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Abstract

Calibration based on an expansion approximation for option prices in the
Heston stochastic volatility model gives stable, accurate, and fast results for
S&P500-index option data over the period 2005 to 2009.
Keywords: Option pricing, expansion, Heston model, calibration, S&P500-
index options.

1 Introduction

Our aim with this paper is three-fold. First, to give a short overview of the recent
literature on expansion methods for option pricing. This includes an Edgeworth-type
formula whose terms are explicit for the Heston (1993) model. We initially thought
this was a new result, but then we discovered Sartorelli (2010). The second aim is to
test whether the expansion is accurate enough to be used for calibration to real-life
data. Several papers, see Guillaume & Schoutens (2010) and the references therein,1

document that even at the best of of times, calibration of the Heston model is a
delicate matter. But with the turmoil in the financial markets since 2007, we are
likely to be at the other end of that Dickens novel starter. And maybe the expansion
literature just reports benign cases? The title of the paper gives the conclusion.
Expansion-based calibration offers approximately a factor five speed-up, is stable,
and gives results that are accurate enough to be of practical use. The third aim is to
put a good data-set of option prices in the public domain; daily observations of implied
volatility surfaces for the S&P500-index over the period 2005-2009 synchronized with
the index itself and with estimated complete term structures of interest rates and
dividend yields.

∗Both authors are from the Department of Mathematical Sciences at the University of Copen-
hagen. Email addresses {ribeiro, rolf}@math.ku.dk. Poulsen is corresponding author.

1A Google search in March 2013 for ’Heston’ + ’calibration’ gave ∼ 65, 000 hits.
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2 The Heston Model: Transform and Expansion

Methods

In the Heston model the risk-neutral price dynamics (that is, dynamics under a
pricing/martingale measure Q) of some underlying asset (stock, exchange rate, . . .)
with dividend yield δ is

dS(t) = (r − δ)S(t)dt+
√
V (t)S(t)dW1(t),

where r is the (assumed constant) risk-free interest rate and the instantaneous vari-
ance follows a square-root process,

dV (t) = κ(θ − V (t))dt+ η
√
V (t)

(
ρdW1(t) +

√
1− ρ2dW2(t)

)
,

allowing for correlation between changes in underlying and variance. No explicit
representation for the density of lnS(T ) is known, but the characteristic function of
lnS(T ) (that is, EQ(exp(iu lnS(T )))) can be found in closed form; it is

exp(A(T ;u) +B(T ;u)v(0) + iu lnS(0)),

where A and B are explicitly known functions that solve Riccati equations.

Our interest is in calculating prices of call-options

C(K;T ) = e−rTEQ((S(T )−K)+),

where T is the expiry-date and K is the strike. Given the characteristic function
call-option prices can be found from the numerical calculation of integrals. This gives
rise to the so-called transform methods. Immediate use of the inversion theorem gives
a double integral. It is simple to rewrite that into two single integrals, and with some
sleight of hand it can be reduced it to a single integral, see for instance Lipton (2002),
which is our preferred formulation.

However, the numerical implementation may be less straightforward, partly due
to a complex logarithm function in the A-function, see Lord & Kahl (2010). There-
fore several ways to approximate call-option prices — often w/ the word expansion
attached — have been proposed. The tools vary, but the idea is usually to boil
calculations down to at most Black-Scholes-like terms. Besides avoiding numerical
intricacies, advantages of expansion methods are speed improvement, applicability
across model-specifications, and possibly improved intuition about the model. One of
the first examples is Hagan, Kumar, Lesneiwski & Woodward (2002) who use singular
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perturbation techniques to derive approximations for options with short expiries in a
lognormal stochastic volatility model, a model that has since been acronym’ed SABR.
Andreasen & Huge (2010) and Andreasen & Huge (2013) find ordinary differential
equations for approximate option prices in models that combine stochastic and local
volatility.2 In Larsson (2012) Malliavin calculus is used derive option price approxi-
mations. Drimus (2011) suggests an expansion directly via Greeks and applies it to
the Heston model. Later this has been extended to Levy jump models by Nicolato
& Sloth (2013). Another approach is based on the so-called Edgeworth expansion
which approximates an unknown density function (around, typically, the normal dis-
tribution) in terms of its cumulants, these being the coefficients in the power-series
expansion of the logarithm of its characteristic function. One of the first financial ap-
plications is Aı̈t-Sahalia (1999) who approximates likelihood functions. In Sartorelli
(2010) it is used for option pricing, leading to a result that is summarized in the next
proposition.

The Sartorelli Approximation Let κ1 =: µ, κ2 =: σ2, κ3, . . . , κN be the cumu-
lants of the distribution of lnS(T ). The price of an European call-option with strike
K and expiry-date T can be approximated by an Edgeworth expansion of order N
given by

CN(K,T ) = eµ+σ2

2 PN
2 −KPN

1 ,
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2Andreasen & Huge (2013) also give a derivation of a simplified version of the Hagan et al. (2002)

formula — ”light SABR” as it were.
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Figure 1: Expansion approximations for Bakshi et al. (1997) Heston parameters with
two choices of correlation (left panel: actual estimate, right panel: 0). Option prices
are expressed in terms of implied volatilities.

where {ζs} = {(l1, · · · , ls) ∈ Ns
0 : l1 + 2l2 + · · · sls = s}, Σ(ζs) = l1 + · · · + ls, Sm =

κm/σ
2(m−1), Y i

j ≡ Yj
(

lnK−µ
σ

, σ(i− 1)
)
. The Yn-functions are determined recursively

by

Y0(x, y) = 1− Φ(x− y),

Yn(x, y) = yYn−1(x, y) +
1√
2π
e−

(x−y)2
2 Hn−1(x)

where the Hn’s are the Hermite polynomials and Φ is standard normal distribution
function. For the Heston model, where the characterstic function is known, the cu-
mulants of lnS(T ) can be found explicitly, but the length of the expressions grow
exponentially.

The Sartorelli3 approximation can be applied to any model where the cumulants
are known — various Levy jump models for instance — but it might not be very
accurate.4 Figure 1 shows approximate and ”true” (Gauss-Lobatto integration of
the formula from Lipton (2002)) option prices for Heston model parameters (mostly)
given in Bakshi, Cao & Chen (1997). In our Matlab-implementation we can calculate
about 1,000 prices per second. (As a ball-park figure a direct implementation of the

3The name is actually apt. In the same mnemonic way that a Taylor expansion is tailor-made,
this could be called a sartorial approximation.

4This is the subject of ongoing research.
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Black-Scholes formula produces ∼ 66, 000 prices/sec.) The 2nd order expansion is
about 100 times faster than Heston integration, the 7th order is about three times
faster. The graph shows what is in our experience characteristic features of expansion
methods. They work well at-the-money (± 20% moneyness, roughly), but deteriorate
in quality for out-of-the-money options as well as with increasing absolute correlation.
Adding more terms in the expansion may help, but certainly it does not do so in a
uniform or monotone way. This also hints at why rigorous convergence statements
are largely absent from the option price expansion literature. The approximations are
typically not even arbitrage-free, which in the case without dividends means convex
in strike and increasing in expiry, although Doust (2012) provides a way to remedy
this.

Apriori there are, thus, pros and cons of using expansion methods for calibration
to real-life data. Speed is important and the moneyness of the target instruments is
not extreme, but equity markets typically display strong negative correlation between
underlying and volatility. So we are set up nicely for a horse-race.

3 Data

As testing ground for the calibrations we use data on European type options on the
S&P500-index period from early 2005 to mid-2009. Most noticeably, see Figure 2,
this period includes the financial turmoil that started in the Summer of 2007 with
the Subprime Crisis, took off dramatically with the Lehman Brothers’ default in
September 2008, and still reverberates to this day. We have daily data on option
prices; 182 implied volatilities for each day in our data-set with moneyness from -30%
to +30% (of current underlying) and between one month and three years to expiry.
The data-set contains synchronous information about the price of the underlying and
term structures of interest rates and dividend yields. The data have been provided
for use in research by a major investment bank (it is the volatility surfaces that the
bank itself uses) with a time-delay (therefore, updating data to, say, 2013 is not
straightforward) and under the condition that the bank remains nameless. Files with
the data (Data[1/2].xls) can be found at http://www.math.ku.dk/∼rolf/Svend/.

4 Empirical Results

To calibrate the model we chose on any given day, t, the vector ϑ = (θ, κ, σ, ρ, Vt)
(strictly speaking this is a mixture of parameters and one state variable; we will refer

5

http://www.math.ku.dk/~rolf/Svend/


03-Jan-2004 09-Dec-2004 09-Dec-2005 09-Dec-2006 09-Dec-2007 09-Dec-2008 04-Jul-200
600

700

800

900

1000

1100

1200

1300

1400

1500

1600

Trading Day

 S
&

P
5

0
0

 I
n

d
e

x

→ Beginning subprime crisis (27/02/2007)

← Jan 2008, collapse of major lenders and investors

← Sept 2008, insolvency

Figure 2: The S&P500-index 2004 to 2009.

to ϑ as a parameter anyway) that solves

min
ϑ

∑
i

(Cobs(Ki, Ti)− Cmodel(Ki, Ti;ϑ))2,

where the summation runs over that day’s observed option prices across strikes and
expiries. Other goodness-of-fit measures can be used (absolute vales or root-mean-
square rather than sum of squares, implied volatilities rather prices, relative differ-
ences); we found that using these lead to similar results as reported in the following.
Guillaume & Schoutens (2010) suggest mixing cross-sectional and time-series infor-
mation. We have not implemented this.

Figure 3 shows the results of the calibrations. The panels depict (reading from
left to right and to to bottom) estimates of η, κ,

√
Vt, θ, and ρ. The bottom right

panel shows the computation speed measured as no. calibrations per minute. Each
calibration comes in six versions: 2nd and 4th order expansion and ”true” ⊗ with
and without the Feller condition (which we will discuss shortly). We see that for the
estimates from the 4th order expansion without the Feller condition differences to
the ”true” Heston estimates are small. It is only for the correlation parameter (note
that these estimates are ”very negative”, below −0.8) and for the vol-of-vol (η) after
2008 that differences are visible to the naked eye. And the expansions are faster then
”true” Heston; including the optimization the 4th order expansion performs about
five times more calibrations per minute.
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We end the paper by discussing the Feller condition and the effect of the post-2007
financial turmoil.

The Feller condition If 2κθ ≥ η2, then the instantaneous variance process V
stays strictly positive.This is known as the Feller condition.5 However, if the process
does hit 0, it is immediately reflected back into positive range (this is the implication
of using of ”usual formulas”), and the discounted price of the underlying is still a
martingale. Some sources in the literature do impose the Feller condition, but this
appears not to be market practice. As one market participant told us: ”I would never
impose the Feller condition — it is for people who believe in elves and fairies”.6 So,
nothing breaks down. Nor does imposing the Feller condition remove problems with
simulation near zero that are analyzed in Lord, Koekkoek & van Dijk (2010). We ran
the empirical experiment with and without the Feller condition. In the unrestricted
case, the parameter estimates violated the Feller condition at almost every date. The
goodness-of-fit without the Feller condition is, as it should be, better; this quite visible
for sum of squares (which is what is being minimized) and root-mean-square error,
and holds to a lesser extend for the ”digital” criterion of ”hitting the bid/ask-spread”
(discussed next and shown in Figure 4). One odd feature in Figure 3 is that the
place where Feller-effect most clearly manifests itself is in the correlation estimate —
despite the correlation parameter not entering the condition.

The financial turmoil Figure 3 shows that estimates are affected by the financial
turmoil; it begins in the Summer of 2007 and the effect is strong from Lehman Broth-
ers’ default in September 2008. Changes in the instantaneous variance are of course
consistent with a stochastic volatility model.7 But changes in parameters, strictly
logically, are not, and should be viewed as evidence against the model, although this
level of fundamentalism will not get you far in financial modelling. Another way to
see the deteriorating model quality is to look at percentage of the calibrated model
prices that fill within the bid/ask-spreads. The input-data do not contain explicit
information about bid/ask-spreads, but according to Wystup (2007) a multiplicative
spread on volatilities of 2% is common for at-the-money options in the Interbank mar-
ket. Or in numerical terms: a typical at-the-money option is sold at 0.204, bought
0.196. In Figure 4 we use (conservatively) the 2%-spread across moneyness. With the
financial turmoil we go from a situation where about 85% of the prices generated by
the calibrated models fall within bid/ask-spreads down to only 50% from late 2008

5More accurately, the version with strict inequality is. The validity of our previous statement
about the ”=”-case can be proved by applying Feller’s test for explosions to lnV .

6He then added that he might want to impose other conditions to avoid moments explosions as
discussed in Andersen & Piterbarg (2007).

7Arguably such strong changes are not very consistent with this particular model, but that
analysis is for another paper.
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Figure 3: Parameter estimates when the Heston model is calibrated to S&P500-index
options 2005-2009.
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Figure 4: Fraction of calibrated model prices that fall within the bid/ask-spread. The
top panel includes all options, the bottom panel options with absolute moneyness
above 20%.

and on. The bottom panel shows that the errors stem mostly from options with
absolute moneyness above 20%.
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