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Abstract

We derive high-order compact finite difference schemes for option pricing in stochastic volatility
models on non-uniform grids. The schemes are fourth-order accurate in space and second-
order accurate in time for vanishing correlation. In our numerical study we obtain high-
order numerical convergence also for non-zero correlation and non-smooth payoffs which are
typical in option pricing. In all numerical experiments a comparative standard second-order
discretisation is significantly outperformed. We conduct a numerical stability study which
indicates unconditional stability of the scheme.

1 Introduction

Efficient pricing of financial derivatives, in particular options, is one of the major topics in financial
mathematics. To be able to explain important effects which are present in real financial markets,
e.g. the volatility smile (or skew) in option prices, so-called stochastic volatility models have been
introduced over the last two decades. In contrast to the seminal paper of Black and Scholes [BS73]
the underlying asset’s volatility is not assumed to be constant, but is itself modelled by a stochastic
diffusion process. These stochastic volatility models are typically based on a two-dimensional
stochastic diffusion process with two Brownian motions with correlation p, i.e. dW M (£)dW ) (t) =
pdt. On a given filtered probability space for the stock price S = S(¢) and the stochastic volatility
o = o(t) one considers

dS(t) = aS(t) dt + /o (t)S(t) dW D (¢),
do(t) = a(o(t)) dt + b(o(t)) dW P (),

where [i is the drift of the stock, a(o) and b(o) are the drift and the diffusion coefficient of the
stochastic volatility.

Application of Ité’s Lemma and standard arbitrage arguments show that any option price
V =V(S,0,t) solves the following partial differential equation,

1 1
(1) Wi+ 505’20V55 + pb(0)/oSVs, + §b2(U)VM + (a(o) = A(S,0,t)) Vo +1SVs — 1V =0,

where r is the (constant) riskless interest rate and A(S, o,t) denotes the market price of volatility
risk. Equation () has to be solved for S,o0 > 0, 0 < ¢t < T, and subject to final and boundary
conditions which depend on the specific option that is to be priced.

There are different stochastic volatility models with different choices of the model for the
evolution of the volatility for ¢ > 0, starting from an initial volatility o(0) > 0. The most prominent
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work in this direction is the Heston model [Hes93], where

(2) do(t) = k* (0" — o(t)) dt +v\/a(t) AW ().

Other stochastic volatility models are, e.g., the GARCH diffusion model [Dua95|,
(3) do(t) = k* (0" — o(t)) dt +vo(t) dW P (1),

or the so-called 3/2-model (see, e.g. [Lew00]),

(4) do(t) = k*a(t) (0% — o (t)) dt + vo (t)*/* aW P (1).

In @)-@), «*, v, and 6* denote the mean reversion speed, the volatility of volatility, and the
long-run mean of o, respectively.

For some models and under additional restrictions, closed form solutions to () can be obtained
by Fourier methods (see, e.g. [Hes93| [Diir09]). Another approach is to derive approximate analytic
expressions, see, e.g. [BGMI0] and the literature cited therein. In general, however, —even in the
Heston model when the parameters are non constant— equation () has to be solved numerically.
Moreover, many (so-called American) options feature an additional early exercise right. Then one
has to solve a free boundary problem which counsists of (I]) and an early exercise constraint for the
option price. Also for this problem one typically has to resort to numerical approximations.

In the mathematical literature, there are a number of papers considering numerical methods
for option pricing in stochastic volatility models, i.e. for two spatial dimensions. Finite difference
approaches that are used are often standard, low order methods (second order in space). Other
approaches include finite element-finite volume [ZEV9§|, multigrid [CP99], sparse wavelet [HMS05],
or spectral methods [ZK10].

Let us review some of the related finite difference literature. Different efficient methods for
solving the American option pricing problem for the Heston model are compared in [IT08]. The
article focusses on the treatment of the early exercise free boundary and uses a second order
finite difference discretization. In [IHF10] different, low order ADI (alternating direction implicit)
schemes are adapted to the Heston model to include the mixed spatial derivative term. While most
of [TGBO§| focusses on high-order compact scheme for the standard (one-dimensional) case, in a
short remark [TGBOS8| Section 5] also the stochastic volatility (two-dimensional) case is considered.
However, the final scheme is of second order only due to the low order approximation of the cross
diffusion term.

High-order finite difference schemes (fourth order in space) were proposed for option pricing
with deterministic (or constant) volatility, i.e. in one spatial dimension, that use a compact stencil
(three points in space), see, e.g., [TGBO§| for linear and [DFJ03, [DFJ04, [LK09] for fully nonlinear
problems.

More recently, a high-order compact finite difference scheme for (two-dimensional) option pric-
ing models with stochastic volatility has been presented in [DF12al]. This scheme uses a uniform
mesh and is fourth order accurate in space and second order accurate in time. Unconditional
(von Neumann) stability of the scheme is proved for vanishing correlation. A further study of its
stability, indicating unconditional stability also for non-zero correlation, is performed in [DF12b].

In general, the accuracy of a numerical discretisation of (I]) for a given number of grid points
can be greatly improved by considering a non-uniform mesh. This is particular true for option
pricing problems as (dJ), as typical initial conditions have a discontinuity in their first derivative at
S = K, which is the center of the area of interest (‘at-the-money’).

Our aim in the present paper is to consider extensions of the high-order compact methodology
for stochastic volatility models ([{l) to non-uniform grids. The basic idea of our approach is to
introduce a transformation of the partial differential equation from a non-uniform grid to a uniform
grid (as, e.g. in [FouOQ]). Then, the high-order compact methodology can be applied to this
transformed partial differential equation. It turns out, however, that this process is not straight-
forward as the derivatives of the transformation appear in the truncation error and due to the
presence of the cross-derivative terms, one cannot proceed to cancel terms in the truncation error
in a similar fashion as in [DFI12a] and the derivation of a high-order compact scheme becomes
much more involved. Nonetheless, we are able to derive a compact scheme which shows high-order



convergence for typical European option pricing problems. Up to the knowledge of the authors,
this is the first high-order compact scheme for option pricing in stochastic volatility models on
non-uniform grids.

The rest of this paper is organised as follows. In the next section, we transform (IJ) into a more
convenient form. We then derive four new variants of a compact scheme in Section Bl Numerical
experiments confirming the high-order convergence for different initial conditions (we consider the
case of a European Put option and a European Power Put option) are presented in Section
Section [f] concludes.

2 Transformation of the partial differential equation and final
condition

We focus our attention on the Heston model ([I)—()), although our methodology adapts also to
other stochastic volatility models in a natural way (see Remark 2 at the end of Section[3]). As usual,
we restrict ourselves to the case where the market price of volatility risk A(S, o,t) is proportional
to o and choose (S, 0,t) = Ago for some constant \g. This allows to study the problem using the
modified parameters

K*0*
K*+ Ao’
which is both convenient and standard practice. For similar reasons, some authors set the market
price of volatility risk to zero.

The partial differential equation of the Heston-model is then given by

K=kK"+NX, 0=

1 1
(5) Vi + §O'S20'VSS + pvoSVss + §v20VM +rSVs+ k(0 —0)V,—rV =0

where S € [0, Smax] with a chosen Spax > 0, 0 € [Omin, Omax] With 0 < opin < Omax and ¢ € [0, [
with 7" > 0, imposing an approximative artificial boundary condition at Spax. The error caused by
approximative boundary conditions imposed on an artificial boundary for a class of Black-Scholes
equations has been studied rigorously in [KNQQ].

The final condition as well as the boundary conditions, which we will discuss separately, depend
on the chosen option. In the case of a European Power Put Option we have the final condition

(6) V(S,v,T) = max(K — S,0)P

with power p € N.

For high-order finite difference schemes as proposed in this article, the low regularity of the
final condition (@) at the strike S = K may reduce the numerical convergence order in practice.
To retain high-order convergence, one can smooth the initial condition carefully (cf. [KTW70]) or
shift the numerical grid to avoid the strike falling on a grid point as suggested, for example, in
[TROO, DF12a]. In our numerical experiments reported in Section 5] we use the latter approach.

We apply the following transformations to (B as in [DF12a,

5 S 14
S:ln(E), T=T—1, y:%, u:e”E,

where S € [Smin, Smax} with a chosen Smin < 0 and

O Smax
max — 1 — |-
S n ( 7 )

We then introduce a (sufficiently smooth) zoom function

S = (),

= [gp‘l (S*min) N (S’maxﬂ ,

zooming around S = 0, with



and setting f = —u, we obtain from ({]) the following two-dimensional elliptic problem,

—vy 0 — vy vyp vy
(1) G2 = 57 [pattas + Ghuyy] = poyeiu, — s g, + [T 4 (5 )2
where ($, y) €= [xmin,xmax] X [yminaymax]; ZTmin < Tmax aNd Ymin < Ymax-

3 Derivation of the high-order compact schemes for the el-
liptic problem

We start by defining a uniform grid in z- and in y-direction,
(8) G:= {(ziayj) € | Ty :zmin+i(A'r)7 Yi = Ymin +](Ay)a 0 S 1 S N; 0 S] S M}7

where Az = (Tmax — Tmin)/N and Ay = (Ymax — Ymin)/M are the step sizes in each direction.
With & we identify the inner points of the grid G. On this grid we denote by U;; the discrete
approximation of the continuous solution u in (z;,y,) € G. Using the standard central difference
operator Dy in z-direction and Dy in y-direction, and the standard second-order central difference
operator D7 in z-direction and D} in y-direction, for k =,y we have

2
(9) ue = DiUy — S um + O (Ak)Y)
and
2
Uk = D,%Uij — %Ukkkk + O ((Ak)4) )
10 : 2)* -
(10) Uy = DgDyUij — S taaay = Cftayyy + O ((Az)Y)

+O (A2 (Ay)?) + O ((Ay)!) +0 (L27),

at the grid points (z;,y;) for i =0,...,N and j = 0,..., M. We call a scheme of high order, if
its consistency error is of order O ((Axz)*) for Ay € O (Az). If we discretise the higher derivatives
Upzzs, Uyyyy, Ussoys Yoyyy, Uszs, ald Uyy, appearing in (@) and ([I0) with second order accuracy,
we obtain a scheme with consistency of order four, since they are all multiplied by factors of order
two. If this can be achieved using the compact nine-point computational stencil,

Uicj+r Uijtr Uit1j4
Uiy Uiy Uigry ;
Ui—1,j-1 Uij—1 Uip1,5-1

the scheme is called high-order compact (HOC).

3.1 Auxiliary relations for higher derivatives

We proceed by giving auxiliary relations for the third and fourth order derivatives appearing in
@) and ([d0). Expressions for the higher derivatives can be obtained by differentiating the partial
differential equation (7)) in a formal manner without introducing additional error. Differentiating
equation (7)) with respect to x and then solving for u,., leads to

Caip 22 @ 4 =7) P 2(F—r)ea
— - Z;yrmf - %f:b + |: ;igp + ( 2 /o0 T)(P :| Uy + _( 2 "")LP Ugpx — Sﬁiuzyy

uil)il)il) vy vy

(11)

—6k 91}—21;11 P Prally — [4p<pm + 2,{91}—21;9 Sﬁﬂ Ugy — 20PrUsry — 3PuPrzlyy

= Ayzz.



Using this equation we can calculate a discretisation of A,,, using only points of the nine-point
stencil with consistency error of order two using the central difference operators.

Differentiating the partial differential equation (7)) twice with respect to x and then solving for
Ugzze WE have

VY P vy
25 -7)Pr s 2
+ [% - fp_T:| Uprx — 6(pmtpmmumyy - (pmummyy
(12) 6k(0—v 2 2
Y) 205+ P Praa [ 12k(0—v zPza
- 2 Luy [t (ors + o) + 22limgiecen o,

o— 2
- |:8p909m + W} Ugzy — 2p@m“zwzy - [3901()0111 + 690?51} Uyy

1292 4605 Prra f-

2
12, ¢ 2¢ _.
vy iy = fz - Uym fzw —- Ammmm - 2p(pzuzzzy

The term A, can be discretised at the order two on the compact stencil if equation (II) and
the central difference operator are used. Solving equation (I2)) for ugzq, We obtain

1 1
13 = Ay — ——
( ) Uzzry 20901 TTTT QP(PJ U

TXrxrx-

In order to find an equation for wu,,, we first differentiate the partial differential equation (7)) once
with respect to y and then solve for u,,,, which leads to

2
= 1 2 _ 2r(0—vy) v
Uyyy = 2 Uzzy v Uz o Uzyy v2y Uyy
(14)
425 4 m_i_mu _;’_‘/’M—"'%zcu _if — A
vy Y 3 VYPa zy yes T wydY T yyy:

The term A, can be discretised in a compact manner at the order two using the central difference
operators.
Differentiating equation (7)) twice with respect to y and then solving for wu,,, leads to

o 1 2 2v2+2/{(07vy) 2p Ak
Uyyyy = oz Uzayy = 37 Usay — ( w2y Uyyy — o, Yayyy T 3y Uyy
2 2 ﬂfr)fél v
15 2¢za+2¢ [res ( 2 i 2
U 22 N Uy — =

(15) + Y3 ay T »3 + YU P Yy vy uy

—- _ 2

= Ayyyy 2 dzyyy-

The term Ay, can be discretised at the order two on the compact stencil using equation (I4)) and
the central difference operator. Equation (3] is equivalent to

' '
(16) Ugyyy = 2_; yyyy _zuyyyy'

Differentiating the partial differential equation (7)) once with respect to x and once with respect to



y and then solving for ug., leads to

_ Pave | 2Qzx Pz 1 | 6K(6— Uy)‘Pm‘Pma‘ 30z Paa
Upzzy = |:y¢1 + v i| Uy + v Ugq yuzzz |: 2y + v Uyy
+6ﬂwzapm —3 + wmz _ 4ppas + A(—r)pan + 2502
oy Pz Pralyyy y vy vy | oy
26(0—vy)p o2 2
(17) =200z Ugayy — {TT +4ppre + 5 | Uy — Pallayyy

2(H-r)e 2 2
+[ (2vy) - pfz]u”y %%Ify %fzy

2
- Azwzy — PrUzyyy-

Using the equations ([Il) and (I4)) as well as the central difference operators in z- and y-direction
it is possible to discretise Ayz4y at the order two on the compact stencil. Solving equation (I7) for

Ugyyy gives

A 1 1
(18) Uzyyy = ;%zy - (p—%ummy = Amyyy - (p_%uzzzy

Finally, the expression A,y,, can be discretised at the order two on the compact stencil as well.

3.2 Derivation of the discrete schemes

In order to derive a discrete scheme we employ equations (@) and (IQ) in the partial differential
equation (@), which gives

3 vy(Az)p, vy(Ay 3 pvy(Aw ©2
(19)
Y S ot 7 [ V) S [vywm+2(%—r)wi](m>2u
6 TYyy 6v yyy 12 TTTH
where

N
S
Il

- [(megUw + gomDQU } pvytme°D°U me;ﬁwgDZUij
[20ge (3 ) 2] D2

and the error-term £ € O ((Az)?) if Ay € O(Az) is used. Equation (IJ) is the basis for the
derivation of our different discretisation schemes. Ay is only using the compact stencil.

We have four fourth-order derivatives, namely Uzzez, Uyyyys Usezy a0d Ugyyy appearing in
equation ([9), interacting with each other, but only three auxiliary relations to replace these higher
derivatives. These relations are given by ([2), (&), and (IT), which were derived in Section Bl
This leads to four different versions of the discrete scheme.

For the Version 1 scheme equations (1)), (I4)) and (3] are used in equation (1), then (IF]) is
employed and finally (I3)) is applied, which gives

vy[2(Ax)? 3 —(Ay)? vy(Ay)2p3 vy(Ay)2p?
(ng = AO y[ 240, Y ]Azzmm u( 2111) TAyyyy o 13) TAmyyy
k(0—vy)(Ay)2pS VY P +2( - i Ax)?
(20) (0 y()jsj Y) Pn Ayyy [W ( = )9” ]( ) Apus

vy[(Ay)’—(Ax)*¢2] +
24993: U’IIII E'

For the Version 2 scheme equations ([Il), (Id]) and (I2)) are used in equation (I9), then (7)) is



employed and finally (I6]) is applied, which gives

vy(Az) 20, v 32A 2—Am2i UAI2§
PBf = AO""%AMM—F Yol [2( y)24( )W]Ayyyyﬁ-%&cmy
Kk(O—v 2,3 VY Pae+2( % —r)p2|(Az)?
(21) LR [vyeent (212 Jez](an)® 4

3 2 2 2
A (0L N

For the Version 3 scheme equations ([Il), (I4)), (IZ) and (5] are used in equation (I9) and then
(I8) is applied, which gives

f e Ay)?e? Ay)2p2

502 = Ao+ %AIIII + vy 2'71) Lo Ayyyy + puy(Ay 129) Pz 4zyyy
(6—vy)(Ay)°p3 VP +2( L —r)p2|(Az)?

(22) +’€ 7jyfi'u ‘ Ayyy [ (212 ) ] 41111

2 2 2
LolBeP oAy

For the Version 4 scheme equations ([Il), (I4)), (I2) and (I5]) are used in equation (I9) and then
(1) is applied, which gives

UAmQI 'UAZS': UAm2i
O f = AO+%AMM+%AWW+WAWW
k(0—v 2,3 UmIQ%—TiAz2
(23) GOy [vyeeat?( - A O

2 2_(Ag)202
_i_pvysagc[(Ayi2 (Az)"py] Unyyy + €

Remark 1 Equations @20)—-23) show that we can achieve a HOC scheme when either p = 0,
v=0, or (Ay)? = (Az)?¢2. The constraint (Ay)? = (Ax)?p2, however, implies that the function
@ 1s affine linear and would not qualify as a zoom function. In particular, the choice p(x) = x
would yield the scheme discussed in [DF12d] (on a uniform grid), hence we will focus on a zoom
which is not affine linear.

In equations (20)) to (23)) we observe that all these schemes have a formal general consistency
error of order two. But on the other hand each version only has one remaining second order term,
which is multiplied with either uszez, Uyyyy, Uzzaey, OF Uzyyy. All other terms are discretised with
fourth order accuracy. We call this an essentially high-order compact discretisation. To gauge the
overall potential of the four discrete schemes we obtain by neglecting the remaining second-order
terms, it is pivotal to understand the behaviour of these terms better. To this end we compute
a numerical solution using the (second-order) central difference operator in z- and y-direction
directly in equation (@), and obtain by numerical differentiation (approximations of) the higher
derivatives Uzzrz, Uyyyys UYzwey, a0d Ugyyy appearing in the remaining second order terms.



Figure 1 Remainder terms without O((Az)?) factor for Version 1 (upper left), Version 2 (upper
right), Version 3 (lower left), and Version 4 (lower right)

Figure [Il shows the remainder terms of second order appearing in equations 20)—(23) without the
O((Ar)?) factor, where p = —0.1, ¢ = 2.5, p = 1, and Spin = 49.6694. The values of these
remainder terms determine if we can achieve a fourth-order consistency, at least until a given
minimal step size. Hence, low values for the remainder terms are favourable. We observe that all
plots have in common that the highest values of the remainder terms occur near the boundary
z = 0. On the upper left plot in Figure [Tl we see the remainder term for Version 1. This term has
by far the highest absolute values. The I2-norm of this remainder term is 8.8 x 10~!. This indicates
that a numerical study of this scheme may not lead to a fourth-order consistency error. On the
upper right plot we have the remainder term for Version 2, again without the O((Ax)?) factor.
The highest absolute value for this is only about 4 x 1072, so very low when comparing it with the
remainder term of Version 1. The [?-norm for this plot is 3.1 x 10~%, which shows that Version
2 has a significantly higher chance of producing a fourth order consistency error in the numerical
study than Version 1. The plot on the lower left side is showing the remainder term of Version 3.
This plot has higher values than Version 2, but lower values than Version 1. With a [?>-norm of
6.6 x 1073 it has still a chance to produce a good consistency error. The plot on the lower right
shows the remainder term of Version 4. This plot has again very low absolute values which are
only up to about 5 x 1073, The [?-norm for this remainder term is 3.1 x 10~*. This indicates that
we have a good chance that Version 4 produces a scheme with fourth-order accuracy.

In the special case that p(z) = z and Az = Ay = h we have (Ay)? = (Ax)?¢2, and all four
versions lead to exactly the same HOC scheme,

vyh? vyh? pvyh? k(0 — vy)h? ) h?

as in this case Ayzay = Azyyy holds. This specific HOC scheme without zoom is discussed in

IDF12a].

Remark 2 The derivation of the schemes in this section can be modified to accommodate other
stochastic volatility models as, e.g. the GARCH diffusion model @) or the 3/2-model [@). Us-
ing these models the structure of the partial differential equation ([Il) remains the same, only the
coefficients of the derivatives have to be modified accordingly. Similarly, the coefficients of the
derivatives in (II))-I8) have to be modified. Substituting these in the modified expression for the
truncation error one obtains equivalent approximations as above.

Our conclusion from the results in Figure [l is that Version 2 and Version 4 seem to be the best
choices to obtain small errors. The remainder term for Version 3 still has low values, while Version



1 seems only to be able to produce a second-order scheme. Numerical experiments which we have
carried out with all four versions of the scheme indicate that actually Version 3 is leading to the
best results in terms of accuracy and stability. Hence, in the remainder of this paper we focus on
this particular scheme.

4 High-order compact schemes for the parabolic problem

We now consider the parabolic equation () with f = —u, and we denote by U; ;(7) the semi-
discrete approximation of its solution u(x;,y;,7) at time 7.

4.1 Semi-discrete schemes

In this section we define the semi-discrete scheme of the form

(24) D [M(2)0-Uij(7) + K. (2)Ui(7)] = 0,
z2eG

at time 7 for each point z € COT', where & denotes the inner points of the grid G. We use Az =
Ay = h for some h > 0 in the definition of G, which is given in (8). We have that K,(£) and
M (2) are operators with nine values defined on the compact stenocil around z € G.

Using the central difference operator in ([22)) at the point z € G leads to
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Kot - _ e r)  welew n (3 -r)er T T PV T 5 gor (0—vy)
i+l,j+1 = 24h 16h 24h 48h, 24h? 24h?2 24vh
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+ 24vh 2402y 48v + 24y 48
i‘/’iﬁ(@—vy)(%—T) K (0=vY) 02 Pan + p2 [vyapu 4 VP _ vy«pz}
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where Ki,j is the coeflicient of U; ;(7). For the sake of readability we drop the subindex ¢ on the
derivatives of ¢ and the subindex j on y, respectively. Analogously we have

~ ~ 2
_ _ 4, Pa
Miv1j+1 = Mi—1 71 = *p33,
~ 3 3 3
» _ @ wuh 4 prphr (0—vy)
Mz,]il - 1_5 + 1§y + == 1202y ’
30
& M _ 9 eah(F ) 4+ Paheu eh o4
il T o T T 1%y g T P1gy an
31,2 v
M. . — 2‘92 _ wmh @xz(%—”') _ @mh?(ﬂi + w?p‘ﬂmmh? _ ‘Pm‘Pmmhz
i = 73 2y 1 1 P~y >

as coefficients of 0, U; j(7). With the usage of z € G we have
(31) K.(3) = Kp,m, aswellas M,(2) = My, n,
for

Z= (wnl ) ynz)

withny € {i—1,i,i+1}and ny € {j —1,4,7+ 1}. Thus @24)) corresponds to a linear system on G.

4.2 Treatment of the boundary conditions

The first boundary is the boundary x = xuyin, which corresponds to the boundary at S = 0 of
the original problem. For this boundary we have to discount the option price at time 7' to the
appropriate time. Taking into account the transformations 7 =T — ¢ and u = e""V/K this leads
to the Dirichlet boundary condition

UW(Zmin, Y T) = U(Tmin, Y, 0) for all 7 € [0, Tmax] and all ¥ € [Ymin, Ymax]-

The next boundary we discuss is the boundary r = Tmax, Which corresponds to the boundary
at S = Shax of the original problem. For a Power Put with power p we have

lim V(S,0,t) =0,

S—o0

which we approximate at the artificial boundary Spax by Vs(Smax, 0,t) = 0, Vss(Smax,0,t) = 0,
Vso (Smax; 0, t) = 0, Vo (Smax, 0,t) = 0 as well as V5 (Smax, 0,t) = 0. Using these approximations
in (@) gives

Vi—rV =0.
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Using 7 =T —t and u = ¢""V/K yields u, = 0 and thus the Dirichlet boundary condition
(32) U(Tmax; Y T) = U(Tmax, Y, 0) for all 7 € [0, Tmax] and all Y € [Ymin, Ymax]-

The third boundary to discuss is the boundary y = ymin with © ¢ {Zmin, Tmax}, which cor-
responds to the boundary o = opin with S ¢ {Smin, Smax}. We will treat this boundary just
like the inner of the computational domain, using the equations (28) to ([29). This requires the
usage of ghost-points U;_1 _1, U; —1 and U;41,—1 when discretising at the points (z;,y0) € G for
i =1,...,N —1. So we need a fourth order accurate expression for the ghost-points U; _; for
1=0,..., N. We use the following extrapolation formula

Ui—1 =4U; 0 — 6U;1 +4U; 2 — Ui 5+ O ((Ay)*)

for i =0,...,N. The same procedure is used for the ghost-points for the matrix M} when using
the equations in (30).

The last boundary we discuss is the boundary at boundary y = Ymax With & & {Zmin, Tmax }»
which is corresponding to the boundary ¢ = omax With S € {Smin, Smax} of the untransformed
problem. We treat this boundary similar as the boundary at ymin and use equations (28] to (29).
The scheme then uses, when discretising at the points (z;,yp) € G for i = 1,...,N — 1, the
ghost-points U;—1,pm+1, Ui 41 and Usy1,p41 for i = 1,..., N — 1. This means that we have to
find an expression for the ghost-points U; pr41, 2 = 0,..., N. We approximate the values at these
ghost-points again using extrapolation,

U1 =4U; p — 6U; pp—1 +4Us pp—2 — Uy -3 + O ((Ay)4)

for i =0,...,N. Again, the same procedure is used for the ghost-points for the matrix M), while
using the equations in (30).

4.3 Time discretization

With the results from the previous sections we obtain a semi-discrete system of the form
(33) ¥ MLE0U(7) + K@U (M] = g(2)
ze

for each point z of the grid G, which is defined in [8) and Az = Ay = h for some h > 0 is used.
The function g(z) has only non-zero values at the boundaries Zmin and Zmax.
We use a time grid of the form

AT AT 3A
{TT, 77-, TT,AT, 2A7’,3AT, .. } 5
where the first time steps have step size % and the following have A7. For these first four time

steps, we use the implicit Euler scheme, and obtain

ZG [M.(2) + SEK.(9)] UM = AEGMZ(,%)UZ}#%Q(Z)
zZe ze

with n = 0,1,2,3 for each grid-point z € G. This approach is suggested in [Ran84] when dealing
with non-smooth initial conditions. For the following time steps we use a Crank-Nicolson-type
time discretisation, leading to

%}G [M.(2) + SFE.(2)] U = %é [M.(2) = SEKL(2)] Ul + (AT)g(2)

with n > 4 on each point z of the grid G. We observe that we have only non-zero values on the
compact computational stencil as M, (&) and K, (&) have this property. For the Crank-Nicolson
time discretisation this compact scheme has consistency order two in time and four in space for
o(x) = and p = 0 or is essentially high-order compact in space otherwise.
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5 Numerical Experiments

In this section we present the results of our numerical experiments for the compact scheme using
@5) - (30), whose boundary conditions were derived in Section If not stated otherwise, we
will use the following default model parameters

k=11, 6=0.15 v=0.1, r=In(1.05), K =100, T =0.25.

The initial condition for the European (Power) Put after transformation as in Section Pl is given
by

P
(34) u(z,y,0) = KP~ ! max (1 — e?(@) O) ,
where the non-differentiable point of the initial condition is at zx = p~1(0).

5.1 Choice of the zoom function

In our numerical experiments we use the zoom function

(35) § = oz) = sinh(cox +€01(1 - :75))7

proposed in [TGBOS|, with ¢; = asinh(ggmin), o = asinh(ggmax) and ¢ > 0. The non-differentiable
point of the initial condition hence is at

i = o 1(0) = asinh(0) — ¢; _ —Aasinh(QSA’ITlin) i -
c2 —C1 asinh(¢Smax) — asinh(¢.Smin)

Using the definitions of ¢; and ¢ this can be rearranged to

sinh( LK asinh((gmax))

CEKfl

¢

(36) Sinin =

Hence, Smin can be set by choosing zx in reasonable bounds as well as choosing Sy,.x, which gives
Smax, for a given (. The fact that zx can be chosen is very helpful, since if the non-differentiable
point is on the grid the numerical convergence order may be reduced to two in practice. Hence, we
choose the grid such that the point zx in the middle of two consecutive grid points on the finest
grid. This procedure of shifting the grid has been suggested, for example, in [TR00].

In the numerical experiments reported below we choose

Sin = KeSmn, S = 9K,  omin = 0.05, 0max = 0.25.

Figure [2] shows the influence of the parameter ¢ on the zoom in equation ([B5]), taking into
account both transformations, S = In (S/K) and x = ¢~ ($). The different values for x5, which
depends on (, are chosen in such a way that the focus on the values around S = 0 is not too
pronounced, compare equation ([B6). We observe that for smaller values of ¢ > 0 there is less
zoom. So with ¢ — 0 the zoom function is approaching the linear transformation ¢(x) = (Sma,x —
Smin):c + Siin With o € [0,1]. With a larger value of ¢ there is a stronger focus on our area of
interest around the exercise price K.

The aim is to find an ‘optimal’ value for ¢ to be used in practical computations. The larger
¢, the smaller the error around K, but on the other hand the error in other parts of the domain
increases when having a stronger zoom, because an increasing number of grid points in the area
around K automatically results into a decreasing amount of grid points in other areas and vice
versa. There has to be a balance between the error in the area around K and the error in other
parts of the domain. The overall order of convergence should be looked at to achieve this balance
and thus to get a good value for (. We expect the numerical convergence order to increase at first
with rising ¢ and then decrease again after a certain ‘optimal’ strength of zoom is reached.
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Figure 2 Different zoom examples with K = 100.

5.2 Numerical convergence

We now study the numerical errors of the discretisation as h — 0 for fixed parabolic mesh ratio
AT7/h?, using different values for ¢ and p. We compute an approximation of the solution of the
transformed problem, which is given by equation (7)), and then transform it back into the original
variables. For the relative [2- and [*°-error plots a reference solution is computed on a fine grid
with Aer = 0.003125. For the relative {%-errors we use

[Uret = U2
”Urele2
and for the [*°-error we use
HUref - UHZ°°7

where U,er denotes the reference solution and U is the approximation. We expect the error to
behave like O (hk) for some k. If we plot the logarithm of the error against the logarithm of the
number of grid points, the slope of this log-log plot gives the numerical convergence order of the
scheme. Due to the initial condition of the transformed problem not being smooth everywhere,
we observe that the log-log plots do not always produce a straight line, e.g. for a plain vanilla Put
option. For a smooth initial condition the log-log plots of the errors give an almost straight line,
e.g. for the Power Put option. The numerical convergence order indicated in the figures below is
always computed as the slope of the linear least square fit of the error points. For comparison
we additionally plot the results for a standard discretisation (SD), which means that the standard
central difference operator is used in (7)) as well as

QD(ZE) = (S’max - Smax) T+ Smin-
In this way all discretisations considered here operate on the same spatial grid and a meaningful
comparison can occur. We use A7 = 0.4h2 for all convergence plots, although we note that the

dependence of the numerical convergence order on the choice of the parabolic mesh ratio is marginal.
This is in line with the results of our numerical stability study reported below in Section [£.3]
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Figure 3 Relative [2-error Heston model p = 0 Figure 4 Absolute [*-error Heston model
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Figures [ and B show log-log plots of the relative {2- and [*-error of the approximations with
respect to the reference solution in the Heston-Hull-White model (p = 0) for a European Put
option for different values for the number of grid points and with different zooms. In this way
the influence of the zoom can be observed. The theoretical consistency order in this casel is four.
Looking at the relative [?-error we observe that the numerical convergence orders vary from 3.75
to 4.29, which agrees very well with the theoretical order for all zooms. We can also see that the
convergence order rises until ( = 5 and then declines again, so ( &~ 5 seems to be the best choice.
The lowest relative [?-error is always obtained when using ¢ = 10.

The more useful error in practice is probably the [*°-error, as it shows the highest difference
between the reference solution and the approximation. When looking at Figure [] we see that the
[*-error and the [2-error have a very similar behaviour. The convergence orders vary from 3.00 to
4.20, again having the best order for ¢ ~# 5. When using the finest grid the error for ( = 5 and
¢ = 10 are almost identical, but with rougher grids the error with ¢ = 10 is again clearly the lowest.
For both error plots we observe that the zoom has its biggest impact when looking at a rough grid,
because the error then decreases significantly with an increasing zoom. The HOC discretisations
have significantly lower error values and higher convergence orders when comparing them to the
standard discretisation. Overall, choosing ¢ = 5 for the Heston-Hull-White model (p = 0) seems
to be the best choice with respect to the convergence order.
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Figure 5 Relative [2-error Heston model Figure 6 Absolute [*°-error Heston model
p=—0.1 p=—0.1

In Figures Bl and [6 we plot the relative {?- and [*-error for a European Put option in the Heston
model with p = —0.1. This means that the theoretical consistency order is only two, see equation
([22). We observe in Figure [ that the relative [?-error varies from 3.40 to 4.14. These values are
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far above the theoretical consistency order. In fact, using the Version 3 discretisation scheme we
obtain a convergence order close to the order using the Heston-Hull-White model. The order of the
relative [%-error is again rising until ¢ = 5 and declining afterwards, but has its lowest values when
using ¢ = 10. The [*°-error in Figure [f] behaves similar to the {*°-error in the Heston-Hull-White
model. Here the convergence order values vary from 3.00 to 4.09, having its highest value for { = 5.
With the finest grid the difference of the error when using ¢ = 10 and using ¢ = 5 is again very slim.
The biggest impact of increasing the zoom in either error plot can be again seen when having a
rough grid, because then increasing the zooming leads to significantly lower errors. Similar as in the
Heston-Hull-White model the convergence order results are the best when choosing ( = 5. For both
errors we can again see that the essentially high-order compact discretisations have significantly
lower error values and higher convergence orders than the standard discretisation.
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—~-{ = 2.5 (order 3.55) —~-( =2.5 (order 3.42)
| ~+({=5 (order3.84) ~+{=5 (order 3.86)
0°r -+-7=75 (order 3.44) | 107l ~-4-7=7.5 (order 3.59)
—{ =10 (order 2.92) —+-{ =10 (order 2.98)
5 107 —-=SD (order 2.05) 1l 5 -=SD (order 1.68)
5 5107
N 4 8
] 10 ¢ 0]
= £
8 2107
%]
10 C
-4
10 | 107
7 -5
10 - 10 .
10" 10t 10° 10* IR 10°
Number of gridpoints in x—direction Number of gridpoints in x—direction
Figure 7 Relative [2-error Heston model Figure 8 Absolute [*°-error Heston model
p=-04 p=—-04

Figures [0 and B show the relative I2- and [*-error for an European Put option in the Heston
model with p = —0.4. The theoretical consistency orders of the errors are again two. In Figure [
we can see that the convergence order for the relative [2-error varies from 2.92 to 3.84, which is
again significantly higher than the theoretical order. The convergence order deteriorates slightly
for smaller values of p but is still an order better than for the standard discretisation. As expected
the best convergence order, which is still very close to four, will be achieved when using ( = 5.
From Figure [§] we find that for the [*°-error the convergence order gets lower with lowering the
value of p. The convergence orders vary from 2.98 to 3.86, where ( = 5 leads again to the highest
value, which is still close to four and thus highly above the theoretical value of the consistency
error order. As in the two previous cases the zoom has his highest strengths for the relative {?-error
as well as for the [®-error when using a very rough grid. For both the relative {?-error and the
[*°-error we can again see that the essentially high-order compact schemes have significantly lower
error values and higher convergence orders than the standard discretisation.

With the Figures [ to §] we recover the numerical observation given in Section and can
confirm that Version 3 leads to a high-order compact scheme.

For all the discussed European Put options the best results for the convergence order is obtained
when using ¢ = 5. This value seems to give a good balance between the error around K and the
other regions for the zoom. Even though the scheme has a theoretical consistency order equal to
four only for the Heston-Hull-White model (p = 0), the application showed, that we achieve a
numerical convergence order close to four for the Heston model with p # 0 as well.

We now consider the case of European Power Put options in the Heston model. The only
difference to a plain vanilla European Put is, that the final condition is taken to the power p, see
(@), which yields to ([B4) after transformation. The grid was shifted in a similar manner as above,
avoiding xj as a grid point.
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It can be clearly seen that in Figures [ and [0, denoted to the relative [?-error in the cases p = 0
and p = —0.4 when p = 2, the lines in the log-log plots are much closer to straight lines than in
the cases of the vanilla Put options with p = 1, which can be explained with the initial condition
of the transformed problem being smoother. The convergence orders of the relative {2-errors range
from 3.85 to 4.08 for the Heston-Hull-White (p = 0) Power Put with power p = 2 and from 3.22 to
3.40 for the Power Put in the Heston model with p = —0.4, where the orders are increasing with
increasing zoom strength. The differences of about 0.6 between the orders in the Heston model
with p = 0 and p = —0.4 is not very large considering the difference of the theoretical orders. So
we can again see that the convergence order for p = —0.4 is far beyond its theoretical order of
two. We can see that the HOC schemes for p = 0 as well as the essentially high-order compact
discretisations for p = —0.4 outperform the standard discretisation in terms of error values and
convergence orders significantly.
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Figure 11 Relative [?-error Power Option Hes- Figure 12 Relative {?-error Power Option Hes-
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In Figures [Tl and [[2] we can see the convergence orders in the Heston-Hull-White model (p = 0)
and the Heston model with p = —0.4 when p = 3. The differences between the plots are not as big
as the theoretical consistency error order may indicate. Even though in the Heston model with
p = —0.4 the scheme has a theoretical consistency error of order two, it produces a convergence
order from 3.50 to 3.69 depending on the zoom strength (, whereas the orders in the Heston-Hull-
White model with p = 0, where we have a theoretical consistency order of four, vary from 4.04 to
4.10. In both situations the standard discretisation is outperformed on behalf of convergence order
and error values.
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5.3 Numerical stability study

In the particular case of a uniform grid, i.e. p(z) = x, the scheme developed here reduces to the
high-order compact scheme presented in [DF12a], where unconditional (von Neumann) stability
is proved for p = 0. An additional stability analysis performed in [DF12D] suggests that the
scheme is also unconditionally stable for general choice of parameters. For the present scheme
on a non-uniform grid, a similar von Neumann analysis, analytical or numerical, appears to be
out of reach as the expression for the amplification factor is formidable and consists of high-order
polynomials in a two-digit number of variables. To validate the stability of the scheme for general
parameters, we therefore perform additional numerical stability tests. We remark that in our
numerical experiments we observe a stable behaviour throughout.

We compute numerical solutions for varying values of the parabolic mesh ratio ¢ = A7/h? and
the mesh width h. Plotting the associated relative [?-norm errors in the plane should allow us to
detect stability restrictions depending on c or oscillations that occur for high cell Reynolds number
(large h). This approach for a numerical stability study was also used in [DF12al, [DFJO03].

We show results for the European Put option in the Heston Model only, since the Power Puts
only differ in the initial conditions and give similar results. For our stability plots we use ¢ = k/10
with £ =1,...,10, and a descending sequence of grid points in z-direction, starting with six grid
points (since z € [0,1] it follows h < 0.2), and doubling the number of points (halving h) in each
step. The zoom parameter ( = 5 is used.
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Figure 13 Stability plot of the relative I?-error Figure 14 Stability plot of the relative I?-error
for p=20 for p=-0.4

Figures [[3] and [[4] show the stability plots for the Heston-Hull-White model (p = 0) and for the
Heston model with p = —0.4. We observe that the influence of the parabolic mesh ratio ¢ on the
relative [2-error is only marginal and the relative error does not exceed 8 x 10~* as a value for both
stability plots. We can infer that there does not seem to be a stability condition on ¢ for either
situation. For increasing values of h, which also result in a higher cell Reynolds number, the error
grows gradually, and no oscillations in the numerical solutions occur. The stability plot for the
Heston model with p = —0.1 looks similar (not shown here) and does not indicate any conditions
on c or h either.

6 Conclusion

We have presented new high-order compact finite difference schemes for option pricing under
stochastic volatility on non-uniform grids. The resulting schemes are fourth-order accurate in
space and second-order accurate in time for vanishing correlation. In our numerical convergence
study we obtain high-order numerical convergence also for non-zero correlation and non-smooth
payoffs which are typical in option pricing. In all numerical experiments a comparative standard
second-order discretisation is significantly outperformed. We have conducted a numerical stability
study which seems to indicate unconditional stability of the scheme. In our numerical experiments
we observe a stable behaviour for all choices of parameters.
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It would be interesting to consider extensions of this scheme to the American option pricing
problem, where early exercise of the option is possible. In this case, one has to solve a free boundary
problem. It can be written as a linear complementarity problem which could be discretised using
the schemes given here. To retain the high-order convergence one would need to combine the high-
order discretisation with a high-order resolution of the free boundary. This extension is beyond
the scope of the present paper, and we leave it for future research.

A Coefficients for Version 2 and Version 4

In this section we give the coefficients of the semi-discrete schemes for Version 2 and Version 4.
We do not include the coeflicients for Version 1 as this version always resulted into a second-order
numerical convergence error in the numerical study.

A.1 Coefficients for Version 2

When discretising equation (2I)) with the central difference operator in z- and in y-direction, we
get the following coefficients for the Version 2 scheme
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where IA(” is the coefficient of U, ;(7). Defining M” as the coefficient of 9, U, ;(T) we get
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Using these coeflicients instead of the ones given in (25) to (B0) in the derivation in Section @ for
the interior of the grid G as well as the boundaries yyin, and ymax yields the Version 2 scheme.

A.2 Coefficients for Version 4

In this part of the appendix we give the coefficients of the Version 4 scheme. When discretising
equation (2I)) with the central difference operator in z- and in y-direction, we get
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Ki 141

and

where K; ; is
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the coefficient of U; j(7). Defining M; ; as the coefficient of d,U; ;(7) we get
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Using these coeflicients instead of the ones given in (25) to ([B0) in the derivation in Section @ for
the interior of the grid G as well as the boundaries ymin and ymax yields the Version 4 scheme.
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