
AMDP EXAM 2015-2016 – SAMPLE SOLUTIONS

ANTOINE JACQUIER

1. Warm-up: Preliminary questions

(i) [2 points] Stopping time: see the lecture notes for the definition.

(ii) [2 points] Local martingale: Stopping time: see the lecture notes for the definition.

(iii) [2 points] Straightforward computations show that, for any maturity T , the implied volatility smile (as a

function of the strike) is constant and equal to
(

1
T

∫ T

0
ξ2(t)dt

)1/2
.

(iv) [3 points] Local volatility: see the lecture notes for the definition.

(v) [6 points] The function g is defined via Put-Call parity from the European Put option price. The Put

clearly (by dominated convergence) satisfies the standard no-arbitrage bounds 0 ≤ Put ≤ (K − S0)+,

so that g satisfies the bounds (S0 − K)+ ≤ g(K) ≤ S0. However, the function f does not. Clearly,

f(0) = E(ST ) < S0. By continuity and convexity, there exists K∗ such that f(K) < (ST − K)+ for all

K < K∗ and f(K) ≥ (ST −K)+ for all K ≥ K∗. On the interval [0,K∗), the function f therefore does

not satisfy the no-arbitrage bounds. In particular, it means that, on this interval, the implied volatility is

not well defined.

2. Tail asymptotics of the implied volatility

(i)

lim sup
n↑∞

un = inf
n≥0

sup
m≥n

um and lim inf
n↑∞

un = sup
n≥0

inf
m≥n

um.

Take un := (−1)n. Then lim supn↑∞ un = 1 and lim infn↑∞ un = −1.

(ii) The function ψ is smooth on (0,∞) with limz↓0 ψ(z) = 2 and limz↑∞ ψ(z) = 0.

(iii) In Black-Scholes, we have E(Su
t ) = Su

0 exp
(
1
2u(u− 1)σ2t

)
. Therefore all moments exist: p∗ = q∗ = +∞

and hence βR = βL = 0. The moment formula implies that the wings of the smile are flat, which is

consistent with the fact that the implied volatility smile is actually constant (hence flat) everywhere in

the Black-Scholes model.

(iv) (a) The following computation follows directly by integrating P(Y1 ∈ dx) above:

E
(
euY1

)
= p

λ+
λ+ − u

+ (1− p)
λ−

λ− + u
, for all u ∈ DY = (−λ−, λ+).

(b) The computation of the Laplace transform of St is immediate and follows from the independence of

the family (Yn) and the Poisson process (Nt)t≥0:

E (Su
t ) = exp

(
uγt+

σ2u2

2
t+ λt

{
E
(
euY1

)
− 1
})

, for all u ∈ DY .
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(c) The martingale property holds as soon as E(St) = 1, i.e.

γ +
σ2

2
+ λ

{
E
(
eY1
)
− 1
}
= 0,

from which we deduce the value of γ.

(d) We therefore deduce q∗ = λ− and p∗ = λ+ − 1.

(e) The wings are independent of the time horizon, because S is a Lévy process, with stationary increments.

In the Heston model, for example, p∗ and q∗ depend on T and so do the wings of the smile.

(f) The larger λ+, the lighter the right tail of the distribution of St, since λ+ represents the intensity

of positive jumps. Not surprisingly then, the moment explosion p∗ then increases, and, since the

function ψ is decreasing, the slope of the total variance in the wings increases. Symmetric arguments

hold for the left side of the smile.

3. The OU process

(i)

(a) This follows directly by integration using the transformed process X̃t := e−µtXt.

(b) The coefficients are Lipschitz with bounded linear growth.

(c) Straightforward manipulations show that∫ T

0

Xtdt =
XT − x− σWT

µ
,

so that the random variable is Gaussian and its expectation and variance follow by linearity and Itô’s

isometry.

(ii)

(a) Itô’s formula yields

du(t,Wt) =

(
∂t +

1

2
∂xx

)
u(t,Wt)dt+ ∂xu(t,Wt)dWt = ∂xu(t,Wt)dWt,

so that clearly (u(t,Wt))t≥0 is a local martingale adapted to the Brownian filtration.

(b) Since any bounded local martingale is also a martingale, u(·) satisfies

u(t,Wt) = E (u(T,WT )|Ft) = E (f(WT )|Ft) = E (f(WT −Wt +WT )|Ft) ,

which yields the result.

(c) With the SDE dXt = Xtdt + σdWt, then (u(t,Xt))t≥0 is a local martingale if and only if it satisfies

the PDE (
∂t + x∂x +

1

2
∂xx

)
u = 0,

and the solution follows as before.

(iii)

(a) This follows directly from Feynman-Kac.

(b) The solution follows directly from plugging the proposed solution into the PDE and matching the

boundary conditions.
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4. Strict local martingales

(i)

(a) Direct computation yields (
∂t +

1

2
S4∂SS

)
u(t, S) = 0,

for all (t, S) ∈ [0, T )×R+ and with boundary condition u(T, S) ≡ S. Therefore the replication strategy

is given, as usual, by ∂Su(t, St).

(b) Clearly (St)t≥0 and (ϕt)t≥0 are local martingales, and so it (Πt)t≥0. Since admissible strategies are

bounded below (by definition), then, should (Πt)t≥0 be one, it would therefore be a supermartingale,

and in particular E(ΠT ) leqΠ0 = 0. However,

E(ΠT ) = E(S0ϕT − ϕ0ST ) = (S0 − ϕ0)E(ST ).

Since S0 > ϕ0, this yields a contradiction.

(ii)

(a) Let x = (x1, x2, x3). Define f(x) :=
√
(x1 − 1)2 + x22 + x23, so that, ∇f(x) = −f(x) · (x1 − 1, x2, x3)

and ∥∇f(x)∥ = 0. Itô’s formula then implies

dXt = −X4
t

{
(Z1

t − 1)dZ1
t + Z2

t dZ
2
t + Z3

t dZ
3
t

}
,

so that X is a local martingale.

(b) This follows by solving the three-dimensional system directly.

(c) By switching to spherical coordinates, we can write

E(Xt) =
1

(2π)3/2

∫
R3

+

exp
(
−x2

1+x2
2+x2

3

2

)
[(x1

√
t− 1)2 + x22t+ x23t]

1/2
dx

=
1

(2π)3/2

∫ ∞

0

∫ π

0

∫ 2π

0

r2 sin(θ) exp
(
− r2

2

)
(r2t− 2

√
t cos(θ) + 1)1/2

dφdθdr

=
1

(2π)1/2

∫ ∞

0

∫ 2π

0

r2 sin(θ) exp
(
− r2

2

)
(r2t− 2

√
t cos(θ) + 1)1/2

dφdθdr

=
1

(2πt)1/2

∫ ∞

0

r exp

(
−r

2

2

)√
r2t− 2

√
t cos(θ) + 1dr

∣∣∣∣θ=T

θ=0

=
1

(2πt)1/2

∫ ∞

0

2
(
r11{r?t−1/2} + r2

√
t11{r≤t−1/2}

)
exp

{
−r

2

2

}
dr

= 2

∫ t−1/2

0

exp
(
− r2

2

)
√
2π

dr = 2N
(
t−1/2

)
− 1.

Clearly E(Xt) < 1 and the Put-Call parity is violated for strike equal to zero.

(iii)

(a) Since P and QM
x,t are equivalent, then P(Yt > 0 for all t) = QM

x,t(Xt > 0 for all t) = 1. Therefore

EQM
x,t(XT |Ft) = EP

(
XT

dQM
x,t

dP

∣∣∣∣∣Ft

)
= Y −1

t = Xt,

which proves the claim.
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(b) Itô’s formula yields

dXt = −dYt
Y 2
t

+
d⟨Y ⟩2t
Y 3
t

= −Ytσt(dWt − σtdt).

Girsanov’s Theorem implies that W̃QM
x,t :=W −

∫
σudu is a QM

x,t-Brownian motion, and so is WQM
x,t :=

−W̃QM
x,t

(c) Clearly dXt = XtσtdW
QM

x,t

t = dW
QM

x,t

t since Y is a true martingale. Therefore

QM
x,t(Xt > 0) = QM

x,t(Wt > −1) = N (t−1/2) < 1.

Since P(Xt > 0) = P(Yt > 0) = 1, the two probabilities P and QM
x,t cannot be equivalent, which

concludes the proof.
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