CuHAPTER XIX

LINEAR PROGRAMMING AND THE THEORY OF GAMES!

By Davip GaLg, Harop W. KuHN, AND ALBERT W. TUCKER *

The basic “scalar” problem of linear programming is to maximize (or
minimize) a linear function of several variables constrained by a system
of linear inequalities [Dantzig, IT]. A more general “vector” problem
calls for maximizing (in a sense of partial order) a system of linear func-
tions of several variables subject to a system of linear inequalities and,
perhaps, linear equations [Koopmans, I1F]. The purpose of this chapter
is to establish theorems of duality and existence for general “matrix”
problems of linear programming which contain the ‘“‘scalar” and *“‘vector’”
problems as special cases, and to relate these general problems to the
theory of zero-sum two-person games.

1. NOTATION AND INTRODUCTORY LEMMAS

Capital letters, 4, B, C, etc., denote rectangular matrices; lower-case
letters, b, ¢, u, z, ete., denote vectors, regarded as one-column matrices;
and Greek letters (lower case) 8, A denote scalars—all quantities being
real. A prime is used to denote transposition: thus A’ denotes A trans-
posed, and b’ denotes a one-row matrix obtained by transposing the
vector b. The number of components of a vector or the numbers of
rows and eolumns of & matrix are not specified, but of course there are
some implicit relations: thus the product Az implies that the number of
columns of A is the same as the number of components of z. Vector
equations and inequalities are based on the following notation:

u = 0 means that all components of « are zero;

u = 0 means that no components of u are negative;
u > O means # 2 0 with u = 0 excluded;

u > 0 means that all components of u are positive.

Other usages follow naturally: thus v < 0 means —u >0, u; 2 uy
means u; — ug = 0, ete. It should be noted that the inner product

1 This chapter was presented in a preliminary form by A. W. Tucker at a meeting
of the Econometric Society at Boulder, Colorado, September 2, 1949,
2 Under contracts with the Office of Naval Research.
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Vu>0if b>0, u>0;of course, bu =Z 0 b= 0, u = 0. Matrix
equations and inequalities use the same rules: thus A > D means
A — D > 0 (i.e., each element of A — D is nonnegative, and at least
one element is positive).

The following lemmas provide the basis for the theorems in this
chapter. Lemma 1 expresses a fundamental property of homogeneous
linear inequalities observed by H. Minkowski [1896, p. 45]. Lemma 2
is an immediate consequence of Lemma 1, and Lemma 3 is a generaliza-
tion of Lemma 2,

Lemma 1: In order that @ homogeneous linear tnequality b'u = 0 hold
for all u satisfiring a system of homogeneous linear inequalities A'u = 0,
1t 18 necessary and sufficient that b = Az for some 2 = 0.

For proofs the reader is referred to J. Farkas [1901, pp. 5-7], H. Weyl
[1935 or 1950, Theorem 3], and in this volume David Gale [XVII,
corollary to Theorem 2} and M. Gerstenhaber [XVIII, Theorem 11].

LemMaA 2: I'n order that b'u < 0 for no u = O such that A'u = 0, 4 1s
necessary and sufficient that Az £ b for some z = 0.

z
Proor: In Lemma 1 replace 4 by [A ] and z by L ], where I de-

notes an identity matrix. Then, in order that bz = 0 hold for all u
satisfying A’ 2 0, w = 0, it is necessary and sufficient that b = Az + ¢
forsomez Z 0,¢t = 0. Thatis, in order that »'u < 0 fornou = 0 such
that A’ 2 0, it is necessary and sufficient that Az £ b for some
xz 0

Lemma 3: In order that B'u < 0 for no v = 0 such that A'u 2 0, ¢ s
necessary and sufficient that Az < By for somexz = 0, y > 0.

Proor: To show that the z, y-condition is implied by the u~condition,
we proceed. as follows. Let by, denote the kth column of the matrix B.
Then the u-condition implies that byu < 0 for no u 2 0 such that

z
A'v 20, —B'u 2 0. Hence, substituting [A —B] for 4 and [ k]

Uk
for z in Lemma 2, we have dx; — By =< by, for some z;, = 0, . = 0.

Then, summing for all columns of B, A(3> zx) — BC y:) = >.be. But
2br = Bj, where j denotes a vector whose components are all 1’s.  So
AQ i) = B(7+ Yyr). Thatis, since Yax =2 0and j+ e =7 >
0, we have

Az £ By forsome zzZ 0,y > 0.
This shows that the z, y-condition is implied by the u-condition.
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To show that the , y-condition implies the u-condition we assume, if
possible, that

Blug £ 0 for some uy = 0 such that A'up = 0.
Then

u:}Axgo>u6By forall z=490,y>0.
But, by the z, y-condition,
updr £ upBy for some z =0,y > 0.

This contradiction shows that the denial of the u-condition implies the
denial of the z, y-condition. Therefore the z, y-condition implies the
u~-condition. This completes the proof of Lemma 3.

2. LINEAR PROGRAMMING PROBLEMS

Two general dual problems of linear programming are stated below.
Each is based on the same given information—three matrices, 4, B, C—
and in each a matrix D is to be determined. A matrix D having a certain
property is said to be maximal or minimal (under partial ordering by the
rules of matrix inequalities explained in Section 1) if no other matrix
A possessing the property is such that A > D or A < D, respectively.

ProBLEM 1: To find @ maximal mairiz D having the property that
(1) Czz Dy forsome z 20,y >0 suchthat Ax < By.

ProBLEM 2: To find a minimal matriz D having the property that
(2) Bu=D'v forsome u=0,v>0 suchthat A'w = C.

It will be shown (in Theorem 4) that there exists a matrix D providing
solutions for both problems if the following existence conditions both
hold: :

3) Az £ By forsome 2z 0,y>0,
@) A'w 2 C'v forsome uz=0,v>0.

Tt will also be shown (in Theorem 2) that Problem 1 admits a particular
matrix D as solution if, and only if, Problem 2 also admits this D as a
solution.

If the matrix B consists of a single column, b, and the matrix C consists
of a single row, ¢/, then D becomes a scalar, 8, and ¥ and » become positive
scalars that may be eliminated by dividing through by them. In this
case the two general matrix problems reduce to the following two simple
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scalar problems: (a} to find the ordinary maximum, §, of the linear func-
tion ¢’z constrained by Az < b, = 0, and (b) to find the ordinary
minimum, §, of the linear function ¥'u constrained by A'v Z ¢, u = 0.

Prosrem 18: T'o find ¢ maximal scalar § having the property that
¢z =5 forsome =z =0 suchthat Az Sb.

Prosuem 28: To find o minimal scalar 8 having the property that
bu <6 forsome u=0 suchthat A'uz=c

The “diet problem’’ of Cornfield and Stigler [1945] furnishes a typical
cxample of Problem 2§; another, more specialized, example occurs
in the “transportation problem” of Hitchcock [1941] and Koopmans
[X1V]. Fundamental methods for attacking such sealar problems have
been developed by Dantzig [II, XXI, and XXTII). The duality and
existence theorems for Problems 15 and 26 are contained in the corollary
to Theorem 2 (at the end of Section 3 of this chapter) and in the remark
following the proof of Theorem 4 (in Section 4 of this chapter).

If the matrix B consists of a single column, b, but ¢ consists of more
than one row, then D becomes a vector, d, and y becomes a positive
scalar that may be eliminated by division. In this ease the two general
matrix problems reduce to the following vector problems.

ProereM 1d: T'o find @ maximal vecior d having the property that
Cxzd forsome z2z=0 suchthat Az =b.

ProeLeM 2d: To find o minimal veclor d having the property that

bu=<dv forsome w=0,2>0 suchthat A'w = C'n

A representative vector problem is the “efficient point” problem of
Koopmans [TI1] from which the general matrix problems in this chapter
have evolved. The following equations relate our notation to Koop-
mans’ partitioning of his fechnology matrix A, commodity vector y,
and price vector p, as regards primary and final commodities:

4 = Ay, b= — g, U = Ppris
C = Ay, €= Yn, ¥ = Dfin.

The extension to include infermediate commodities is indicated at the
end of Section 6 of this chapter,

Of course, there are also vector problems, 1d’ and 2d’, that occur
when the matrix C consists of a single row ¢’ and v becomes a positive
scalar that may be eliminated by division.
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3. Duarrry

In preparation for the duality theorem (Theorem 2), we will now prove

that the following new forms of Problems 1 and 2 are equivalent to the
original forms.

ProBLEM 1 (new form): To ﬁnd a mairiz D having both of the following
properties:

(1) Czz Dy forsome z=0,y>0 suchthat Az < By,
(2*y Cx > Dy forno r20,y=20 suchthat Ar < By.

ProsreM 2 (new form): To find a matriz D having both of the following
properties:

(2) BuzDv forsome uz=0,v>0 suchthat A'uz= O,
(1*) Bu < Dv forno “u=Z0,v20 suchthat A'w =z (',

Properties (1) and (2) ocecur also in the original statements of Prob-
lems 1 and 2. The new properties (2*) and (1*) are so denoted because
they are equivalent to (2) and (1), respectively, as will be shown in the
course of the proof of Theorem 2. 1t is to be remarked that a matrix D
having both properties (1) and (2*) must produce equality, Cz = Dy,
in property (1), and similarly that a matrix D having both properties
(2) and (1*) must produce equality, B’y = D'y, in property (2).

TurorrM 1: The new forms of Problems 1 and 2 are equivalent to the
original forms.

Proor: To show that a solution D for the new Problem 1 is maximal
as regards matrices having property (1), let us assume, if possible, that
there is a matrix A > D having property (1). That is,

Cx = Ay forsome =z =0,y >0 suchthat Az £ By.

Then Cx = Ay > Dy for the same z and y—thereby contradicting prop-
erty (2*) possessed by D as a solution for the new Problem 1. Conse-
quently, D is maximal as regards matrices having property {1). A simi-
lar argument shows that a solution D for the new Problem 2 is minimal
as regards matrices having property (2).

To show that a solution D for the original Problem 1 possesses prop-
erty (2*), let us assume, if possible, that

Cxg > Dyo forsome z0=0,% =0 suchthat Az, = Byg.
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Adding this to (1), we get
Clz + x0) =2 D(y + yo) forsume z+2920,y+ 4 >0
such that A(z + z) = B{y + o)

In the system of inequalities C{z + 20) > D(y - %o) there must be at
least one individual inequality containing >, and so any element in the
corresponding row of D may be increased slightly without disturbing the
inequality. Then D is not maximal as regards matrices having prop-
erty (1)—thereby contradicting the hypothesis that D is a solution for
the original Problem 1. Hence D must possess property (2*). A similar
argument shows that a solution, D, for the original Problem 1 possesses
property (1*). This completes the proof of Theorem 1.

TueoreM 2 (duality theorem): A matriz D is a solution for Problem
1 3f, and only if, it s a solution for Problem 2.

A
Proor: Tt follows directly from Lemma 3, by subst,ituting[ C‘] for

B u
A, [ D] for B, and [ ] for u, that a matrix D has property (1) if, and
— v

only if, it has property (1*). Then, replacing 4, B, C, D, z, ¥, 4, v in (1)
and (1%) by —A’, = (', —B’, — D', u, v, x, y, respectively, it follows that
a matrix D has property (2) if, and only if, it has property (2¥). Inface
of Theorem 1, this completes the proof of Theorem 2.

CoROLLARY: Problems 18 and 28 have a unique common solution, 8, or
else no solution at all.

Proor: From Theorem 2 it follows that both problems have a com-
mon solution 3 if either admits § as a solution. Suppose that §; provides
another solution for either problem. Then, by Theorem 2, 8; provides
also a solution for the dual problem. Clearly, &; cannot exceed § due
to the maximal property of 8, nor can & exceed 3; due to the maximal
property of 8;. So §; = §, which completes the corollary.

4, EXISTENCE

In preparation for the existence theorems (Theorems 4 and 5) we
introduce a third problem based on the same data as Problems 1 and 2

and employing jointly the two properties involved in the original forms
of Problems 1 and 2.

ProsrLEM 3: To find a mairiz D thal has both the following properties:
(1) Czz Dy for gome x20,y>0 suchthat Az = By,
(2) B'uz Dv for some u=0,v>0 sguchthat A'w = C'n
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A problem of this symmetric sort was formulated by von Neumann
[1947] for the case in which D reduces to a scalar §, corresponding to
Problems 16 and 23.

THEOREM 3: A malriz D is a solwtion for Problem 1 or 2 if, and only
itf, it 45 a solution for Problem 3.

Proor: It is an immediate consequence of the equivalence of prop-
erties (1) and (1*), and of properties (2) and (2*), established in the
proof of Theorem 2, that a matrix D has properties (1) and (2*) or
(1*) and (2) if, and only if, it has properties (1) and (2); and of course,
by Theorem 1, a matrix D has properties (1) and (2*) or (1*) and (2)
if, and only if, it is a solution for the original Problem 1 or 2. This com-
pletes the obvious proof.

Remark: Problem 3 is not changed if the leading inequalities in prop-
erties (1) and (2) are made equalities: Cxr = Dy and B’y = D'v. This
follows from the obvious facts (pointed out in sentences just preceding
Theorem 1) that a matrix D having properties (1) and (2*) must give
Cz = Dy and that a matrix D having properties (2} and (1*) must give
By = D'v.

THEOREM 4 (existence theorem): There exists a solulion, D, for Prob-
lem 3, and so for Problems 1 and 2 also, if, and only if, the following exist-
ence conditions are both satisfied:

(3) Az £ By forsome z =0,y >0,
(4) A'vw =z C'v forsome uz0,2> 0.

Proor: Let b = By, and ¢ = C’vy, where 3, and vy are the values of
¥ and v in any particular set of z, ¥ and u, v that satisfy the existence
conditions (3) and (4). Then {3) and (4) imply that

(38) Az =b forsome z=0,
{485) A'uzc forsome uz 0.

[These two conditions are denoted by (38) and (48) because they are the
counterparts of (3) and (4) for the scalar problems, 15 and 25.]
By Lemma 2, (38) and (448) are equivalent to

(35%) Pu<0 forno w=0 suchthat A'w =0,
(46%) ¢z>0 forno z=0 suchthat Az =0,

where in the case of (43) and (45*) we must replace A, b, u, z in Lemma, 2
by —A’, —¢, x, u, respectively.
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The inequality ¥u = ¢’z holds for all A = 0, # =2 0, z = 0 such that
Az = \b, A’u = he. For, if X > 0, we have
bVuz A Wdr = ¢z,
and, if » = 0, we have
bu =02 cr,

by (36*) and (48*). Consequently,

07T M A
b | <0 forno |u}=0
—c T x ¥y \
such that 0 A u [z 0.
-4’ 0 z
8o, by Lemma, 2,
¥ -
0 A [u"]g b | for some [%};0.
—A' 0 o —-c o

Multiplying these out, we get
bug £ ¢'zy, Azg £ b, A'ug 2 ¢ forsome ug =0,z = 0.
But b'up = ugdze = ¢'7o, 50
(8) b"U:o = u:)AZ(} = C’:l:o.
That is, replacing b and ¢ by By and C'vy, we have
uoByo = ugAzo = vCo.
Let
CzougB RupB | Cxof’
D= R o TR :f o]
upA g voh J Yo
h and j denoting vectors all of whose components are 1’s. Then, in
either case,

according as  ugdzo = 0 or = 0,

Dyo = Cry, and D = wyB.

This meansg that our D has properties (1) and (2) for the ¥, vy taken
initially and the zo, ug arising in the course of the argument (see remark
below). Consequently, D is a solution for Problem 3—and so, by
Theorem 3, for Problems 1 and 2 also.

Conversely, it is obvious that (3) and (4) must hold if there exists a
D having properties (1) and (2). This completes the proof of Theorem 4.
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Remark: It is to be noted that the gist of the above proof—namely,
the part from conditions (35) and (48) to equation (5)—amounts to
showing that Problems 15 and 25 have a common solution,

8 = buy = updzy = 'z,
when (38} and (45} both hold.

TuEOREM 5 (existence theorem): A solution, D, exists for Problem 1 if,
and only if, the following existence conditions both hold:

(3) Ax = By forsome z=0,y>0,
(4*) Cx>0 forno =0 suchthat Az 0.

Simgilarly, a solution, D, exists for Problem 2 if, and only tf, the following
existence conditions both hold:

4) A'v 2 C'v forsome u=0,v>0,
(3% Buw<0 forno # =0 suchthat A'w = 0.

Proor: By Lemma 3, conditions (3*) and (3) are equivalent. Like-
wise, replacing A, B, u, z, ¥ in Lemma 3 by —A’, — (", z, u, v, we see
that (4*) and (4) are equivalent. Hence (3) and (4*) or (4) and (3%)
hold if, and only if, (3) and (4) hold. And, by Theorem 4, a solution,
D, exists for Problems 1 or 2 if, and only if, (3) and (4) hold. 'This
completes the proof of Theorem 5. ‘

Remarks: 1t is to be noted that each of the four existence conditions
(3), (4), (3%), (4*) is necessary and sufficient that there exist a matrix D
having the corresponding one of the four properties (1), (2), (1%), (2%).
Thus (3} or (4) is implied by the existence of a matrix D having property
(1) or (2); and conversely, if (3) or (4) holds, we can construct a matrix D
having property (1) or (2) merely by taking large enough negative or
positive elements, respectively. The equivalence of (1) to (1*), ete.,
then shows that (3*) or (4*) is necessary and sufficient for the existence
of a matrix D having property (1*) or (2*%), respectively.

It is to be noted also that the existence conditions (3), (3%), (4), (4%)
can be interpreted in terms of special “null” problems, 1d’, 2d’ and 2d,
1d, in which ¢/ = 0 and b = 0, respectively. For, with C = ¢/ = 0,
property (1) or (1*) is held by D = 4’ = 0 if, and only if, condition (3)
or (3*) holds, while property (2*) or (1) is held trivially; and, with
B = b = 0, property (2) or (2*) is held by D =d = 0 if, and only if,
condition (4) or (4*) holds, while property (1*) or (2) is held trivially.
Hence the special “null” problem, 1d’, 2d’, 2d, or 1d, admits a null solu-
tion (' = 0 or d = 0) if, and only if, the corresponding existence condi-
tion (3), (3%), (4), or (4%) holds.



326 D. GALE, H. W. KUHN, AND A. W, TUCKER [PART 12

5. PROGRAMMING AND GAMES

Let A be the “payoff” matrix of a zero-sum two-person game [von
Neumann and Morgenstern, 1944, Chapter III]. Then, to solve the
game, we must find the value, N, of the game and optimal (or good)
mixed strategies, u and z, characterized by the following relations:

A'u =z N, uz 0, gu=1,
A:zg)\g,' zz 0, e =1,

where g and 7 are vectors whose components are all 1’s. The fact that
such )\, u, z always exist—the main theorem for zero-sum two-person
games—can be established as a by-produet of Theorem 4. To this end,
assume that A > 0—not an essential restriction, sinee the sare arbitrary
constant x can be added to all the elements of a game matrix without
affecting the game (except to increase the value of the game by ).
Then N\ must be positive (if it exists), and the relations above can be
divided throughout by X. The divided relations may be rewritten in
reverse order, as follows:

(1a) Yz =248 forsome z =0 suchthat Az =g,
(2a) gu=23 forsome wu =0 suchthat A'u =i

where now 3, z, u replace the previous 1/\, z/\, w/\. This amounts to
Problem 3 for the special sealar case A >0, B=g, C=1¢, D = 3.
(See remark preceding Theorem 4 concerning the use of equations involv-
ing & rather than inequalities.) By Theorem 4 this scalar problem has 2
golution, §, because the existence eonditions,

Az =g forsome z=0; A'uz:i forsome u =0,

are easily satisfied by taking z = 0 and u sufficiently large. We carry
the solution back to the initial game relations by dividing (1a) and {2a)
throughout by 8, which is clearly positive-—and unique, by the argument
of the corollary to Theorem 2. Hence we conclude that the game with
payoff matrix A has a unique value, A = 1/8, and at least one pair of
optimal mixed strategies, © and . Such reduction of games to program-
ming problems is treated in this volume by Dantzig [XX] and Dorfman
[XXII).

It will now be shown that Problems 1 and 2, in full generality, are
related through Problem 3 to a zero-sum two-person game.
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TaroREM 6: 4 matriz D is a solution for Problem 1 or 2 if, and only
if, the game with the payoff mairiz

¢ )

has value zero and optimal mixed strategies

LI
vl Ly
such that v > 0 and y > O.

Proor: Substituting

e o} LGB

—C D1 Lyl Lyl  Lal’ b51°

for A, u, z, ¢, ¢, respectively, in the basic relations for a zero-sum two-
person game stated at the beginning of this section (g, &, £, j being vectors

whose components are all 1's), and requiring » =0, v > 0, ¥ > 0, we
get '

Alu = O, By £ D'y, w0, v > 0, gu+ h'v=1;
Az = By, Cz = Dy, zz0 y >0, i+ iy = 1.

But these amount to properties (2) and (1) of Problem 3, eoupled with
the “normalizations” g'u + kv = land ¢z 4+ §'y = 1, which can always
be achieved in Problem 3, because the inequalities v > 0 and v > 0
assure that (2) and (1) can be divided by g'u + Ay and 'z + j'y,
respectively. Therefore Theorem 6 is a direct consequence of Theorem 3.
This completes the proof.

One further theorem relating linear programming to games is stated
below. It follows out an ingenious idea of Dantzig |[XX] and Brown
[XXIV]. There does not seem to be any natural generalization for
Problems 1 and 2.

TraEoREM 7: A solution, §, exists for Problems 18 or 28 if, and only
tf, the symmetric game with the payoff mairiz

0 A -b
—A' 0 ¢
¥ = 0

has an optimal mized strategy whose last component is positive.
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Proor: We will not give the proof explicitly, but it is contained in
the proof of Theorem 4. (See the remark at the end of Theorem 4.)

Remark: Theorems 6 and 7 do not exclude necessarily the possibility
that there also exist optimal mixed strategies lacking the specified posi-
tiveness. ‘Thus the symmetric game above may also possess an optimal
mixed strategy,

u
T )

0

even when Problems 13 and 25 have a solution, §, In this particular
event, b'u = ¢’z = 0 due to conditions (36%) and (46%).

6. ProruEME WITH CONSTRAINT KqQUATIONS

The following dual problems present themselves when a system of
equations,
Ex = Fy,

is added to the constraints Az < By, z = 0, ¥ > 0 in Problem 1.

ProBrem 4: To find a maximal matrix D having the property that Cz
= Dy for some x = 0, y > 0 such that Az = By, Ex = Fy.

ProBLEM 5: To find @ minimal matriz D having the property that B'u
+ Flw < D'v for some w =0, v >0, w, such that A'u + E'w = (',
the vector w being unrestricied in sign.

These problems can be regarded as arising from Problems 1 and 2 by

A B U
substituting { £ | for 4, F| for B, and fw, | for u. Thenw =
_E Y Wy

w, — Ws is a vector whose components take all values, unrestricted in
sign, as the vectors w; and w, vary subject to the constraints w; = 0
and w, = 0. Conversely, any vector w can be expressed as the differ-
ence w; — wy of two vectors = 0, say, by taking 2wy = | 1 I + w, and
2wy = | w| — w, where | w| is the vector whose components are the
absolute values of the components of w.

There are exact analogues of Theorems 1-7 for these two problems,
which the reader may easily formulate for himself. '

If the matrices B and F consist of single columns, b and f, then D
becomes a vector d, and ¥ becomes a scalar that may be eliminated by
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division. In this case the general problems, 4 and 5, reduce to vector
problems that bear on Koopmans’ treatment of “‘efficient points” in the
presence of infermediate commodities [III]. To cover this extension the
following line should be added to the table of corresponding notations
near the end of Section 2:

E = :i-'-'Aint! ' f = 0, W = Pint.



