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CaarteEr XXI

MAXIMIZATION OF A LINEAR FUNCTION OF VARIABLES
SUBJECT TO LINEAR INEQUALITIES!

By Georee B. Dantzic

The general problem indicated in the title is easily transformed, by any
one of several methods, to one which maximizes a linear form of non-
negative variables subject to a system of linear equalities. For exam-
ple, consider the linear inequality ax + by 4+ ¢ > 0. The linear in-
equality can be replaced by a linear equality in nonnegative variables
by writing, instead, a(x; — x2) + b(yy — y2) + ¢ — 2 = 0, where z; = 0,
22 0,412 0,422 0,2= 0. Thebasic problem throughout this chapter
will be considered in the following form:

ProsreMm: Find the values of Ay, g, <+ ¢ , My which mazimize the linear
form

1 ey + Aaca + -+ Mgy

subject to the conditions that

(2) A z0 (j=152)"'1n)
and

Mayr + Aettig -+ Aalyn = by,
3) Maz; + Ao@ag -4 Myag, = bg,

............

M1 + Nallma + - -+ Mplmn = bm:
where a;;, b;, ¢; are constants (1 =1,2, -+ ,m;j=1,2, -+, n).

1 The author wishes to acknowledge that his work on this subject stemumed from
discussions in the spring of 1947 with Marshall K. Wood, in connection with Air
Force programming methods. The genersl nature of the “simplex” approach (as
the method discussed here is known) was stimulated by discussions with Leonid
Hurwics. :

The author is indebted to T. C. Koopmans, whose constructive observations
regarding properties of the simplex led directly to a proof of the method in the early
fall of 1947. Emil D. Bchell assisted in the preparation of various versions of this
chapter. Jack Laderman has written a set of detailed working instructions and has
tested this and other proposed techniques on several examples.
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340 G. B. DANTZIG [PamT 1V

Each column of coefficients in (3) may be viewed as representing the
coordinates of a point in Euclidean R,, space. Let P; denote the jth
column of coefficients and Py, the constants on the right-hand side, i.e.,
by definition,

G Gz o G by

4) [Py, Pgy -+ , Pr; Pol = lag @Gz -+ agn b

_ Gmi Gmz " Omn bm
The basic problem then is to determine nonnegative A; = 0 such that

(5) MPy 4 2Po 4+ NP, = Py,
(6) )\101 + k202 + LA '+ hncn = 2z = max.

A set of \j which satisfy (5) without necessarily yielding the maximum
in (6) will be termed a feasible solution; one which maximizes (6) will
be called a mazimum feasible solution. The purpose of this chapter is
to discuss the so-called “simplex” technique, which consists in construct-
ing first a feasible, and then a maximum feasible, solution. In many
applications, of course, feasible solutions are easily obtained by inspec-
tion. For this reason, and because an arbifrary feasible solution can
be obtained in & manner analogous to the construetion of a maximum
feasible solution, we shall consider first the construction of a maximum
feasible solution from a given feasible solution.?

AssumPTION (nondegeneracy): Every subset of m poinis from the sel
(Po; Py, P, -+ -, Pg) is linearly independent,

The theorems given in Seetions 1 and 2 below come about naturally
in the construction of a feasible and a maximuin feasible sotution to (5)

2 The nondegeneracy assumption has been made to simplify the development that
follows. There are obvious ways in which this assurmption could be weakened.
For example, the m equations implied in (5) may not all be linearly independent, in
which case k¥ < m independent equations could be chosen and the remainder dropped.
When this is done it may still be true that P is linearly dependent on less than k of
the P;. One way to avoid this type of “degeneracy’ is to alter slightly the values of
thé eomponents of Py. This method is extensively employed in the transportation
problem [XXIII]. Recently a workable numerical procedure has been developed
for the general case as well. The procedure augments the original set of points, Py,
by a set of unit vectors V; where the ¢; for maximizing form (1) associated with the
points V; are assumed ‘‘small.” By choosing either V; or —V, a feasible solution
can be obtained by inspection rather than through the method of Section 2 of this
paper. ‘This cuts the computations in half. Moreover, the rank of the system is
automatically m, L.e.,, & = m, s0 that Ly this approach all problems connected with
degeneracy are solved.
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and (6). They may be used to prove the following important proposi-
tions (actually, the proofs of Theorems A and B do not require the non-
degeneracy assumption):

TaeoreM A: If one feasible solution exists, then there exists a feasible
solution (colled a basic feasible solution) with, al most, m points P; with
positive weights h; and n — m, or more, points Py with x; = 0.

TaEOREM B: If the values of z for the class of feasible solutions have a
finite upper bound, then a mazimum feasible solution exists which is a basic
Jeasible solution.

1. ConsTrUCTION OF A MaxiMum FrasisLe SoLuTion

Assume as given a feasible solution consisting of exactly m points,
P;, with nonzero weights; that is,

0, MP1 A+ NPy Ao AP = Py, N> 0.
(8 Meor + Agez F -0t Mmlm = 20

In establishing the conditions for and the construction of a maximum
feasible solution, it will be necessary first to express all points, P;, in
terms of a basis consisting of m points which form the above feasible
golution; that is,

9 2Py + 295Po -t TP =P; (j=1,2, .-+ ,n).

We now define z; by

(10) z1j0 F T30 ot Tmitm =2 (J=1,2, -, m).
TrroreM 1: If, for any fixed j, the condilion

an c; >z

holds, then a set of feasible solutions can be constructed such that

(12) 2> 2

for any member of the set, where the upper bound of z is either finile or
infinite.

Cask 1: If finite, a feastble solution consisting of exactly m points with
positive weights can be constructed,

Casg I1: If infinite, a feasible solution consisting of exactly m + 1 poinis
with positive weights can be constructed such that the upper bound of z
= oo,
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Proor: Multiplying (9) by # and subtracting from (7), and similarly
multiplying (10} by ¢ and subtracting from (8), we get

(18)  (\y — 82)P1 4+ (Ag — Bxo)Pa 4 - -+ (v — 02ij) P + 8P = Py,
(14) (M — 6xj)cr + (A — 0x3)ce + -+« (A — OTjdem + Oc;
= Zp + 9(6;5 - z.f)r

where the term 6c; has been added to both sides of (14).

Since A; > O for all ¢ in (13), it is clear that there is, for 8 = 0, either
a finite range of values 6, > 6 = 0 or an infinite range of values such
that the coefficients of P; remain positive. It is clear from (14) that
. the z of this set of feasible solutions is a strictly monotonically increasing
function of 8,

(15) 2 =z + 6lc; — z) > 2o, 6> 0,
since ¢; > 2; by hypothesig (11), thus establishing (12).

Case I: If z;; > 0 for at least one 1 =1, 2, --- , m in (13) or (9),
the largest value of # for which all coefficients in (13) remain nonnegative
is given by

(16) #o = min (R,‘/ﬂ:ij), x> 0.

If i = 4y yields 6, in (15), it is clear that the coefficient corresponding to 7,
in (13) and (14) will vanish, hence a feasible solution, given by 8 = 6,
has been constructed with exactly m positive weights; moreover, z > z.
Tt will be noted that this new set of m points consists of the new point,
P;, and (m — 1) of the m points previously used. This, then, is a desired
solution for Case I of Theorem 1.

The new set of m points may be used as a new basis, and again, as in
(9) and (10), all points may be expressed in terms of the new basis and
the values of ¢; compared with newly computed z/s. If any ¢; > z;,
the value of z can be increased. If at least one z;; > 0, another new
basis can be formed. We shall assttme that the process is iterated until
it iz not possible to form a new basis. This must occur in a finite

n
) bases and

m
none of these bases can recur, for in that case their 2-values would also
recur, whereas the process gives strictly increasing values of z. Thus

number of steps because, of course, there are at most (
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it is clear that the iteration must eventually terminate, either because at
some stage

a7 z; £0 forall 1=1,2,--- ,m
and some fixed j, or because
(18) e; <z forall j=1,2, .- n

Case II: If (17) holds (i.e., for all Z, x;; < 0), then it is clear that 8
has no finite upper bound and that a class of feasible solutions has been
constructed consisting of m + 1 points with nonzero weights such that

the upper bound of 2 = <.

In all problems in which there is a finite upper bound to z, the iterotive
process must necessarily lead to condition (18). We shall prove, however,
that the feasible solution associated with the final basis, which has the
property ¢; £ z; for all j =1, 2, --- , m, 18 also a maximum feasible
solution (Theorem 2). Hence, in all problems in which there is no finite
upper bound to z, the derative process must necessarily lead to condition
(17); moreover, by rewriting (9) as

(19) P; + (_Ilj)Pi + (—x25)Pa +- - -+ (—2nj)Pm = 0, 2 =0,

for the fixed 7 of (17), we have shown that a nonnegative linear combina-
tion of (m + 1) points vanishes if the upper bound of 2 is +=. In many
practical problems physical considerations will dictate the impossibility
of (19).

As a practical computing matter the iterative procedure of shifting
from one basis to the next is not as laborious as would first appear
because the basis, except for the deletion of one point and the insertion
of a new point, is the same as before. In faet, a shift of a basis involves
less than mn multiplications and an equal number of additions. It has
been observed empirically that the number of shifts of basis can be
greatly reduced not by arbitrarily selecting any point, P;, satisfying
¢;j > z;; but by selecting the one which gives the greatest immediate
increase in z; from (15) the criterion for choice of j is such that

(20 8o{c; — 2;) = max,
i
where §; is given by (16) and is a function of j. A criterion that involves

considerably less computation and apparently yields just as satisfactory
reaulis is to choose 7 such that

(21 {¢; ~ 2;) = max.
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By the use of either (20) or (21) approximately m changes in basis are
encountered in practice, so that about m®n multiplications are involved
in getting 2 maximum feasible solution from a feasible solution. There
exist further refinements of computations by which 2m* + n computa-
tions are required per shift in basis if eriterion (21) is used, or roughly
2m® + mn in all. However, to obtain a feasible solution will also re-
quire about 2m® + mn multiplications if one such solation is not readily
available, and the selection of an original basis will require m® more—-
hence the method involves about 5m? 4 2mn multiplications.3

TaeoreM 2: If, for all j = 1, 2, --- | n, the condition ¢; < z; holds,
then (7) and (8) constitute @ mazimum feasible solution.

Proor: Let
(22) Py + pePg +- -+ puPp = Py, 4; 20,
(23) #18 + p2Cy - paly = 2%,
constitute any other feasible solution. We shall show that zq = 2z*.
By hypothesis, ¢; < 2;, so that replacing ¢; by 2; in (23) yields
(24) B121 + o2y 4o paze = 2%

Substituting the value of P; given by (9) into (22) and the value of
z; given by (10) into (24), we obtain

(25) (2 #ﬂ'ﬁ) Py + (2 FJ""%) Py +---+ (Z n:'xmg') Py, = Py,
J=1 j=1

=1
(26) (E leaj) o + (E uszj) cg .-+ (E ujﬂimj) om = 2%,
F=1 F=1 =1
According to our assumption of nondegeneracy, the corresponding coeffi-
cients of P; in (7) and (25) must be equal; hence (26} becomes

27) Mep F Agls F - i A = 2%
or, by (8), _
(28) 2 = 2%

In order that another maximum feasible solution exist it is necessary
that ¢; = z; for some P; (not in the final basis). It will be noted, how-
ever, that in this case the extended matrix

P Py - P,
29) [ 1 Pa ]
1 Ca ves Cp

8 8ea footnote 2 on page 340.
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[see (4) above] has at least one set of m + 1 columns which are linearly
dependent. Thus a sufficient condition that the mazimum feasible solution
constructed from the given feasible solution be unique is that every sel of
(m + 1) points, defined by columns in (29), be linearly independent.

2. CONSTRUCTION OF A FEASIBLE SOLUTION ¢

We begin by selecting an arbitrary basis of (m — 1) points, P;, and
P,y. Denote this set by (Py; Py, -+ -, Pm_1). Any P;can be expressed
in terms of this basis by

30)  wuPo+ w1+ FvmiPaa=P (G=1L2, .-, m).

TororeM 3: A sufficient condition that there exist no feasible solulion is
that yo; < 0 for all j.

Proor: Assume on the contrary that there exists a feasible solution,
(31) kI‘PI"5"}‘2132"l"""')\ﬂ,PﬂE‘JPO, )\3;0
Substitute the expressions for P; given by (30) into (31):

(32) PO (Z Ajyﬂj - 1) + Pl (Z Ajyu) -+-- .
1 1
+ Pry (E M‘?J(m-—l)j) = 0.
1

In view of the assumed independence of (Po; Py, -+, Pn_y) it is clear
that each coefficient in (32} must vanish; in particular,

(33) 3 Ao, — 1 =10.
1

This is impossible if simultaneously A; = 0 and y,; < 0 for all j.

To construct a feasible solution we first define a fixed reference point,
@, given by

(34) G = w Py 4 wePs 4+ -+ Wy 1Py — poPy,

where w; > G (i =1, --- , m — 1) and py > 0 are arbitrarily chosen.
For convenience we rewrite (34) in the form

(35) G+ poPo = wiPy + wePy + -+ Wy Py

In the development that follows, pp will play a role analogous to z.

1 See footnote 2 on page 340.
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By Theorem 3, if there exists a feasible solution, there exists at least
one 7 (which we shall consider fixed) such that

{36) yo; > 0.
Multiplying (20) by 6 and subtracting from (35), we obtain
(37) @+ (po -+ 6y0;)Po
= 6P; + (w1 — 8y)P1 +- - -+ (Wa—t — OYm—1)7)Pm—1.

For a range of 6, > 6 > 0 we can consfruct, in a manner apalogous
to (13) and (14), a set of points of the form ¢ 4 pPy, each given by a
positive linear combination of points P;. Since p will play a role
analogous to z, we are interested in the highest value of p for which this
is possible. It will be noted that

(38) p = po T Bo; > po

since yo; > ( has been assumed.
If, in the representation of P;in (830}, ally;; =0 (i =1, ---,m — 1),

the coefficients of P; will be positive and p — + asd — 4. At
the same time it will be seen, by solving (30) for Py,

(39) Po = (Yyop)Ps + (—y1i/v0)P1 ++ -+ (~Ym—-1)i/%0;) Pr~1,

that a feasible solution has been obtained (i.e., Py has been expressed
as a positive linear combination of Py, Py, --- , P,y and P;). If at
least one y;; > 0 (¢ =1, - - - , m — 1), the largest value of 8 is given by

(40) o = m_in (wify:i5),  wi > 0.
Setting 0 = 6, the coeflicient of at least one point, P;, will vanish and a
new point,

G + PIP 0y

will be formed from (34) which is expressed as a positive linear combina~
tion of just m — 1 points, P;, where

(41) p1 = po + Boyo; > po.

Expressing all points P; in terms of the new basis, the process may be
repeated, each time obtaining a higher value of p (or an infinite value,
i.e., a feasible solution). The process must terminate in a finite number
of steps. For, otherwise, since there is only a finite number of bases,
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the same combination of {m — 1) points P; would appear a second time;
that is,

(42) G+ p'Py = wi Py + wiPy -+ Wy 1P,
(43) G+ o"Py = wi'Py + wy Pyt wpy_ 1Py,

where p" > p’. Subtracting (42) from (43), we obtain a nonvanishing
expression giving Py in terms of (m — 1) points P;, contradicting the
nondegeneracy assumption.

There are, however, only two conditions which will terminate the
process; i.e., after a finite number of iterations either

(44) Yo; =0 forall j=1,---,n

in whieh case, by Theorem 3, no feasible solution exists; or, for some
fixed j,

(45) y; =0 forall ¢=1,--.,m,

in which case, by solving (30) for Py, as was done in (40), we obtain the
desired feasible solution.

The term “‘simplex” technique arose in a geometric version of this
development which assumes that one of the m equations (3) is of the
form

(46) MtAto A =1

A point, P;, is defined by the remaining coordinates in a column includ-
ing ¢; from (1) as an additional “z”-coordinate. We may interpret (1)
and (3) as defining the center of gravity of a system of points P; with
weights A;. The problem consists, then, in finding weights X; so that
the center of gravity lies on a line I defined by m — 1 of the relation-
ships 2y = by, zg = bs, -+ , Z;m = by, such that the z-eoordinate is
maximum. A basis, Py, Ps, -+ , Py, may be considered one of the
faces of a simplex formed by Py, Py, --+ , Py, and P;. The z-coordinate
of P;is ¢;; the z-coordinate of the projection parallel to the z-axis of the
point P; on the plane of the face formed by the basis is z;. Because
¢; > z; by (11), all points in the simplex lie “above” the plane of this
face. The line L cuts the base in an interior point whose z-value is 2,
hence it must intersect another face of the simplex in a “higher” point
(i.e., a point whose z-value is greater than zp).



