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Abstract

This paper investigates the pricing bounds of two one-touch options with the same maturity but different
barrier levels, where the pricing bound is a range within which a one-touch option can take a price when a
price of another one-touch option is given. The upper or lower bounds are the cost of a super-replicating
portfolio and a sub-replicating portfolio respectively. These consist of call options, put options, digital
options and a one-touch option. We assume that the underlying process is a continuous martingale, but do
not postulate a model.
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1 Introduction

This paper investigates pricing bounds within which a one-touch option can take a price when the price of
another one-touch option with the same maturity but a different barrier level is given.

Financial markets trade many barrier option types such as single/double barrier knock-in/-out options.
Of these, one-touch and no-touch options are the simplest barrier options and widely are traded. A one-touch
option is a barrier option that pays a unit of currency at the maturity if the barrier is hit and is worthless
if the barrier has not been hit. In contrast, a no-touch option is worthless if the barrier is hit. These are
important instruments for traders of barrier options, because they reflect a market view of the probability
of the barrier being hit.

There has been considerable research on pricing and hedging barrier options. In particular, researchers
have proposed several methods that semi-statically hedge barrier options (see e.g. Carr and Chou (1997),
Carr et al. (1998) and Derman et al. (1995)). Here, semi-static hedging means the replication of barrier
options by trading European puts and calls no more than once after inception. Hedging strategies require
options, thus models that price barrier options must be calibrated to these. However, even if the model is
perfectly calibrated to a volatility surface there are risks attached to the valuation of barrier options. For
instance, Hirsa et al. (2003), Lipton and McGhee (2002) and Schoutens et al. (2005) all state that although
models may produce similar European put and call option prices, they give markedly different barrier option
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prices. Touch options are recognized as important products because they are used as an instrument to which
a model is calibrated (see e.g. Carr and Crosby (2010)).

The model-independent approach has also been considered for exotic derivatives including barrier options
(see e.g. Hobson (1998), Hobson and Neuberger (2012), Labordére et al. (2012) and Hobson and Klimmek
(2012)). In particular, Brown et al. (2001) propose robust super-replicating and sub-replicating barrier
option strategies including touch-options without assuming any specific models. Cox and Oblój (2011a) and
Cox and Oblój (2011b) focus on touch options with two barrier levels in the same manner as Brown et al.
(2001). They use call options and put options as well as digital options with the same maturity as replicating
instruments and trade forward contracts at the first barrier(s) hitting time(s). Generally, pricing bounds
derived from model-independent replications tend to be rather wide, which is also the case for touch-options.
Hence, it is worth investigating how much these pricing bounds are refined if other instruments are traded.

This paper investigates pricing bounds within which a one-touch option can take a price when a price of
another one-touch option with the same maturity but a different barrier level is given and those European
options (including call, put and digital options) with the same maturity. Suppose there is a pricing operator
on European options with a certain maturity and a touch option with the same maturity and a certain
barrier level. The question is how to extend this pricing operator to a space spanned by a touch option
with the same maturity but a different barrier level as well as these derivatives. To address this, we propose
pricing operators that provide upper and lower bounds for the touch option based on a super-replication
and a sub-replication. Our approach is in line with Brown et al. (2001), Cox and Oblój (2011a) and Cox and
Oblój (2011b), in that we assume the underlying asset process is a continuous martingale and our replications
consist of static portfolios and transactions of a forward contract in the first instances of hitting the barrier
levels. We differentiate by using a touch option as well as European options for the static portfolios.

Moreover, we provide pricing bounds on a touch/no-touch option that pays one unit of currency if and
only if the first barrier is hit but the second is not. In Section 4, we consider the pricing bounds on this
touch/no-touch option using the one-touch option with the second barrier as well as European options. If
we use, instead of the one-touch option, the upper- or lower bounds and the super- or sub-replications on
this, we obtain the pricing bounds as well as super- and sub-replications of the touch/no-touch option using
only European options.

The next section of this paper describes the settings and notations. The third section reviews the research
of Brown et al. (2001). The super-replications and sub-replications for a one-touch option using another
with a different barrier level are derived in the fourth section. The fifth section provides numerical examples.

2 Settings and Notations

The settings and notations used in this paper are stated here.
First, we introduce some notations. Let us denote the spot price of the underlying asset at time t ∈ [0, T ∗]

by St, where T ∗ is some arbitrary time horizon and the time-t price of a call option and a put option with
strike K and maturity T ∈ [0, T ∗) by Ct(K) and Pt(K) respectively. The one-touch option is assumed to be
a single knock-in option with maturity T and barrier level B ∈ (S0,+∞). This option is worthless if B has
not been hit by the expiration date. If the barrier is hit at any time during the option’s life, the terminal
payoff is 1. Then, the payoff of the barrier option is 1{τB≤T}, where τB is the first time of hitting B:

τB := τB(S)

:= inf{t < T ∗ | St ≥ B}. (2.1)

A time-t price of this option is denoted as Ot(B). The subscript t may be omitted in case of t = 0 such as
C(K), P (K) and O(B) for simplicity.

Second, we make some assumptions. The first assumption is that the underlying price process S is a
non-negative martingale. The interest rates are also assumed to be zero. This is merely for simplicity, since
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our results are valid by reading all prices of all options and portfolios as forward T prices in case of a non-zero
interest rate. Examples to which our results are applied are that the underlying process is a forward price
or that the underlying asset pays continuous dividends equal to the interest rate. We assume that forward
transactions are costless and all instruments — such as underlying asset, forward, — are traded without
transaction costs. Importantly, we assume that the underlying price process is continuous. This allows us to
exchange a call option with strike K, with (B −K) amounts of cash and a put option with the same strike
by trading a forward contract with zero cost at the first time of hitting B, since the following parity holds:

CτB (K)− PτB (K) = B −K. (2.2)

This type of trade is used throughout this paper. Moreover, we add an assumption in Section 4.1 and 4.2
that the distribution of the underlying asset at maturity T under a risk-neutral measure is given. This
distribution is centered at S0. We consider the case where only a finite number of call options are known
in Section 4.3. Knowledge of the distribution is equivalent to the knowledge of European call option prices
without arbitrage opportunities for the continuum of strikes by Breeden and Litzenberger (1978). The
conditions for no arbitrage are well-documented in Davis and Hobson (2007). We assume C(B) > 0 to avoid
a trivial case. We denote by ν the risk-neutral distribution of the spot price at maturity T determined by
prices of these options. It is also assumed that call options, put options and digital call options can be used
as replication, where the digital call option with strike K is an option whose payoff is 1{K≤ST } in this paper.

Third, we state the aim of this paper: to extend a pricing operator φ that is a linear operator defined on
X := L1 ([0,+∞), ν), a set of Lebesgue integrable functions on [0,+∞) with respect to ν, which associates a
payoff of an European option with its initial price such as φ(K) = K, φ((ST−K)+) = C(K), φ((K−ST )+) =
P (K). If a price of a one-touch option whose payoff is 1{τB≤T} is known, we can extend the operator φ to
X ⊕Y, where Y is a linear space spanned by 1{τB≤T} and ⊕ means a direct sum. This paper examines how

to extend the operator φ to X ⊕Y ⊕ Ỹ, where Ỹ is a linear space spanned by 1{τ
B̃
≤T} with another barrier

level B̃. To address this, we propose sharp pricing bounds on one-touch options and the corresponding
replicating strategies, where sharpness means that the pricing bounds can not be improved without adding
any other assumption. The lower and upper bounds on the option are defined as follows under our settings:

WL := inf
P

E
[
1{τ

B̃
(S)≤T}

]
(2.3)

WG := sup
P

E
[
1{τ

B̃
(S)≤T}

]
, (2.4)

where P is a set of all risk-neutral probability spaces (Ω,F ,Q) and a continuous martingale process {St}t∈[0,T∗]

on it that satisfies φ(·) = E[·] on X ⊕ Y and E is an expectation operator corresponding to the probability
space. Prices of super-replicating and sub-replicating portfolios are superior and inferior, but not necessarily
equal, to WG and WL respectively. To prove the sharpness, we find super-replicating and sub-replicating

portfolios whose prices are equal to E
[
1{τ

B̃
(S)≤T}

]
with respect to a certain element of P.

Finally, we introduce some further technical notations. Every function f considered in this paper is a
combination of the call price function C. We expand the domain of the function f from [0,+∞) to R by
C(K) := C(0) − K for K < 0 (recall that we assume that the underlying process is non-negative). The
function has left- and right-sided directional derivatives as does the function C. In this paper, we denote ∂−

K

as the left-sided derivative operator. Moreover, the derivatives have finite total variations and the derivative
∂−
KK can be defined except for a countable set. The subdifferential of a function f at K can be defined and

is denoted by

∂Kf(K) := {k ∈ R | f(κ) ≥ f(K) + k(κ−K), ∀κ ∈ R}. (2.5)

We introduce the following notation for simplicity:

N (∂Kf) := {K ∈ R | 0 ∈ ∂Kf(K)}. (2.6)
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3 Review of Brown et al. (2001)

In this section, we review the replications for a one-touch option with only European options, as proposed
by Brown et al. (2001), because we use these results in Section 4. The one-touch option is assumed to have
a barrier level B, where S0 < B.

First, we prepare the following lemma:

Lemma 1. Suppose that there is a measurable set Ω0 ∈ F such that ST ∈ [B,+∞) on Ω0 and E[ST : Ω0] =
BQ [Ω0]. Then, there exists a continuous martingale {S∗

t }t∈[0,T ] such that ST = S∗
T and Q [τB(S

∗) ≤ T ] =
Q [Ω0].

Proof. Let X0, X1 and X2 be random variables defined as X0 := S0, X2 := ST and

X1 := B · 1Ω0 + β · 1Ωc
0
, (3.1)

where

β := B − B − S0

Q [Ωc
0]

. (3.2)

Note that β < B and E [ST : Ωc
0] = βQ [Ωc

0]. Then, {Xn}n=0,1,2 is a discrete martingale with respect to a
filtration generated by X. By Dudley’s theorem (see, for instance, p.188 of Karatzas and Shreve (1988)), the
random variables X1−X0, (X2−X1) ·1Ω0 and (X2−X1) ·1Ωc

0
can be expressed with stochastic integrals with

respect to the Winner processes. A continuous martingale process S∗
t such that Q [τB(S

∗) ≤ T ] = Q [Ω0]
can be constructed by these stochastic integrals.

3.1 Super-Replication

Consider the following self-financing strategy G(K;B) for ∀K ∈ [0, B):

1. At the initial outset

• Buy 1
B−K

units of a call option with strike K.

2. At the first time of hitting B

• Sell 1
B−K

units of the forward contract.

The strategy G(K;B) super-replicates the one-touch option with any K ∈ [0, B). We provide some
optimal strategies properties.

Definition 1. The initial value of strategy G(K;B) is defined as

G(K;B) :=
C(K)

B −K
, (3.3)

G∗(B) as the infimum value of G(K;B) with respect to K, KG(B) as a strike price by which the infimum is
attained:

G∗(B) := inf
K∈(−∞,B)

G(K;B)

= G(KG(B);B) (3.4)

and G∗(B) as the corresponding strategy.
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Proposition 1. The infimum of Eq.(3.4) is attained by any element of N (∂KG(B)), an interval of [0, B).
For all KG ∈ N (∂KG(B)), the following holds:

Q [K+ < ST ] ≤ G∗(B) = E
[
ST −KG

B −KG
: KG ≤ ST

]
≤ Q [K− ≤ ST ] , (3.5)

where K− := infN (∂KG(B)) and K+ := supN (∂KG(B)). In addition, there is a continuous martingale
process

{
SG
t

}
t∈[0,T ]

such that

G∗(B) = Q
[
τB

(
SG

)
≤ T

]
. (3.6)

Proof. By differentiating G with respect to K, we obtain

∂−
KG(K) =

1

B −K

(
∂−
KC(K) +

C(K)

B −K

)
=

1

B −K

(
∂−
KC(K) +G(K)

)
(3.7)

and

∂−
KKG(K) =

1

B −K
∂−
KKC(K) +

2

(B −K)2
∂−
KC(K) + 2

C(K)

(B −K)3

=
1

B −K
∂−
KKC(K) +

2

B −K
∂−
KG(K). (3.8)

Since ∂−
KG(0) = 1

B
(−1 + S

B
) < 0, limK→B ∂−

KG(K) = +∞ and because ∂−
KKG > 0 if ∂−

KG > 0, the
set N (∂KG(B)) is an interval of [0, B) and we have Eq.(3.5). Apply Lemma 1 with Ω0 ⊆ Ω such that
{KG < ST } ⊆ Ω0 ⊆ {KG ≤ ST } and Q [Ω0] = G∗, then we have a continuous martingale

{
SG
t

}
t∈[0,T ]

.

3.2 Sub-Replication

Consider the following self-financing strategy L(K;B) for ∀K ∈ [0, B):

1. At the initial outset

• Buy 1
B−K

units of a call option with strike B.

• Buy 1 unit of a digital call option with strike B.

• Sell 1
B−K

units of a put option with strike K.

2. At the first time of hitting B

• Sell 1
B−K

units of the forward contract.

The strategy L(K;B) super-replicates the one-touch option with any K ∈ [0, B). We provide some
optimal strategies properties.

Definition 2. The initial value of the strategy L(K;B) is defined as

L(K;B) :=
C(B)

B −K
− P (K)

B −K
− ∂−

KC(B), (3.9)

L∗(B) as the supremum value of L(K;B) with respect to K, KL(B) as a strike price by which the supremum
is attained:

L∗(B) := sup
K∈(−∞,B)

L(K;B)

= L(KL;B), (3.10)

and L∗(B) as the corresponding strategy.
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Proposition 2. The supremum of Eq.(3.10) is attained by any element of N (∂KL(B)), an interval of [0, B).
For all KL ∈ N (∂KL(B)), the following holds:

Q [ST < K−, B ≤ ST ] ≤ L∗(B) = E
[
ST −KL

B −KL
: ST ≤ KL, B ≤ ST

]
≤ Q [ST ≤ K+, B ≤ ST ] , (3.11)

where K− := infN (∂KL(B)) and K+ := supN (∂KL(B)). In addition, there is a continuous martingale
process

{
SL
t

}
t∈[0,T ]

such that

L∗(B) = Q
[
τB

(
SL

)
≤ T

]
. (3.12)

Proof. By differentiating L with respect to K, we obtain

∂−
KL(K) =

1

B −K

(
C(B)

B −K
− ∂−

KP (K)− P (K)

B −K

)
=

1

B −K

(
L(K) + ∂−

KC(B)− ∂−
KP (K)

)
(3.13)

and

∂−
KKL(K) = 2

C(B)

(B −K)3
− 1

B −K
∂−
KKP (K)− 2

1

(B −K)2
∂−
KP (K)− 2

P (K)

(B −K)3

=
2

B −K
∂−
KL(K)− 1

B −K
∂−
KKP (K). (3.14)

Since ∂−
KL(0) = S

B2 > 0, limK→B ∂−
KL(K) = −∞ and because ∂−

KKL < 0 if ∂−
KL < 0, the set N (∂KL(B)) is

an interval of [0, B) and we have Eq.(3.11). Apply Lemma 1 with Ω0 ⊆ Ω such that {KL < ST , B ≤ ST } ⊆
Ω0 ⊆ {KL ≤ ST , B ≤ ST } and Q [Ω0] = L∗, then we have a continuous martingale

{
SL
t

}
t∈[0,T ]

.

4 Replication using another One-Touch Option

Here, we consider super-replication and sub-replication for a one-touch option with a barrier level B1 using
European options and a one-touch option with a barrier level B2, where S0 < B1 < B2. Rather than
considering the barrier option, we consider a touch/no-touch option whose payoff is 1{τ1≤T<τ2} where τ1
and τ2 are the first times of hitting B1 and B2 respectively, because of 1{τ1≤T<τ2} = 1{τ1≤T} − 1{τ2≤T}.

For easing expression, we introduce the notation π : [0, 1] −→ F : where π(p) is an element of F for
p ∈ [0, 1] such that Q[π(p)] = p, and ST (ω) ≤ ST (ω

c) for ω ∈ π(p) and ωc /∈ π(p). We also define
π([p, q)) := π(p)c ∩ π(q) for p, q ∈ [0, 1] and π(I) :=

∪N
n=1 π(In) for I :=

∪N
n=1 In, where In are disjoint

intervals. The Lebesgue measure on [0, 1] is denoted as µ. Then, we have µ(I) = Q [π(I)] for any interval
I ⊆ [0, 1].

4.1 Super-Replication

Consider the following self-financing strategy GB(K;B1, B2) for ∀K ∈ [0, B1):

1. At the initial outset

• Buy 1
B1−K

units of a call option with strike K.

• Sell 1
B1−K

units of a call option with strike B2.

• Buy B2−B1
B1−K

units of the one-touch option with a barrier level B2.

• Sell B2−K
B1−K

units of a digital call option with strike B2.
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2. At the first time of hitting B1

• Sell 1
B1−K

units of the forward contract

3. At the first time of hitting B2

• Buy 1
B1−K

units of the forward contract.

Fig.1 shows that the GB(K;B1, B2) strategy super-replicates the touch/no-touch option withK ∈ [0, B1).
We investigate the optimal strategies properties. First, we define the following.

Definition 3. The initial value of the GB(K;B1, B2) strategy is defined as

GB(K;B1, B2) :=
C(K)− C(B2)

B1 −K
+

B2 −B1

B1 −K
O(B2) +

B2 −K

B1 −K
∂−
KC(B2), (4.1)

GB
∗ (B1, B2) as the infimum value of GB(K;B1, B2) with respect to K, KB

G (B1, B2) as a strike price by which
the infimum is attained:

GB
∗ (B1, B2) := inf

K∈(−∞,B1)
GB(K;B1, B2)

= GB(KB
G (B1, B2);B1, B2) (4.2)

and GB
∗ (B1, B2) as the corresponding strategy.

There is another super-replication: the G∗(B1) strategy combined with a short position of the one-touch
option with barrier B2. The following theorem states that the better of the two strategies is the sharp upper
bound, because the bound is attained by an expectation of the payoff with respect to a certain martingale.

Theorem 1. If the set N (∂KGB(B1, B2)) is not empty, the infimum of Eq.(4.2) is attained by any element
of a set N (∂KGB(B1, B2)), an interval of (−∞, B1). For all KB

G ∈ N (∂KGB(B1, B2)), the following holds:

Q [K+ < ST < B2]

≤ GB
∗ (B1, B2) = E

[
ST −KB

G

B1 −KB
G

: KB
G < ST < B2

]
+

B2 −B1

B1 −KB
G

Q [τ2 ≤ T ]

≤ Q [K− ≤ ST < B2] , (4.3)

where K− := inf N (∂KGB(B1, B2)) and K+ := supN (∂KGB(B1, B2)). If the set N (∂KGB(B1, B2)) is
empty, the infimum of Eq.(4.2) is not attained and GB

∗ (B1, B2) = Q [ST < B2].
If GB

∗ (B1, B2) < G∗(B1)−O(B2), then N (∂KGB(B1, B2)) is a non-empty interval of (supN (∂KG(B1)), B1).
In addition, there is a continuous martingale process

{
SG
t

}
t∈[0,T ]

such that

min
{
GB

∗ (B1, B2), G∗(B1)−O(B2)
}
= Q

[
τ1

(
SG

)
≤ T < τ2

(
SG

)]
. (4.4)

Proof. First, by differentiating GB with respect to K, we obtain

∂−
KGB(K) =

1

B1 −K
∂−
KC(K) +

C(K)− C(B2)

(B1 −K)2
+

B2 −B1

(B1 −K)2
(
O(B2) + ∂−

KC(B2)
)

=
1

B1 −K

(
GB(K) + ∂−

KC(K)− ∂−
KC(B2)

)
(4.5)

and

∂−
KKGB(K) =

1

B1 −K
∂−
KKC(K) +

2

(B1 −K)2
∂−
KC(K) + 2

C(K)− C(B2)

(B1 −K)3

+2
B2 −B1

(B1 −K)3
(
O(B2) + ∂−

KC(B2)
)

=
1

B1 −K
∂−
KKC(K) +

2

B1 −K
∂−
KGB(K). (4.6)
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Note that ∂−
KGB takes at least one positive value, because

lim
K→B1

(B1 −K)2∂−
KGB(K) = C(B1)− C(B2) + (B2 −B1)

(
O(B2) + ∂−

KC(B2)
)
> 0. (4.7)

Since ∂−
KKGB ≥ 0 if ∂−

KGB ≥ 0, N (∂KGB(B1, B2)) is empty or a non-empty interval. If N (∂KGB(B1, B2))
is empty, we have

G∗(B1, B2) = lim
K→−∞

G(K;B1, B2) = Q [ST < B2] . (4.8)

If N (∂KGB(B1, B2)) is not empty, we have Eq.(4.3). Moreover, if the following holds:

GB
∗ (B1, B2) < G∗(B1)−O(B2), (4.9)

then N (∂KGB(B1, B2)) is a non-empty interval of (supN (∂KG(B1)), B1), because

Q
[
KB

G < ST < B2

]
≤ GB

∗ < Q [KG(B1) ≤ ST < B2]− (O(B2)−Q [B2 ≤ ST ]) , (4.10)

where any KB
G ∈ N (∂KGB(B1, B2)) and KG(B1) ∈ N (∂KG(B1)). Note that if N (∂KGB(B1, B2)) is not

empty, we have

E
[
ST −B1 : π

([
kB
G , b2

))]
= E

[
ST −KB

G : π
([

kB
G , b2

))]
+ (KB

G −B1)µ
([

kB
G , b2

))
= C(KB

G )− C(B2)− (B2 −KB
G )µ ([b2, 1]) + (KB

G −B1)µ
([

kB
G , b2

))
= C(KB

G )− C(B2)− (B2 −B1)µ ([b2, 1])− (B1 −KB
G )µ

([
kB
G , 1

])
= (B1 −B2)Q [τ2 ≤ T ] , (4.11)

where b2 = Q[ST < B2] and kB
G = b2 −GB

∗ , and if N (∂KGB(B1, B2)) is empty, we have

E
[
ST −B1 : π

([
kB
G , b2

))]
= lim

K→−∞
(B1 −K)2∂−

KGB(K) + (B1 −B2)Q [τ2 ≤ T ]

= (B1 −B2)Q [τ2 ≤ T ] . (4.12)

Next, suppose that Eq.(4.9) holds. We show that there an interval [x, y] ⊂
[
0, kB

G

]
exists such that

µ ([x, y) ∪ [b2, 1]) = Q [τ2 ≤ T ] (4.13)

and

E [ST −B2 : π([x, y) ∪ [b2, 1])] = 0. (4.14)

Let x = 0 and y be a real number satisfied with Eq.(4.13) with x = 0. Then, since y ≥ k
(2)
L := L∗(B2) −

(1− b2), we have

E [ST −B2 : π([0, y) ∪ [b2, 1])] ≤ E
[
ST −B2 : π([0, k

(2)
L ) ∪ [b2, 1])

]
= 0. (4.15)

Conversely, let y = kB
G and x be a real number satisfied with Eq.(4.13) with y = kB

G . By Eq.(4.9), we have

µ
([

kB
G , b2

))
< G∗(B1)− µ

([
x, kB

G

)
∪ [b2, 1]

)
= µ

([
k
(1)
G , 1)

))
− µ

([
x, kB

G

)
∪ [b2, 1]

)
, (4.16)
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where k
(1)
G := 1−G∗(B1). Then, we have x > k

(1)
G . In addition, by Eq.(4.11), we have

E
[
ST −B2 : π

([
x, kB

G

)
∪ [b2, 1]

)]
= E

[
ST −B1 : π

([
x, kB

G

)
∪ [b2, 1]

)]
+ (B1 −B2)Q [τ2 ≤ T ]

≥ E
[
ST −B1 : π

([
k
(1)
G , kB

G

)
∪ [b2, 1]

)]
+ (B1 −B2)Q [τ2 ≤ T ]

= −E
[
ST −B1 : π

([
kB
G , b2

))]
+ (B1 −B2)Q [τ2 ≤ T ]

= 0. (4.17)

Therefore, we can find an interval [x, y) and have

E
[
ST : π

(
[x, y) ∪

[
kB
G , 1

])]
= B2µ ([x, y) ∪ [b2, 1]) + E

[
ST : π

([
kB
G , b2

))]
= B1µ

(
[x, y) ∪

[
kB
G , 1

))
, (4.18)

using Eq.(4.11) again. Then, we construct a martingale
{
SG
t

}
t∈[0,T ]

. Let X1 and X2 be random variables

defined as

X1 :=

{
B1, π

(
[x, y) ∪

[
kB
G , 1

])
β1, otherwise

, (4.19)

and

X2 :=


B2, π ([x, y) ∪ [b2, 1])
β2, π

([
kB
G , b2

))
β1, otherwise

, (4.20)

where β1 ∈ [0, B1), β2 ∈ [0, B2) are taken as in Lemma 1 and S∗
t is a stochastic process defined as

S∗
t := S01{t< 1

3
T} +X11{ 1

3
T≤t< 2

3
T} +X21{ 2

3
T≤t<T} + ST 1{t=T}. (4.21)

Then, applying the same argument from Lemma 1 to {S∗
t }t∈[0,T ], we obtain a continuous martingale with

respect to a certain filtration. We obtain Q [τ1 ≤ T < τ2] = GB
∗ .

Finally, suppose that Eq.(4.9) does not hold. If O(B2) = G∗(B2), we have E
[
ST −B2 : π

([
k
(2)
G , 1

])]
=

0, where k
(2)
G := 1−G∗(B2). If Eq.(4.9) holds with equality, we have

E
[
ST −B2 : π

([
k
(1)
G , kB

G

]
∪ [b2, 1]

)]
= E

[
ST −B1 : π

([
k
(1)
G , kB

G

]
∪ [b2, 1]

)]
+ (B1 −B2)µ

([
k
(1)
G , kB

G

]
∪ [b2, 1]

)
= −E

[
ST −B1 : π

([
kB
G , b2

])]
+ (B1 −B2)µ

([
k
(1)
G , kB

G

]
∪ [b2, 1]

)
= 0. (4.22)

Then, we can take an interval [x, y) ⊆
[
k
(1)
G , b2

)
which is satisfied with Eq.(4.13) and Eq.(4.14), because of

k
(1)
G < k

(2)
G . Similar to the previous case, a continuous martingale can be constructed such that Eq.(4.4)

holds.

4.2 Sub-Replication

Consider the following self-financing strategy LB(K;B1, B2) for ∀K ∈ [0, B1):

1. At the initial outset

• Sell 1
B1−K

units of a put option with strike K.
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• Buy B2−B1
B1−K

units of the one-touch option with a barrier level B2.

2. At the first time of hitting B1

• Sell 1
B1−K

units of a forward contract.

3. At the first time of hitting B2

• Buy 1
B1−K

units of the forward contract.

Fig.2 shows that the LB(K;B1, B2) strategy sub-replicates the touch/no-touch option with K ∈ [0, B1).
We investigate the optimal strategy properties. First, we define the following.

Definition 4. The initial value of the strategy LB(K;B1, B2) is defined as

LB(K;B1, B2) :=
−P (K)

B1 −K
+

B2 −B1

B1 −K
O(B2), (4.23)

LB
∗ (B1, B2) as the supremum value of LB(K;B1, B2) with respect to K, KB

L (B1, B2) as a strike price by
which the supremum is attained:

LB
∗ (B1, B2) := sup

K∈(−∞,B1)

LB(K;B1, B2)

= LB(KB
L (B1, B2);B1, B2) (4.24)

and LB
∗ (B1, B2) as the corresponding strategy.

There is another sub-replication: the strategy L∗(B1) combined with a short position of the one-touch
option with barrier B2. The following theorem states that the better of the two strategies is the sharp lower
bound, because the bound is attained by an expectation of the payoff with respect to a certain martingale.

Theorem 2. The supremum of Eq.(4.24) is attained by any element of N (∂KLB(B1, B2)), an interval of
(0, supN (∂KL(B1))]. For all KB

L ∈ N (∂KLB(B1, B2)), the following holds:

Q [ST < K−] ≤ LB
∗ (B1, B2) = E

[
ST −KB

L

B1 −KB
L

: ST ≤ KB
L

]
+

B2 −B1

B1 −KB
L

Q [τ2 ≤ T ] ≤ Q [ST ≤ K+] , (4.25)

where K− := inf N (∂KLB(B1, B2)) and K+ := supN (∂KLB(B1, B2)).
In addition, there is a martingale process

{
SL
t

}
t∈[0,T ]

such that

max
{
LB

∗ (B1, B2), L∗(B1)−O(B2)
}
= Q

[
τ1

(
SL

)
≤ T < τ2

(
SL

)]
. (4.26)

Proof. First, by differentiating LB with respect to K, we obtain

∂−
KLB(K) =

−1

B1 −K
∂−
KP (K)− P (K)

(B1 −K)2
+

B2 −B1

(B1 −K)2
O(B2)

=
1

B1 −K

(
−∂−

KP (K) + LB(K)
)

(4.27)

and

∂−
KKLB(K) =

−1

B1 −K
∂−
KKP (K)− 2

(B1 −K)2
∂−
KP (K)− 2

P (K)

(B1 −K)3
+ 2

B2 −B1

(B1 −K)3
O(B2)

=
2

B1 −K
∂−
KLB(K)− 1

B1 −K
∂−
KKP (K). (4.28)
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Note that ∂−
KLB(0) = B2−B1

B2
1

O(B2) > 0 and by Eq.(3.11)

∂+
KLB(K+) =

−1

B1 −K+
∂+
KP (K+)−

P (K+)

(B1 −K+)2
+

B2 −B1

(B1 −K+)2
O(B2)

≤ − C(B1)

(B1 −K+)2
+

B2 −B1

(B1 −K+)2
O(B2)

≤ 0, (4.29)

where K+ := supN (∂KL(B1)) and ∂+
K is the right-sided derivative operator. Since ∂−

KKLB ≤ 0 if ∂−
KLB ≤ 0,

N (∂KLB(B1, B2)) is an interval of (0,K+] and we have Eq.(4.25). Note that

E
[
B1 − ST : π

([
0, kB

L

))]
= E

[
KB

L − ST : π
([

0, kB
L

))]
+ E

[
B1 −KB

L : π
([

0, kB
L

))]
= P (KB

L ) + (B1 −KB
L )µ

([
0, kB

L

))
= (B2 −B1)Q [τ2 ≤ T ] , (4.30)

where kB
L := LB

∗ .
Next, suppose that the following holds:

L∗(B1)−O(B2) < LB
∗ (B1, B2). (4.31)

We show that there exists an interval [x, y] ⊂
[
kB
L , b1

]
, where b1 = Q[ST < B1], such that

µ ([x, y) ∪ [b1, 1]) = Q [τ2 ≤ T ] (4.32)

and

E [ST −B2 : π ([x, y) ∪ [b1, 1])] = 0. (4.33)

We can take an interval that satisfies Eq.(4.32) because Eq.(4.31) implies

Q [τ2 ≤ T ] > µ
([

0, k
(1)
L

)
∪ [b1, 1]

)
− µ

([
0, kB

L

))
≥ µ ([b1, 1]) , (4.34)

where k
(1)
L := L∗(B1) − (1 − b1). Let y = b1 and x be a solution of Eq.(4.32) with y = b1. We have

x ≥ k
(2)
G := 1−G∗(B2) because Q [τ2 ≤ T ] ≤ µ

(
[k

(2)
G , 1]

)
. Then, we have

E [ST −B2 : π([x, 1))] ≥ E
[
ST −B2 : π

([
k
(2)
G , 1

))]
= 0. (4.35)

Conversely, let x = kB
L and y be the solution of Eq.(4.32) with x = kB

L . We have y ≥ k
(1)
L , because

Q [τ2 ≤ T ] > µ
([

kB
L , k

(1)
L

)
∪ [b1, 1]

)
by Eq.(4.31). Then, by Eq.(4.30), we have

E
[
ST −B2 : π

([
kB
L , y

)
∪ [b1, 1]

)]
= E

[
ST −B1 : π

([
kB
L , y

)
∪ [b1, 1]

)]
+ (B1 −B2)Q [τ2 ≤ T ]

≤ E
[
ST −B1 : π

([
kB
L , k

(1)
L

)
∪ [b1, 1]

)]
+ (B1 −B2)Q [τ2 ≤ T ]

= E
[
B1 − ST : π

([
0, kB

L

))]
+ (B1 −B2)Q [τ2 ≤ T ]

= 0. (4.36)
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Therefore, we can find the interval [x, y) and we have for this interval

E
[
ST : π

([
0, kB

L

)
∪ [x, y) ∪ [b1, 1]

)]
= E

[
ST : π

([
0, kB

L

))]
+B2µ([x, y) ∪ [b1, 1])

= B1µ
([

0, kB
L

)
∪ [x, y) ∪ [b1, 1]

)
, (4.37)

using Eq.(4.30) again. Then, we construct a martingale
{
SL
t

}
t∈[0,T ]

. Let X1 and X2 be random variables

defined as

X1 :=

{
B1, π

([
0, kB

L

)
∪ [x, y) ∪ [b1, 1]

)
β1, otherwise

, (4.38)

and

X2 :=


B2, π([x, y) ∪ [b1, 1])
β2, π

([
0, kB

L

))
β1, otherwise

, (4.39)

where β1 ∈ [0, B1), β2 ∈ [0, B2) are taken as in Lemma 1 and S∗
t be a stochastic process defined as

S∗
t := S01{t< 1

3
T} +X11{ 1

3
T≤t< 2

3
T} +X21{ 2

3
T≤t<T} + ST 1{t=T}. (4.40)

Then, applying the same argument from Lemma 1 to {S∗
t }t∈[0,T ], we obtain a continuous martingale with

respect to a certain filtration. We obtain Q [τ1 ≤ T < τ2] = LB
∗ .

Finally, suppose that Eq.(4.31) does not hold. If O(B2) = L∗(B2) and let k
(2)
L := L∗(B2)− (1− b2), we

have E
[
ST −B2 : π([0, k

(2)
L ) ∪ [b2, 1])

]
= 0. If Eq.(4.31) holds with equality, we have by Eq.(4.30)

E
[
ST −B2 : π

([
kB
L , k

(1)
L

)
∪ [b1, 1]

)]
= E

[
ST −B1 : π

([
kB
L , k

(1)
L

)
∪ [b1, 1]

)]
+ (B1 −B2)Q [τ2 ≤ T ]

= −E
[
ST −B1 : π

([
0, kB

L

))]
+ (B1 −B2)Q [τ2 ≤ T ]

= 0. (4.41)

Note that k
(2)
L < k

(1)
L , because (B −K)2∂−

KL(K;B) is decreasing with respect to B and K. Then, we can

take a set D ⊆ [0, k
(1)
L ] ∪ [b1, b2) which is satisfied with

µ (D ∪ [b2, 1]) = Q [τ2 ≤ T ] (4.42)

and

E [ST −B2 : π (D ∪ [b2, 1])] = 0. (4.43)

Similar to the previous case, a continuous martingale can be constructed such that Eq.(4.26) holds.

4.3 The Finite Basis Situation

In this section, we consider the case where only a finite number of strikes are given. Suppose that call
options with strikes K0 < K1 < · · · < KN , where K0 = 0 and B2 ≤ KN , are traded with no-arbitrage prices
{Cn}Nn=0. We consider super-replication and sub-replication for the touch/no-touch option with barrier
levels B1 and B2 using the one-touch option with a barrier level B2. We assume that a no-arbitrage price of
the digital call option with strike B2 is given as D2 in case of the super-replication and that with strike B1
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is given as D1 in case of the sub-replication. Here, a no-arbitrage price D of digital call option with strike
B ∈ (Kn−1,Kn] satisfies

− Cn+1 − Cn

Kn+1 −Kn
≤ D ≤ −Cn−1 − C(B)

Kn−1 −B
, (4.44)

where C(B) :=
Cn+1−Cn

Kn+1−Kn
(B −Kn) +Cn. Even if these digital call options are not liquid, we can regard the

lower bound as the digital call price with strike B2 in case of the super-replication and the upper bound as
the digital call price with strike B1 in case of the sub-replication.

First, we consider the super-replication. We suppose that the no-touch option with a barrier level B2 is
traded and the price of this no-touch option satisfies

sup
Kn<B2

L(Kn;B2) ≤ O(B2) ≤ inf
Kn<B2

G(Kn;B2). (4.45)

The upper bound on the touch/no-touch option derived from the super-replication is

min
{
GB

∗

(
B1, B2; {Kn}Nn=0

)
, G∗

(
B1; {Kn}Nn=0

)
−O(B2)

}
, (4.46)

where GB
∗
(
B1, B2; {Kn}Nn=0

)
:= infKn<B1 G

B(Kn;B1, B2) and G∗
(
B1; {Kn}Nn=0

)
:= infKn<B1 G(Kn;B1).

Although the marginal distribution of ST is not uniquely specified in this case, the following corollary shows
that there is a distribution consistent with the given option prices under which we can construct a martingale
attaining the upper bound.

Corollary 1. There is a distribution µC of ST which is consistent with the given call prices, the given digital
call option with a strike B2 and the given no-touch option with a barrier level B2 satisfying Eq.(4.45) such
that Eq.(4.46) is equal to Eq.(4.4) with distribution µC .

Proof. First, we assume B2 ∈ {Kn}n=0,··· ,N and D2 = − Cn−1−Cn

Kn−1−Kn
, where B2 = Kn, Let us consider call

options prices {C(K)}K∈[0,+∞): C(K) is the linear interpolation of Cn if K ∈ [K0,KN ] and an arbitrary
extrapolation excluding arbitrage opportunities if K ∈ [KN ,+∞). Let µC be a distribution implied by the
call option prices C. We can apply Proposition 1 and 2 with the distribution µC to the no-touch option
with a barrier level B2 and obtain the optimal strikes KG(B2) and KL(B2). These may not be uniquely
determined, but can be taken as one of the given strikes, since the distribution µC consists of atoms at
Kn on [0, B2). Hence, the distribution µC is consistent with Eq.(4.45). By the same reason, Eq.(4.4) with
distribution µC is attained by one of the given strikes. Then, Eq.(4.46) is equal to Eq.(4.4) with distribution
µC .

In the general case, two call prices, C(K̃) and C(B2), with strikes, K̃ := B2 − ε and B2, can be added
into the given call price set as: C(K) := −D2(K − K̂) + Ĉ for K = K̃, B2, where B2 ∈ (Kn−1,Kn],

(K̂, Ĉ) = (Kn−1, Cn−1) in case of D2 > − Cn−1−Cn

Kn−1−Kn
, (K̂, Ĉ) = (Kn, Cn) in the other case, ε is a sufficiently

small positive value such that K̃ is not the optimal strike for G∗(B2) and L∗(B2). Then, the same argument
from the first case can be applied.

Next, we consider the sub-replication. This is more involved than the super-replication. The lower bound
on the touch/no-touch option derived from the sub-replication is

max
{
LB

∗

(
B1, B2; {Kn}Nn=0

)
, L∗

(
B1; {Kn}Nn=0

)
−O(B2)

}
, (4.47)

where LB
∗
(
B1, B2; {Kn}Nn=0

)
:= supKn<B1

LB(Kn;B1, B2) and L∗
(
B1; {Kn}Nn=0

)
:= supKn<B1

L(Kn;B1).
We assume B1 ∈ {Kn}n=0,··· ,N and

sup
Kn<B2

L(Kn;B2) < O(B2) < inf
Kn<B2

G(Kn;B2). (4.48)

Owing to these assumptions, we have the similar result to Corollary 1.
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Corollary 2. There is a distribution µC of ST which is consistent with the given call prices which includes
that with strike B1, the given digital call option with a strike B1 and the given no-touch option with a barrier
level B2 satisfying Eq.(4.48) such that Eq.(4.47) is equal to Eq.(4.26) with distribution µC .

Proof. Let n ∈ {0, 1, · · · , N} be such that B1 = Kn. The proof is the same as the first part of Corollary 1,

if D1 = − Cn−1−Cn

Kn−1−Kn
. In the general case, let K̃ := B1 − ε > Kn−1 for a sufficiently small positive value ε

and C(K̃) := −D1(K̃ −Kn) + Cn. We can take ε such that

sup
K̃,Ki<B2

L(Ki;B2) < O(B2) < inf
K̃,Ki<B2

G(Ki;B2). (4.49)

Let µC be a distribution implied by an interpolation of the given call option prices C and C(K̃). Then, we
have the conclusion for the distribution µC by the same argument from Corollary 1.

5 Numerical Examples

This section provides numerical examples.
We regard Heston’s stochastic volatility model (Heston (1993)) as the underlying asset process. The

process underlying the Heston model is as follows:

dSt

St
= (r − q)dt+ σtdWt, (5.1)

dσ2
t = κ(η − σ2

t )dt+ θσtdW̃t, (5.2)

where W and W̃ are Brownian motions with correlation ρ under a risk-neutral measure. In addition, we
assume that the parameters of the Heston model are as shown in Table 1.

r q σ2
0 κ η θ ρ

0.0 0.0 0.152 3.0 0.22 0.4 0.0

Table 1: Parameters of the Heston Model

The one-touch option considered has a 3-month maturity and a barrier level of 1.05 USD. We calculate
the pricing bounds of our method, those of Brown et al. (2001) and exact prices by a Monte Carlo simulation
with the initial spot price varied from 0.9 USD to 1.04 USD. We calculate pricing bounds derived from GB

∗
and LB

∗ strategies using another one-touch option with B = 1.06. This is evaluated by the Heston model
with the same parameter set. The results are shown in Fig.3 and Table 2. Our lower bounds are proved to
be higher than those of Brown et al. (2001) across the entire range and our upper bounds proved lower in
the [0.9, 0.98] range.

Additionally, Fig.4 shows a relationship between pricing bounds on the two one-touch options with barrier
levels 1.05 USD and 1.06 USD, where the market conditions are the same as for the above example and the
initial spot price is fixed at 1 USD. The pricing bounds of Brown et al. (2001) on the two one-touch options
are [0.315, 0.609] for the barrier level 1.05 USD and [0.263, 0.529] for barrier level 1.06 USD. However, we
established that a condition for no-arbitrage prices of these two options does not lie within these ranges but
is within the range indicated in Fig.4.
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Figure 1: Payoff of Strategy GB(K;B1, B2) with S0 = 1, K = 0.95, B1 = 1.05 and B2 = 1.06
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Figure 2: Payoff of Strategy LB(K;B1, B2) with S0 = 1, K = 0.95, B1 = 1.05 and B2 = 1.06
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Figure 3: Pricing bounds on a one-touch option
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Table 2: Pricing bounds on a one-touch option (%)

spot 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

Brown et al. (2001)’s upper bound 8.0 13.0 20.4 30.8 44.5 60.9 78.5 94.4
Our upper bound WG 7.3 12.1 19.2 29.6 43.6 61.6 82.8 105.8
Heston price (B = 1.05) 5.1 8.5 13.7 21.4 32.1 46.1 63.6 83.2
Our lower bound WL 4.2 7.0 11.5 18.2 27.6 40.5 57.1 77.1

Brown et al. (2001)’s lower bound 3.3 5.5 8.9 14.0 21.3 31.5 45.9 68.3
Heston price (B = 1.06) 4.1 6.8 11.1 17.6 26.7 39.0 54.7 73.3
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Figure 4: Pricing bounds on two one-touch options
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