n4h
2 + n2)

d6h6 + d4h4 + d2h2 + d0
≤ 0, (25)

with

n4 = −4 V κ3f3 s
3
1W

2 − V 3κ3f4 s
3
1, n2 = −4 V 3κ3f2 f1 s1 ,

d6 = 4 (−2W c2 + V c1 )
2 κ2s41,

d4 =
1

4
κ4s41

(

V 2 − 4 V c1 W c2 + 4W 2
)2

k2

− 4 V κ3s31
(

f4 V
2 + 4 f3 W

2
)

k + 16 κ2V 2f 2
2 s

2
1,

d2 = V 2κ4s21
(

V 2f6 − 36 V c1 W c2 + 4 f5 W
2
)

k2 − 16 V 3κ3f2 f1 s1 k,

d0 = 4 V 4κ4f 2
1k

2,

where f1, f2, f3, f4, f5, and f6 have constant sign and are defined by

f1 = 2c21c
2
2 + c21 + c22 − 4 ≤ 0, f2 = c21 + c22 + 1 ≥ 0,

f3 = 2c21c
2
2 − c21 − 1 ≤ 0, f4 = 2c21c

2
2 − c22 − 1 ≤ 0,

f5 = 4c41c
2
2 − 2c21 − c22 + 8 ≥ 0, f6 = 4c21c2

4 − 2c22 − c21 + 8 ≥ 0.

We observe that we can restrict our analysis (expect for d2, treated below) to
the trigonometric functions s1, s2, c1, and c2 in the reduced range [0, 1] (z1/2
and z2/2 are in [0, π[, even exponents for cosinus functions). It is straight-
forward to verify that n4, n2, d6, d4, and d0 are positive. It remains to prove
d2 = d22k

2 + d21k is positive as well. Indeed, d21 ≥ 0 and d22 is a polynomial
of degree two in W having a positive leading order coefficient. The minimum
value of d22 is given by

m = 2V 4κ4s21f1f7/f5

with f7 = 4c42c
4
1− 2c41c

2
2− 2c21c

4
2+6c21c

2
2+ c21+ c22− 8 ≤ 0. Hence, m is positive

and then d2 is positive as well. Therefore, the numerator in (25) is negative
and the denominator in (25) is positive which completes the proof.
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For non-zero correlation the situation becomes more involved. Additional
terms appear in the expression for the amplification factor G and we face an
additional degree of freedom through ρ. Since we have proven condition (24)
for ρ = 0 it seems reasonable to assume it also holds at least for values of ρ
close to zero. In practical applications, however, correlation can be strongly
negative. Few theoretical results can be obtained, we recall the following
lemma from [4].

Lemma 2. For any ρ, r = 0, and µ = 1/2 (Crank-Nicolson) it holds: if
either c1 = ±1 or c2 = ±1 or y = 0, then the stability condition (24) is
satisfied.

Proof. See Lemma 1 in [4].
In [4], we have reformulated condition (24) into a constrained optimisation

problem and have employed a line-search global-optimisation algorithm to
find the maxima. We have found that the stability condition (24) was always
satisfied. The maxima for each ρ ∈ [−1, 0] were always negative but very
close to zero. This result is in agreement with Lemma 2 (in fact, |G|2−1 = 0
for y = 0). Our conjecture from these results is that the stability condition
(24) is satisfied also for non-vanishing correlation although it will be hard to
give an analytical proof.

In our numerical experiments we observe stability also for a general choice
of parameters. To validate the stability property of the scheme also for
general parameters, we perform additional numerical tests in section 5.

5. Numerical results

5.1. Numerical convergence

In this section we perform a numerical study to compute the order of
convergence of the scheme (22). Due to the compact discretization the re-
sulting linear systems have a good sparsity pattern and can be solved very
efficiently. We compute the l2 norm error ε2 and the maximum norm error
ε∞ of the numerical solution with respect to a numerical reference solution
on a fine grid. We fix the parabolic mesh ratio k/h2 to a constant value
which is natural for parabolic PDEs and our scheme which is of order O(k2)
in time and O(h4) in space. Then, asymptotically, we expect these errors
to converge as ε = Chm for some m and C representing constants. This
implies ln(ε) = ln(C)+m ln(h). Hence, the double-logarithmic plot ε against
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Parameter Value

strike price K = 100
time to maturity T = 0.5
interest rate r = 0.05
volatility of volatility v = 0.1
mean reversion speed κ = 2
long-run mean of σ θ = 0.1
correlation ρ = −0.5

Table 1: Default parameters for numerical simulations.

h should be asymptotic to a straight line with slope m. This gives a method
for experimentally determining the order of the scheme.

Figure 1 shows the numerical solution for the European option price at
time T = 0.5 using the parameters from Table 1.
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Figure 1: Numerical solution for the European option price.

We refer to Figure 2 and Figure 3 for the results of the numerical conver-
gence study using the default parameters from Table 1. For the parameter
µ, we use a Rannacher time-stepping choice [19], i.e., we start with four fully
implicit quarter time steps (µ = 1) and then continue with Crank-Nicolson
(µ = 1/2). For comparison we conducted additional experiments using a
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Figure 2: l2-error vs. h.
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Figure 3: l∞-error vs. h.

standard, second order scheme (based on the central difference discretization
(13) where we neglect the truncation error). We observe that the numerical
convergence order agrees well with the theoretical order of the schemes. It
is important to choose the mesh in such a way that the singular point of
the initial condition is not a point of the mesh. The construction of such a
mesh is always possible in a simple manner. Then the non-smooth payoff can
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be directly considered in our scheme and we observe fourth order numerical
convergence.

Remark 2. Without constraint on the mesh, i.e. when then singular point of
the payoff is a mesh point, the rate of convergence is reduced to two. However,
it is possible to recover the fourth order convergence with such a mesh if the
initial data are smoothed.

The numerical convergence analysis also shows the superior efficiency of
the high-order scheme compared to a standard second order discretization.
In each time step of each scheme a linear system has to be solved. For both
schemes this requires the same computational time for the same dimension.
To achieve the same level of accuracy the new scheme requires significantly
less grid points, or in other words, the computational time to obtain a given
accuracy level is greatly reduced by using the high-order scheme.

5.2. Numerical stability analysis
In our numerical analysis in section 4.3, we have proven the stability

result Theorem 1 for r = ρ = 0. To validate this property for general pa-
rameters, we perform additional numerical tests. We compute numerical
solutions for varying values of the parabolic mesh ratio k/h2 and the mesh
width h. Plotting the associated l2 norm errors in the plane should allow us to
detect stability restrictions depending on k/h2 or oscillations that occur for
high cell Reynolds number (large h). This approach for a numerical stability
study was also used in [6]. We perform numerical experiments for ρ = 0 and
ρ = −0.5. For the other parameters, we use again the default parameters
from Table 1. The results are shown in Figure 4. For both cases, ρ = 0
and ρ = −0.5, the errors show a similar behaviour, being slightly larger for
non-vanishing correlation. There is almost no dependence of the error on the
parabolic mesh ratio k/h2, which confirms numerically regular solutions can
be obtained without restriction on the time step size. For larger values of h,
which also result in a higher cell Reynolds number, the error grows gradually,
and no oscillation in the numerical solutions occurs. Based on these results
and the findings in [4], we conjecture that the stability condition (24) also
holds for general choice of parameters.

6. Conclusion

We have presented a new high-order compact finite difference scheme for
option pricing under stochastic volatility that is fourth order accurate in
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Figure 4: l2 norm error in the k/h2-h-plane for ρ = −0.5 (top) and ρ = 0 (bottom).

space and second order accurate in time. We have conducted a von Neu-
mann stability analysis (for ‘frozen coefficients’ and periodic boundary data)
and proved unconditional stability for vanishing correlation. In our numer-
ical experiments we observe a stable behaviour also for a general choice of
parameters. Additional numerical tests presented here and the results of
subsequent research reported in [4] suggest that the scheme is also von Neu-
mann stable for non-zero correlation. In our numerical convergence study we
obtain fourth order numerical convergence for the non-smooth payoffs which
are typical in option pricing.

It would be interesting to consider extensions of this scheme to non-
uniform grids and to the American option pricing problem, where early exer-
cise of the option is possible. An approach to the first would be to introduce
a transformation of the partial differential equation from a non-uniform grid
to a uniform grid [8]. Then our high order compact methodology can be
applied to this transformed partial differential equation. This is, however,
not straight-forward as the derivatives of the transformation appear in the
truncation error and due to the presence of the cross-derivative terms. One
cannot proceed to cancel terms in the truncation error in a similar fashion
as in the current paper, and the derivation of a high-order compact scheme
becomes much more involved. For the second extension, the American op-
tion pricing problem, one has to solve a free boundary problem. It can be
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written as a linear complementarity problem which can be discretised using
the scheme (22). To retain the high-order convergence one would need to
combine the high-order discretization with a high-order resolution of the free
boundary. Both extensions are beyond the scope of the present paper, and
we leave them for future research.
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