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Answer all questions.

The total number of points is 100, and the precise grading is indicated in the text.

The rigour and clarity of your answers will be taken into account in the final grade.

Each problem is independent of the others.
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1 [10 points] Warm-up: Preliminary questions

(i) [5 points] Consider the function f(x) := e−x for x ≥ 0 and null elsewhere. Is f the density

of some random variable? If so, compute the characteristic function ϕ of the corresponding

random variable. Conversely, given ϕ can we recover f?

(ii) Let X be a random variable taking values {x1, x2} with respective probabilities p and 1− p.

(a) [1 point] Compute its characteristic function.

(b) [4 points] Consider now the following characteristic function:

Φ(ξ) =
1

8

(
1 + 7eiξ

)
.

By computing |Φ(ξ)| :=
√

Φ(ξ)Φ(ξ) (the overline representing the complex conjugate),

show that the absolute value of a characteristic function is not necessarily a characteristic

function itself.
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2 [30 points] Pricing with Fourier transforms

We consider here a Power Call option written on an underlying stock price (St)t≥0, with maturity T >

0 and log-strike k ∈ R, which has the following payoff: (Sp
T − ek)+, for some p > 0. We shall

assume that the random variable XT := log(ST ) admits a density f , with support on R, and with

characteristic function Φ(ξ) := E(eiξXT ) on R. We assume (obviously) that the p-th moment of ST

is finite, that S0 = 1 and that interest rates are null.

(i) [2 points] Consider the Fourier transform Ĉp : R → C of the Call price:

Ĉp(ξ) :=

∫
R
eiξkCp(k)dk.

What is the problem with this definition?

(ii) [10 points] Assuming no-arbitrage, show that the price Cp of the Power Call option today is

equal to

Cp(k) =
e−αk

2π

∫
R
e−iξkΨp(ξ)dξ,

where α is a dampening factor, the range of which needs to be made explicit, and where the

function Ψp (which depends on α) should be written explicitly in terms of the characteristic

function of XT . Hint: You may want to define the dampened Call price cp(k) := eαkCp(k).

(iii) Unfortunately, this method notoriously loses accuracy when the maturity of the option becomes

small. In order to remedy this, we propose another methodology, and consider the simple case

of a standard Call option, with p = 1. Introduce the function h : R → R, which corresponds

to a Put price if k < log(S0) and to a Call price if k > log(S0). Its characteristic function

reads

ĥ(ξ) :=

∫
R
eiξkh(k)dk, for all ξ ∈ R.

(a) [2 points] Is the characteristic function well defined here?

(b) [6 points] Show that, for any ξ ∈ R, the following identity holds:

ĥ(ξ) =
1

1 + iξ
− 1

iξ
− Φ(ξ − i)

ξ2 − iξ
.

(iv) Now, for k = 0, when the maturity T is small, the function hp becomes close to a Dirac

function, and its Fourier transform becomes very oscillatory. We therefore consider its transform

g(k) ≡ sinh(αk)h(k).

(a) [2 points] What is the behaviour of the function g at k = 0?



(b) [6 points] Prove that the following equality holds for all real number k:

h(k) =
1

2π

1

sinh(αk)

∫
R
e−iξkĝ(ξ)dξ,

where

ĝ(ξ) :=
1

2

{
ĥ(ξ − iα)− ĥ(ξ + iα)

}
, for all ξ ∈ R.

(c) [2 points] How does the parameter α influence the integration?
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3 [40 points] Finite difference methods for periodic PDEs

We consider here the following periodic heat equation:
∂u

∂t
= σ

∂2u

∂x2
, for (x, t) ∈ (0, 1)× (0,∞),

u(0, x) = f(x), for x ∈ (0, 1),

u(t, x+ 1) = u(t, x), for (x, t) ∈ R× (0,∞),

(1)

where f is a smooth function (i.e. of class C∞(R)) and σ a strictly positive constant. Let N be a

strictly positive integer and define the grid {(nδt, jδx)}n≥0,j∈Z, with δx := 1/N and δt > 0 fixed.

We further denote un
j the discrete approximation of the exact solution u at the point (nδt, jδx). Let

now α, β and γ be three real constants, independent of δx and δt, and consider the following finite

difference scheme:
αun+1

j + βun
j + γun−1

j

δt
− σ

un
j−1 − 2un

j + un
j+1

δ2x
= 0, (2)

with appropriate boundary conditions. Note that this is a 3-level scheme, involving three time steps,

and not two.

(i) [5 points] Using Taylor series, show that the scheme is consistent if and only if α = 1+ γ and

β = −1− 2γ. When γ = −1, is the scheme explicit or implicit? What do we know about the

stability of the scheme in this case?

(ii) [3 points] Assume that γ ∈ (−1/2, 0]. Using geometric arguments based on convexity,

formulate the Courant-Friedrichs-Lewy condition for the stability of the scheme involving γ, σ,

δt and δx.

(iii) [8 points] We shall from now on assume that the scheme is consistent. Consider γ ∈
(−∞,−1) ∪ (−1,−1/2), and for any n ≥ 0, define the discrete Fourier transform

ûn(ξ) :=
∑
j∈Z

δxe
−ijδxξun

j , for any ξ ∈
[
− π

δx
,
π

δx

]
.

The inverse Fourier transform reads for any j ∈ Z: un
j =

1√
2π

∫ π/δx

−π/δx

eijδxξ ûn(ξ)dξ. For any

ξ ∈ [−π/δx, π/δx], define the vector Ûn(ξ) ∈ R2 by Ûn(ξ) := (ûn+1(ξ), ûn(ξ))′ (where ′

denotes the transpose of the vector), and prove for all n ≥ 0, there exists a two-by-two matrix

A(ξ) such that Ûn(ξ) = A(ξ)Ûn−1(ξ). Using the L2-matrix norm, prove that the scheme is

not stable.

(iv) [6 points] Using a similar analysis as in the previous question, investigate the stability of the

scheme when γ ≥ 0.



(v) We are now interested in a two-level finite difference scheme for the heat equation (1) above.

(a) [5 points] Write down an implicit scheme for the heat equation (in matrix form).

(b) [5 points] For real numbers a, b and c, such that bc > 0, consider the tridiagonal matrix

T :=


a c 0 0

b a
. . . 0

0
. . . . . . c

0 0 b a

 ∈ Mn(R),

and recall that T has n eigenvalues given by

λk = a+ 2
√
bc cos

(
πk

n+ 1

)
, for k = 1, . . . , n.

Determine the eigenvalues of the transition matrix in the implicit scheme and using the

2-norm, conclude on the convergence on the scheme.
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4 [20 points] Existence of a solution to the heat equation

We are interested here in proving the existence of a solution to the heat equation (on the real line)

given some initial data. Consider the heat equation

∂ϕ

∂t
=

1

2

∂2ϕ

∂x2
, for x ∈ R, t ≥ 0, (3)

with boundary condition ϕ(x, 0) = f(x) for any x ∈ R. Let now Ht be the function defined by

Ht(x) :=
1√
2πt

exp

(
−x2

2t

)
, for all x ∈ R, t ≥ 0,

and define the function u : R× [0,∞) as the convolution u(x, t) := (f ∗Ht)(x)

(i) [5 points] Recall the definition of the Schwartz space S(R) and of an Lp(R) space (p ≥ 1); is

one included in the other? For p = 2, Give two examples of functions (supported on the whole

real line) each belonging to each spaces, and two examples not belonging to these two spaces.

(ii) [5 points] Prove that if f ∈ S(R), then u is of class C2(R) when t > 0. What happens at

t = 0? Prove that u solves the heat equation (3).

(iii) [5 points] Using Plancherel’s formula, prove that
∫
R |u(x, t)−f(x)|2dx tends to zero as t tends

to zero.

(iv) [5 points] Finally, assuming that f is a Schwartz function, prove that for any t > 0, the

function x 7→ u(x, t) also belongs to S(R). Hint: Take z > 0 and split the domain of

integration defining u into [−z, z] and R \ [−z, z].
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