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In this study, we prove the existence of statistical arbitrage opportunities in the Black–Scholes
framework by considering trading strategies that consist of borrowing at the risk-free rate and taking
a long position in the stock until it hits a deterministic barrier level. We derive analytical formulas for
the expected value, variance and probability of loss for the discounted cumulative trading profits. The
statistical arbitrage condition is derived in the Black–Scholes framework, which imposes a constraint
on the Sharpe ratio of the stock. Furthermore, we verify our theoretical results via extensive Monte
Carlo simulations.

Keywords: Statistical arbitrage; Black–Scholes model; Geometric Brownian motion; Monte Carlo
simulation

JEL Classification: G12

1. Introduction

Investment communities consider statistical arbitrage to be the
mispricing of any security according to their expected future
trading value in relationship with their spot prices. Statistical
arbitrage strategies originally evolved from the so-called ‘pairs
trading’, which exploits the mean reversion in the performance
of a pair of stocks identified based on various criteria.Amongst
others Do and Faff (2009), Gatev et al. (2006), Cummins and
Bucca (2012), Elliot et al. (2005) and Avellaneda and Lee
(2010) investigate the performance of pairs trading and sta-
tistical arbitrage strategies. Optimal statistical arbitrage trad-
ing for an Ornstein–Uhlenbeck process is given in Bertram
(2010). Mathematical definitions for statistical arbitrage strate-
gies are given in the studies by Hogan et al. (2004), Jarrow
et al. (2005), Jarrow et al. (2012) and Bondarenko (2003).
Bondarenko (2003) assumes the existence of derivatives mar-
kets; however, in this study, we do not have such an assump-
tion. Using the definition of statistical arbitrage and with some
additional assumptions on the dynamic behaviour of statistical
arbitrage profits, hypothesis tests for the existence of statistical
arbitrage are derived in Hogan et al. (2004), Jarrow et al. (2005)
and Jarrow et al. (2012). These hypothesis tests are used to
test the existence of statistical arbitrage and efficiency of the
market, which avoids the joint hypothesis problem stated in
Fama (1998).

∗Email: Ahmet.Goncu@xjtlu.edu.cn

In the study by Hogan et al. (2004), a mathematical defi-
nition for statistical arbitrage is given with various examples.
Following the definition of Hogan et al. (2004) and considering
the Black and Scholes (1973) model, where stock prices follow
geometric Brownian motion process, we present examples of
statistical arbitrage strategies and prove the existence of statis-
tical arbitrage opportunities.

If an investor has better information (compared with the
market) to identify the stocks with high (or low) expected
growth rates, then there exists statistical arbitrage opportunities
in the Black–Scholes framework of stock price dynamics. In
this paper, we present trading strategies that yield statistical
arbitrage in the Black–Scholes model and then derive a no-
statistical arbitrage condition. The derived no-statistical arbi-
trage condition imposes a constraint on the Sharpe ratio of
stocks. If an investor knows or believes that he knows the
stocks that satisfy the statistical arbitrage condition, then this
is sufficient to design a statistical arbitrage trading strategy.

This article is organized as follows. In the next section,
we present the definition of statistical arbitrage and provide
examples of statistical arbitrage strategies. In section 3, we
prove the existence of statistical arbitrage in the Black–Scholes
framework and derive the no-statistical arbitrage condition.
In section 4, we present some other properties of statistical
arbitrage strategies. We conclude in section 5.

© 2014 Taylor & Francis
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1490 A. Göncü

2. Statistical arbitrage

Given the stochastic process for the discounted cumulative
trading profits, denoted as {v(t) : t ≥ 0} that is defined on a
probability space (�,F , P) the statistical arbitrage is defined
as follows (see Hogan et al. 2004).

Definition 1 A statistical arbitrage is a zero initial cost, self-
financing trading strategy {v(t) : t ≥ 0} with cumulative
discounted value v(t) such that

(1) v(0) = 0
(2) limt→∞ E[v(t)] > 0,
(3) limt→∞ P(v(t) < 0) = 0, and
(4) limt→∞ var(v(t))

t = 0 if P(v(t) < 0) > 0, ∀t < ∞.

Hogan et al. (2004) states that the fourth condition applies
only when there always exists a positive probability of losing
money. Otherwise, if the probability of loss becomes zero in
finite time T , i.e. P(v(t) < 0) = 0 for all t ≥ T , this implies
the existence of a standard arbitrage opportunity.

A standard arbitrage opportunity is a special case of
statistical arbitrage. Indeed, for a standard arbitrage strategy V
(self-financing) there exists a finite time T such that P(V (t) >

0) > 0 and P(V (t) ≥ 0) = 1 for all t ≥ T and the proceeds
of this profit can be deposited into money market account
for the rest of the infinite time horizon. This gives V (s) =
V (T )Bs/BT for s ≥ t . The discounted value of this strategy
is given by v(s) = V (T )(Bs/BT )(1/Bs) = v(T ), which
satisfies definition 1.

Example 1 Black–Scholes example of Hogan et al. (2004)
(α > r f ):

Consider the standard Black–Scholes dynamics for stock
price (non-dividend paying) St that evolves according to

St = S0 exp((α − σ 2/2)t + σdWt ), (1)

where Wt is the standard Brownian motion process, α is the
growth rate of the stock price, r f is the risk-free rate and σ is the
volatility, which are assumed to be constant. Following Hogan
et al. (2004), we consider α > r f . Money market account
follows Bt = exp(r f t). Hogan et al. (2004) considers a self-
financing trading strategy that consists of buying and holding
one unit of stock financed by the money market account with
constant risk-free rate r f .

The value of the cumulative profits at time t is

V (t) = St − S0er f t = S0(e
(α−σ 2/2)t+σ Wt − er f t ), (2)

whereas the discounted cumulative value of the trading profits
is given as

v(t) = S0

(
exp((α − σ 2/2 − r f )t + σ Wt ) − 1

)
. (3)

Since Wt ∼ N (0, t) for each t , we conclude that

E[v(t)] = S0

(
e(α−r f )t − 1

)
(4)

and limt→∞ E[v(t)] = ∞. We obtain the variance as

var(v(t)) =
(

eσ 2t − 1
)

S2
0

(
e2(α−r f )t

)
→ ∞ as t → ∞.

(5)
Therefore, Condition 4 in definition 1 is not satisfied.

Using the above example, Hogan et al. (2004) concludes that
the Black–Scholes model excludes statistical arbitrage oppor-

tunities according to definition 1. This example is also used to
justify the existence of a fourth condition in the definition 1.
It is mentioned that without the fourth condition, buy and hold
strategies yield statistical arbitrage opportunities in the Black–
Scholes model for α − r f > σ 2/2. In the next example, we
show that the fourth condition in definition 1 can be satisfied
with a different trading strategy. But first, as a natural result of
example 1, we state the following proposition.

Proposition 2 For all the buy and hold trading strategies
consisting of a single stock in the Black–Scholes model, the
time-averaged variance of the discounted cumulative trading
profits goes to infinity, i.e. limt→∞ var(v(t))/t = ∞, for
α − r f > −σ 2/2, and it decays to zero for α − r f ≤ −σ 2/2.

Proof The long position in the risky asset has present value
e−r f t St . Since the money market account is deterministic, the
variance of our trading profits depends only on the invest-
ment in the risky asset St . Hence, the variance of the random
component St , which is given in equation 5 always has the

exponential term in the order of e2( σ2
2 +α−r f )t . Then, clearly

limt→∞ var(v(t))/t = ∞ for α − r f > −σ 2/2 and decays
to zero for α − r f ≤ −σ 2/2. �

For α − r f ≤ −σ 2/2, we can create statistical arbitrage
by short selling the stock and investing in the money mar-
ket account at time 0 and renewing the short position and
re-investing profits (or re-financing losses) in the money mar-
ket account. Since the expected cumulative discounted trading
profits converge to S0 and the time-averaged variance decays
to zero, this yields statistical arbitrage.

It is important to note that to create statistical arbitrage
opportunities for stocks with sufficiently large positive
expected growth rates, we need to impose a stopping or selling
condition on the trading strategy. Without a stopping boundary,
we keep holding the stock and by proposition 2, we fail to
satisfy the condition that the time average of the variance must
decay to zero.

If we successfully introduce this selling or stopping con-
dition in our trading strategies, we profit from the positive
expected growth in the stock price, but at the same time, we
can reduce the holding of the risky asset (reduce the holding of
the risky asset to zero in time) and control the time-averaged
variance. Next, we present this idea with an example.

Example 2 We introduce a termination condition for the buy
and hold strategy as follows: whenever the stock price process
hits to a constant barrier level, sell the stock and invest in the
money market account. In this way, we utilize the finiteness of
the first passage time of the Brownian motion process.

The discounted cumulative trading profits in our ‘buy and
hold until barrier’ strategy is given by

v(t) =
{

Be−r f t∗ − S0, if t∗ ≤ t

St e−r f t − S0, else,
(6)

where t∗ = min{t ≥ 0 : St = B} and B > S0 is the constant
barrier level.

If the stock price hits the barrier level at infinity, then the
trading loss is S0, whereas if it hits in finite time, then we have
Be−r f t∗ − S0 as the discounted value of our trading strategy.
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Statistical arbitrage in the Black–Scholes framework 1491

Consider the Brownian motion process with drift given by

Xt = μt + Wt , (7)

where Wt is the standard Brownian motion, μ ∈ 
 and denote
the first passage time of this process as

τm = min{t ≥ 0 : X (t) = m} (8)

for fixed m.
The Brownian motion with drift, Xt , hits the level m in

finite time almost surely for μ > 0, i.e. P(τm < ∞) = 1. The
Laplace transform of the first passage time for Xt is equal to
(see Shreve (2004) page 120)

E[e−rτm ] = emμ−m
√

2r f +μ2
, for all r > 0. (9)

In equation 9, put Xt = ln(St/S0)/σ , μ = (α − σ 2/2)/σ and
m = ln(B/S0)/σ . Then, the process for Xt = μt + Wt is the
same as

St = S0 exp((α − σ 2/2)t + σ Wt ), (10)

as it is under the Black–Scholes model.

Expected value of the trading profits is positive (if α > r f ):
Note that the right-hand side of equation 9 can be equivalently

written as
(

B
S0

)(μ−√
2r f +μ2)/σ

. The result in equation 9 yields
the following formula for the expected trading profits for suf-
ficiently large t :

E[v(t)] = B

(
B

S0

)(μ−√
2r f +μ2)/σ

− S0 (11)

with positive expected trading profits

lim
t→∞ E[v(t)] > 0, (12)

for μ > 0 and B > S0.

Proposition 3 If μ > 0 and m > 0, then the limit of the
expected discounted profits in the trading strategy given in
example 2 is always positive:

lim
t→∞ E[v(t)] = Bemμ−m

√
2r f +μ2 − S0 > 0. (13)

Proof Consider the stochastic process given by

X (t) = μt + W (t),

where W (t) is the standard Brownian motion process, and we
have X (t), τm and m as defined before. Following the similar
steps as given in Shreve (2004) page 111, we start by writing
the martingale process Z(t) as

Z(t) = exp(σ X (t) − (σμ + σ 2/2)t), (14)

which is clearly an exponential martingale with Z(0) = 1 and
utilizing this fact, we obtain

E
[
exp(σ X (t ∧ τm) − (σμ + σ 2/2)(t ∧ τm))

]
= 1, t ≥ 0.

(15)
For σ > 0 and m > 0, we know that 0 ≤ exp(σ X (t ∧ τm)) ≤
eσm . If τm < ∞, we have exp(−(σμ + σ 2/2)(t ∧ τm)) =
exp(−(σμ+σ 2/2)τm) for large enough t , whereas if τm = ∞,
we have exp(−(σμ+σ 2/2)(t ∧τm)) = exp(−(σμ+σ 2/2)t)
and the exponential term converges to zero. We can write these
two cases together

lim
t→∞ exp(−(σμ + σ 2/2)(t ∧ τm)) = exp(−(σμ+σ 2/2)τm),

(16)

We recall that due to equation 9, the first passage time is
almost surely finite, i.e. P(τm < ∞) = 1, and for suffi-
ciently large t , we have exp(σ X (t ∧ τm) = exp(σ X (τm)) =
exp(σm) = B/S0.

Writing the product of two exponential terms as

lim
t→∞ exp(σ X (t ∧ τm) − (σμ + σ 2/2)(t ∧ τm)

= exp(σm − (μ + σ 2/2)τm) (17)

and interchanging the limit and expectation by the dominated
convergence theorem, we obtain

1 = E[exp(σm − (σμ + σ 2/2)τm)], (18)

where μ = (α − σ 2/2)/σ . This implies

E[exp(−ατm)] = e−mσ = S0

B
. (19)

Note that limt→∞ v(t) = Be−r f τm −S0 and limt→∞ E[v(t)] =
E[limt→∞ v(t)] = B E[e−r f τm ] − S0, where B E[e−r f τm ] −
S0 > B E[e−ατm ] − S0 = 0 by equation 19 for α > r f > 0
and, thus, proves the positivity of the discounted cumulative
profits. �
Variance of the trading profits:
Next, we derive the analytical formula for the variance of our
trading profits. For sufficiently large t , we write

var(v(t)) = E[v2(t)] − E[v(t)]2, (20)

where

lim
t→∞ E[v2(t)] = E[ lim

t→∞ v2(t)] (21)

= B2 E[e−2r f τm ] − 2BS0 E[e−r f τm ] + S2
0 . (22)

Therefore, the limit of the variance of cumulative discounted
trading profits is given as

lim
t→∞ var(v(t))

= B2

⎡
⎣( B

S0

)(μ−√
4r f +μ2)/σ

−
(

B

S0

)(2μ−2
√

2r f +μ2)/σ
⎤
⎦ .

(23)

First passage time:
An investor implementing the trading strategy would also be
interested in knowing the distribution of the first passage time
and timing to sell the stock. If the conditions α > σ 2/2 and
B > S0 are satisfied, then the first passage time of the Brownian
motion with drift in equation 7 to level m = log(B/S0)/σ is
given by

τm ∼ IG

(
m

μ
, m2

)
, (24)

where IG represents inverse Gaussian distribution

Change in expected profits with respect to the barrier level:
To see the effect of an increase in the barrier level B on the
stochastic discount rate and trading profits, we take the partial
derivatives of equations 9 and 11. We obtain

∂ E[e−r f τB ]
∂ B

=
(
μ −

√
2r f + μ2

)
σ

E[e−r f τB ]
B

< 0, (25)

which is negative as expected, since an increase in the barrier
level means we hit the barrier at a later time on average and
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Figure 1. Expected profits as a function of α and σ of the stock (assuming α > r f = 0.05, S0 = 1 and B = 1.3).

the present value of one dollar obtained at the hitting time
decreases.

However, the partial derivative of the trading profits (for suf-
ficiently large t) with respect to the barrier level B is positive.
Differentiating equation 11 with respect to B, we obtain

∂ E[v(t)]
∂ B

=
(
σ + μ −

√
2r f + μ2

)
σ

(
B

S0

)(μ−
√

r f +μ2
)
/σ

> 0,

for α > r f . (26)

The above results show that the expected profits increase as
the barrier level increases when t is sufficiently large, whereas
a higher barrier level means that on average, we need to wait for
a longer time to observe the variance to be bounded. In other
words, while our expected profit increases, we suffer from a
higher level of variance for any time t .

To have a better understanding of equation 11, in figure 1,
we plot the percentage profits obtained from our strategy with
respect to different values of α and σ . We observe that the rate
of increase in profits is higher with respect to an increase in the
α of the stock, when the volatility is high. This is in line with
our intuition, since at low levels of volatility, the stock price
paths are already hitting the barrier without much deviation
from their expected growth rates.

It is also clear that since for sufficiently large t , P(τB <

∞) = 1, then the variance is going to be bounded for the
strategy that almost surely terminates in finite time. Therefore,
we conclude that limt→∞ var(v(t))/t = 0.

Probability of loss:
The limit of the probability of loss is given by

lim
t→∞ P(v(t) < 0) = P(τm > σm/r f ) = 1 − FI G(σm/r f )

(27)
where FI G is the cdf of the inverse Gaussian distribution.
Note that the probability of loss does not decay to zero in this
strategy, which violated the definition of statistical arbitrage.
Next, we present the results from our Monte Carlo experiment
to verify our conclusions in this example.

Monte Carlo experiment for example 2: Let us consider the
strategy described in example 2, where α = 0.16, r f = 0.04
and volatility σ = 0.2. We borrow from the risk-free rate and
long one unit of stock at time 0. We set S0 = 1 and the barrier

equals to 1.2. We simulate 10 000 paths of the daily stock prices
with the number of time steps M = 252 (i.e. �t = 1/252).
We implement our trading strategy terminating, whenever we
hit the barrier $1.2 and investing all immediately to the money
market account. Therefore, once the stock price hits the barrier,
the variance becomes zero and our profits grow at the risk-free
rate of r f .

The empirical distribution of discounted cumulative profits
can be seen in figure 2 for investment horizons of 1, 2, 5, 10,
20 and 50 years. The empirical distribution converges with a
bounded variance, but the probability of loss does not decay
to zero as we expect. As presented in figure 3, Monte Carlo
simulation results are consistent with the theoretical results
and the time-averaged variance decays to zero as expected.

Figure 4 plots the density of first passage time. We observe
that the first passage time density decays to zero rapidly as
a function of time, and our trading strategy terminates with
very high probability for sufficiently large investment horizons.
However, in this example, there always exists stock price paths
that hit the barrier too late to yield positive profit. In our next
example, we modify the trading strategy to obtain convergence
to zero probability of loss.

Example 3 (‘Buy and Hold Until Barrier’) Different from the
previous example, in this example, we utilize a deterministic
stopping boundary and show that statistical arbitrage can be
obtained. Our trading strategy is as follows: at time 0, we long
one unit of stock by borrowing from the bank. If the stock
price hits S0(1 + k)er f t , we sell, realizing the profit of k, and
invest immediately in the money market account. This strategy
is demonstrated in figure 5, where we simulate 10 daily stock
price paths for one year, and k is 0.05.

The discounted cumulative trading profits from this strategy
can be written as

v(t) =
{

S0k if τk ∈ [0, t]
St e−r f t − S0 else

, (28)

where
τk = min{t ≥ 0 : St = S0(1 + k)er f t }. (29)

If the stock price hits the barrier level B = S0(1 + k)er f t ,
then we can equivalently write this event as the Brownian
motion with drift hitting ln(1+k)/σ . The barrier level k∗ for the
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Figure 2. Monte Carlo simulation of discounted cumulative trading profits of statistical arbitrage strategy with respect to the time strategy
is implemented. Parameters: S0 = 1, B = 1.2, α = 0.16, r f = 0.04, σ = 0.2, N = 10 000 and M = 252.
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Figure 5. Demonstration of the trading rule in example 3 with simulated paths of geometric Brownian motion. Sell if the stock price hits to
the stopping boundary (Parameters: r f = 0.04, α = 0.16 and σ = 0.2).

Brownian motion with drift Xt is given as k∗ = ln(1 + k)/σ ,
since ln(e−r f t St/S0)/σ = ln(1 + k)/σ . In this example, we
consider the discounted stock price process and we can write

Xt =μt + Wt (30)

τk∗ = min{t ≥ 0 : Xt = k∗} (31)

for k∗ = ln(1 + k)/σ > 0 and μ = (α − r f − σ 2/2)/σ .
Similar to the previous example, we conclude that the first

passage time for the Brownian motion with drift is Inverse
Gaussian distributed as

τk∗ ∼ IG

(
k∗

μ
, k∗2

)
. (32)

Expected value and variance of trading profits: Given Xt with
μ > 0, we have P(τk∗ < ∞) = 1, and for sufficiently
large t , the stock price path hits to the deterministic barrier.
Then, limt→∞ E[v(t)] = E[limt→∞ v(t)] = S0k > 0. Note
that the boundedness of v(t) and limt→∞ v(t) = S0k implies
limt→∞ var(v(t))/t = 0. In this trading strategy, the holding
of the risky asset becomes zero for sufficiently large t and the
variance decays to zero in time.

Probability of loss: Let M(t) be the maximum of the process
Xt in the time interval [0, t] and the probability that the max-
imum is less than the barrier k∗ = ln(1 + k)/σ is denoted by
P(M(t) < k∗). In our trading strategy, the probability of loss
P(v(t) < 0) is given by

P(v(t) < 0)

= P(St < S0er f t , τk∗ > t)

= P(St < S0er f t |τk∗ > t)P(τk∗ > t) (33)
= P((α − r f − σ 2/2)t + σ Wt < 0|M(t) < k∗)P(M(t) < k∗)
≡ P(Z < −(α − r f − σ 2/2)

√
t/σ |τk∗ > t)

×
(

�

(
k∗ − (α − r f − σ 2/2)t/σ√

t

)

−e2k∗(α−r f −σ 2/2)/σ �

(
−k∗ − (α − r f − σ 2/2)t/σ√

t

))
,

where Z is the standard normal random variable and �(.) is
the standard normal cdf. For α − r f ≥ σ 2/2 as t → ∞, the
probability of loss goes to zero, whereas for α − r f < σ 2/2,
we almost surely make a loss as t → ∞. The probability of
loss does not decay to zero for 0 < α − r f < σ 2/2.

In the case of 0 < α −r f < σ 2/2, as t → ∞ from equation
33, we obtain

lim
t→∞ P(v(t) < 0) = 1 − e2k∗(α−r f −σ 2/2)/σ > 0, (34)

which means that for 0 < α − r f < σ 2/2 the probability
of loss does not converge to zero under the hold until barrier
strategy.

Finite first passage time of the Brownian motion with drift
in the case of α − r f > σ 2/2 implies that there always exists a
sufficiently large T such that v(t) = S0k for all t ≥ T , which
implies that limt→∞ P(v(t) < 0) = 0. For α − r f > σ 2/2,
for sufficiently large t , the variance becomes zero. Therefore,
we conclude that there exists statistical arbitrage opportunities
in the Black–Scholes framework.

Next, we demonstrate the existence of statistical arbitrage
via a Monte Carlo experiment.

Monce Carlo experiment for example 3:
To verify the validity and convergence of our statistical arbi-
trage strategy in example 3, we present the results of a Monte
Carlo experiment. We simulate 10 000 sample paths with daily
time steps, i.e. M = 252 for different investment horizons of
T = 1, 2, 5, 10, 20 and 50 years. We set S0 = 1, k = 0.05,
α = 0.16, r f = 0.04 and σ = 0.2.

As can be seen in figure 5, whenever a simulated stock price
path hits the deterministic barrier of S0(1 + k)er f t , we sell
the stock and invest all to the money market account. For
sufficiently large t , the average of the discounted cumulative
trading profits becomes a point mass at E(v(t)) = k, which
can be seen in figure 6.

In figure 7, we verify that for sufficiently large t , expected
discounted profits converges to k, whereas the time-averaged
variance and the probability of loss both decay to zero. There-
fore, Monte Carlo results are consistent with our theoretical
results showing that there exists statistical arbitrage opportu-
nities in the Black–Scholes framework.

In the next example, we consider the case when the investor
has the knowledge that a given stock will under-perform with
low expected growth rate. In this case, there also exists statis-
tical arbitrage opportunities.

Example 4 (‘Short until barrier’)
If α < r f , then we can utilize a similar strategy as in example

3, but this time, we short the stock at time 0 and invest in the
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Figure 6. Evolution of the empirical distribution of discounted cumulative trading profits obtained from the trading strategy given in
example 3.
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Figure 7. Evolution of mean, time-averaged variance and probability of loss for the given trading strategy in example 3.

money market account at the risk-free rate r f . We close the
short position whenever the stock price hits the boundary level,
S0(1 + k)−1er f t . †

In this trading strategy, the discounted cumulative trading
profits from our strategy can be written as

v(t) =
{

S0k/(k + 1) if τk ∈ [0, t]
S0 − St e−r f t else ,

(35)

where τk = min{t ≥ 0 : St = S0(1+k)−1er f t }, and the barrier
level is B = S0(1 + k)−1er f t . This is equivalent to the hitting

†Since short positions need to be closed in relatively short periods
of time, the investor can close his short position at every �t time
increment and re-open a new short position immediately, which does
not affect our results in the absence of transaction costs.

time of the Brownian motion with drift

τ−k∗ = min(t ≥ 0 : −Xt = −k∗),

where k∗ = ln(1 + k)/σ . Let μ = σ 2/2−(α−r f )

σ
to obtain

−Xt = −μt − Wt = −μt + Wt = (α − r f − σ 2/2)/σ + Wt .
Hence, previous results can be applied for α − r f < σ 2/2.
Therefore, our trading strategy ‘short until barrier’ satisfies
the statistical arbitrage condition, since we have
P(τ−k∗ < ∞) = 1.

Alternatively, without considering a stopping boundary, one
can simply keep shorting the stock and invest the proceeds in
the money market account. Since the discounted stock price
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Figure 8. Evolution of the empirical distribution of discounted cumulative trading profits obtained from the trading strategy given in
example 4.
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Figure 9. Evolution of mean, time-averaged variance and probability of loss for the given trading strategy in example 4.

decays to zero as given in proposition 2, the variance also
decays to zero, while limt→∞ E[v(t)] = S0.
Monte Carlo experiment for example 4:

We consider the short selling strategy introduced in exam-
ple 4 with the following set of parameters: α = 0.01, r f =
0.05, σ = 0.2, N = 10 000, M = 252 and k = 0.05. We
simulate the stock price paths and whenever the stock price
hits the barrier level of S0(1 + k)−1er f t , we close the short
position.

In figure 8, the time evolution of the histogram of the trading
profits shows that the distribution of the trading profits con-
verges to a point mass at the limiting trading profit
S0[1 − 1/(1 + k)] = S0k/(1 + k) = 0.0496 as t → ∞.

Figure 9 clearly shows that the expected value of the dis-
counted trading profits is converging to S0k/(1 + k), while

the probability of loss is decaying to zero. The time-averaged
variance decays to zero as required in the definition of statistical
arbitrage.

In the next section, we present the conditions that guaran-
tee the existence of statistical arbitrage in the Black–Scholes
model.

3. Existence of statistical arbitrage

In this section, we present the condition that guarantees the
existence of statistical arbitrage opportunities in the Black–
Scholes framework.

In the next theorem, we present the case in which the stock
price process almost surely hits the barrier in finite time.
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Figure 10. Evolution of mean, time-averaged variance and probability of loss for the buy and hold (long) until barrier trading strategy for

the case of 0 ≤ α − r f ≤ σ 2

2 . Parameters given as α = 0.05, r f = 0.04, k = 0.05, σ = 0.2, N = 10 000 and M = 252.

Theorem 4 Assume that the stock prices follow geometric
Brownian motion given by

St = S0 exp
(
(α − σ 2/2)t + σ Wt

)
, σ > 0. (36)

We define a deterministic stopping boundary B = S0(1 +
k)er f t , where α, r f and k > 0 are constants and the first
passage time is denoted as

τB = min (t ≥ 0 : St = B) . (37)

Then, the first passage time of the stock price process is finite
almost surely, i.e. P(τB < ∞) = 1 for α − r f > σ 2

2 .

Proof Let us define a Brownian motion process with drift as
follows:

Xt = ln(e−r f t St/S0)

σ
= (α − r f − σ 2/2)

σ︸ ︷︷ ︸
μ

t + Wt . (38)

Note that St = B = S0(1 + k)er f t if and only if Xt =
ln(1 + k)/σ . Let k∗ = ln(1 + k)/σ > 0 with stopping time
τk∗ = min(t ≥ 0 : Xt = k∗).

Therefore, P(τB < ∞) = 1 if and only if P(τk∗ < ∞) = 1.

Following a procedure that is similar as given in Shreve (2004)
(see page 120), we introduce an exponential martingale process
Z(t) given by

Z(t) = exp

(
θ X (t) −

(
θμ + θ2

2

)
t

)
, (39)

where Z(0) = 1 and θ is an arbitrary non-negative constant.
Since any stopping martingale is still a martingale, we have

E

[
exp

(
θ X (t ∧ τk∗) −

(
θμ + θ2

2

)
(t ∧ τk∗)

)]
= 1. (40)

In the above equation, if τk∗ = ∞, the term exp(−(θμ +
θ2

2 )(t ∧ τk∗)) goes to zero, whereas if τk∗ < ∞, we have

exp(−(θμ + θ2

2 )(t ∧ τk∗)) = exp(−(θμ + θ2

2 )τk∗) for suffi-
ciently large t .

The other term exp(θ X (t ∧ τk∗)) is always bounded by
exp(θk∗) if τk∗ = ∞. If τk∗ < ∞, this term equals to

exp(θW (t ∧τk∗)) = exp(θk∗). The product of two exponential
terms can be captured by

lim
t→∞ exp

(
θ X (t ∧ τk∗) −

(
θμ + θ2

2

)
(t ∧ τk∗)

)

= 1{τk∗<∞} exp

(
θk∗ −

(
θμ + θ2

2

)
τk∗
)

, (41)

where 1{τk∗<∞} =
{

1 if τk∗ < ∞
0 if τk∗ = ∞ .

Taking the limit in equation 40 and interchanging the limit
and expectation as a result of the dominated convergence the-
orem, we obtain:

E
[
1{τk∗<∞} exp(θk∗ − (θμ + θ2/2)τk∗)

]
= 1 (42)

E[1{τk∗<∞}e−(θμ+θ2/2)τk∗ ] = e−θk∗
,

which holds for (θμ + θ2/2) > 0 and θ > 0.
For the case μ > 0 (i.e. α − r f > σ 2/2), we can take

the limit on both sides in equation 42 for θ ↓ 0 which yields
P(τk∗ < ∞) = 1. However, for the case μ < 0 and μ >

−θ/2, θ can only converge to the positive constant, θ ↓ −2μ,
for which we obtain

E[1{τk∗<∞}] = e2μk∗
< 1, for μ < 0 (43)

and, therefore, P(τk∗ < ∞) < 1. �
Monte Carlo experiment for the case: 0 < α − r f < σ 2/2
We demonstrate that we do not obtain statistical arbitrage for
0 < α − r f < σ 2/2 via buy and hold (long) until barrier
strategies. Consider the parameters given by α = 0.05, r f =
0.04, k = 0.05, σ = 0.2, N = 10 000and M = 252.

In figure 10, we plot the time evolution of mean, time-
averaged variance and the probability of loss for the trading
strategy considered. We observe that the probability of loss
obtained from the analytical formula given in equation 33 and
the Monte Carlo estimator are quite close to each other. We
also plot the limiting probability of loss when T → ∞, as
given by the analytical formula in equation 34. In this example,
statistical arbitrage is not obtained simply because for the long
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1498 A. Göncü

until barrier strategy the probability of loss decays to zero only
if we have α − r f > σ 2/2 as given in equation 33. Therefore,
it is clear that Condition 3 in definition 1 is not satisfied.

The next corollary states the symmetric result for α − r f <

σ 2/2.

Corollary 5 The result obtained in theorem 4 applies for
the symmetric case when the stopping boundary is defined as
B = S0(1+k)−1er f t , (with an abuse of notation we still denote
the barrier with B)

τB = min (t ≥ 0 : St = B) . (44)

Then, the first passage time of the stock price process to level B
is finite almost surely, i.e. P(τB < ∞) = 1, for α−r f < σ 2/2
and P(τB < ∞) < 1 for α − r f ≥ σ 2/2.

Proof Consider Xt = ln(St e−r f t/S0) and Xt = −μt + Wt ,

where μ = r f −α+σ 2/2
σ

. Then, equivalently, we can write Xt =
−μt − Wt . Let k∗ = − ln(1 + k)/σ < 0 with stopping time
τk∗ = min(t ≥ 0 : Xt = k∗).

Following the similar arguments as in Shreve (2004) page
110, we consider the following exponential martingale

Z(t) = exp
(
−θ Xt − (μθ + θ2/2)t

)
, (45)

where θ > 0 is an arbitrary constant.
The term exp(−θ Xt ) is always bounded by eθk∗

. We obtain

E[e−(μθ+θ2/2)τk∗ 1{τk∗<∞}] = e−k∗θ . (46)

There are two cases to consider: (i) μ > 0; (ii) μ < 0 and
θ > −2μ. In the first case, we can let θ → 0, then obtain
P(τk∗ < ∞) = 1 for α − r f < σ 2/2. In the second case,
μ < 0 and θ > −2μ, we have α−r f ≥ σ 2/2 and θ converges
to a positive constant; and thus, we have P(τk∗ < ∞) < 1. �
Theorem 6 In the Black–Scholes model, there exists statisti-
cal arbitrage in the sense of definition 1 if α − r f �= σ 2/2. If
α − r f > σ 2/2, then there exists statistical arbitrage for the
long until barrier strategies, whereas if α − r f < σ 2/2, there
exists statistical arbitrage for the short until barrier strategies.

Proof First, consider the case α −r f > σ 2

2 . We construct our
‘long until barrier’ type of trading strategy as follows. Long
the stock at time 0 by borrowing from the bank at the interest
rate r f , and hold the stock until it hits the barrier and sell
it at the level S0(1 + k)er f t . Then, by theorem 4, we have
P(τk∗ < ∞) = 1. As we have discussed in example 3, for
sufficiently large t , we have the discounted trading profits given
as

v(t) =
{

S0k if τk∗ ∈ [0, t],
St e−r f t − S0 else .

(47)

Then, we have limt→∞ E[v(t)] = S0k > 0, limt→∞
var(v(t))/t = 0, and since for sufficiently large t stock price
process almost surely hits the barrier level, the probability of
loss decays to zero, i.e. limt→∞ P(v(t) < 0) = 0. Therefore,
definition 1 is satisfied.

For the second case, α − r f < σ 2/2, we can consider
‘short until barrier’ type of trading strategy. At time 0, short
one unit of stock S0 and invest proceedings in the money
market account. As we analysed in example 4, the cumulative

discounted trading profits are given as

v(t) =
{

S0k/(k + 1) if τk∗ ∈ [0, t],
S0 − St e−r f t else .

(48)

Similarly, we have limt→∞ E[v(t)] = S0k/(k + 1) > 0,
limt→∞ var(v(t))/t = 0 and by corollary 5, stock price paths
almost surely hit the barrier in finite time, i.e. P(τk∗ < ∞) = 1.
The probability of loss decays to zero while the mean of trading
profits converge to S0k/(1+ k). Therefore, for α − r f > σ 2/2
and α − r f < σ 2/2, we are able to obtain statistical arbitrage
via long and short until barrier strategies, respectively. �

4. On the definition of statistical arbitrage

In this section, we prove additional properties of the statistical
arbitrage strategies characterized by definition 1. In the next
proposition, we prove that if the variance itself decays to zero
in time; then, this implies that the probability of loss decays to
zero. Hence, Condition 3 of definition 1 becomes redundant.
We also prove that if the expected trading profits go to infinity
in time and the variance converges to a constant, then this
implies Condition 3 is satisfied.

Proposition 7 Given the probability space (�,A, P) and
stochastic process {v(t) : t ≥ 0} defined on this space. Con-
sider that we have the following properties for the trading
strategy {v(t) : t ≥ 0}

(1) v(0) = 0
(2) limt→∞ E[v(t)] > 0,
(3) limt→∞ var(v(t)) = 0,

then, conditions 1 − −3 implies limt→∞ P(v(t) < 0) = 0.

Proof Cantelli’s inequality Cantelli (1910), which is a single
tail version of Chebyshev’s inequality, states that for a real
random variable X with mean μ and variance σ 2

P(X − μ ≥ a) ≤ σ 2

σ 2 + a2
, (49)

where a ≥ 0. We can change the sign of X and consider −X
with mean −μ which yields

P(−X + μ ≥ a) = P(X ≤ μ − a) ≤ σ 2

σ 2 + a2
, (50)

For each fix value of time t , we have a random variable
v(t) with mean μt and variance σ 2

t . Consider P(v(t) ≤ μt −
a) ≤ σ 2

t

σ 2
t +a2 by setting a = μt . By above Condition 2, we can

always find a sufficiently large time t0 such that ∀t ≥ t0, μt =
E[v(t)] > 0, which implies P(v(t) < 0) ≤ σ 2

t

σ 2
t +μ2

t
. Taking

the limit on both sides we have limt→∞ P(v(t) < 0) = 0 as
required. �

We prove a second property for the statistical arbitrage strat-
egy v(t) in the next proposition.

Proposition 8 Consider that we have the following proper-
ties for the trading strategy {v(t) : t ≥ 0}

(1) v(0) = 0
(2) limt→∞ E[v(t)] = ∞,
(3) limt→∞ var(v(t)) = c,
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Statistical arbitrage in the Black–Scholes framework 1499

where c is a positive constant. Then, conditions 1−3 imply
limt→∞ P(v(t) < 0) = 0.

Proof Proof is similar to the proof of proposition 7. �
At any initial time t0 (t ≥ t0), let the collection of stochastic

processes v(t) satisfying definition 1 be denoted by C. In the
next proposition, we prove that C is a convex set.

Proposition 9 Given any two trading strategies v1(t),
v2(t) ∈ C, their linear combination, v∗(t) = av1(t) +
(1 − a)v2, is also in C.

Proof Let v1(t) and v2(t) be any two stochastic processes
that satisfy definition 1. Let v∗ = av1(t)+ (1 − a)v2(t) where
a ∈ [0, 1].

(i) Since both v1(0) = 0 and v2(0) = 0, then v∗(0) = 0.
(ii) We have a limt→∞ E[v1(t)] = limt→∞ E[av1(t)] >

0 and

(1 − a) lim
t→∞ E[v2(t)] = lim

t→∞ E[(1 − a)v2(t)] > 0,

which implies limt→∞ E[av1(t) + (1 − a)v2(t)] =
limt→∞ E[v∗(t)] > 0.

(iii) We have a limt→∞ P(v1(t) < 0) = limt→∞
P(av1(t) < 0) = 0 and similarly limt→∞ P((1 − a)

v2(t) < 0) = 0, which implies limt→∞ P(v∗(t) <

0) = 0.
(iv) var(av1(t) + (1 − a)v2(t)) = a2var(v1(t)) +

(1−a)2var(v2(t))+2a(1−a)cov(v1(t), v2(t)) since
cov(v1, v2) = ρσ1σ2 with ρ ∈ [0, 1], we obtain

lim
t→∞

var(v∗(t))
t

= 0

if P(v∗(t) < 0) > 0, ∀t < ∞.

�
As a result of the convexity of the set of statistical arbi-

trage trading strategies, we can consider the linear combination
of two trading strategies and obtain the optimal investment
weights that minimizes the variance. More generally, the mean-
variance analysis of portfolio theory can be applied to obtain
the efficient set of statistical arbitrage strategies that invests into
a set of stocks that satisfy the statistical arbitrage condition we
derived.

Remark 10 We can minimize the variance of the linear com-
bination of two statistical arbitrage strategies as

min
a

a2σ 2
1 + (1 − a)2σ 2

2 + 2a(1 − a)ρσ1σ2, (51)

where a ∈ [0, 1], σ1 and σ2 is the standard deviation of v1(t)
and v2(t), respectively. The optimal portfolio weights that min-
imize the variance are given by

â = σ 2
2 − ρσ1σ2

σ 2
1 + σ 2

2 − 2ρσ1σ2
,

1 − â = σ 2
1 − ρσ1σ2

σ 1
1 + σ 2

2 − 2ρσ1σ2
for time t. (52)

5. Conclusion

The statistical arbitrage opportunities can be considered as risk-
less profit opportunities in the limit. The existence of

statistical arbitrage opportunities and the admissible set of such
trading opportunities in an economy are closely related to the
inefficiency of the market. Whenever identified by traders,
statistical arbitrage opportunities can be exploited and this
helps the market to move towards efficiency.

In this study, we derive the no-statistical arbitrage condition
in the Black–Scholes model given by 0 < α − r f < σ 2/2,
which implies that the Sharpe ratio of any given stock must be
bounded by σ/2. We showed that if there are inefficiencies in
the market, then an investor can utilize statistical arbitrage op-
portunities in the Black–Scholes framework. We design trading
strategies by introducing a stopping boundary that assures the
existence of statistical arbitrage profits.

There are various future research directions as a result of our
study. First, one can consider extensions of the Black–Scholes
model and derive no-statistical arbitrage conditions for more
general models. Furthermore, our results can be extended for
the portfolios of stocks and the optimal statistical arbitrage
strategies can be designed by minimizing the variance of the
statistical arbitrage portfolios.
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