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A short history of stochastic integration

and mathematical finance: The early

years, 1880–1970

Robert Jarrow1 and Philip Protter∗1
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Abstract: We present a history of the development of the theory of Stochastic
Integration, starting from its roots with Brownian motion, up to the introduc-
tion of semimartingales and the independence of the theory from an underlying
Markov process framework. We show how the development has influenced and
in turn been influenced by the development of Mathematical Finance Theory.
The calendar period is from 1880 to 1970.

The history of stochastic integration and the modelling of risky asset prices both
begin with Brownian motion, so let us begin there too. The earliest attempts to
model Brownian motion mathematically can be traced to three sources, each of
which knew nothing about the others: the first was that of T. N. Thiele of Copen-
hagen, who effectively created a model of Brownian motion while studying time
series in 1880 [81].2; the second was that of L. Bachelier of Paris, who created a
model of Brownian motion while deriving the dynamic behavior of the Paris stock
market, in 1900 (see, [1, 2, 11]); and the third was that of A. Einstein, who proposed
a model of the motion of small particles suspended in a liquid, in an attempt to
convince other physicists of the molecular nature of matter, in 1905 [21](See [64] for
a discussion of Einstein’s model and his motivations.) Of these three models, those
of Thiele and Bachelier had little impact for a long time, while that of Einstein was
immediately influential.

We go into a little detail about what happened to Bachelier, since he is now
seen by many as the founder of modern Mathematical Finance. Ignorant of the
work of Thiele (which was little appreciated in its day) and preceding the work
of Einstein, Bachelier attempted to model the market noise of the Paris Bourse.
Exploiting the ideas of the Central Limit Theorem, and realizing that market noise
should be without memory, he reasoned that increments of stock prices should be
independent and normally distributed. He combined his reasoning with the Markov
property and semigroups, and connected Brownian motion with the heat equation,
using that the Gaussian kernel is the fundamental solution to the heat equation.
He was able to define other processes related to Brownian motion, such as the
maximum change during a time interval (for one dimensional Brownian motion),
by using random walks and letting the time steps go to zero, and by then taking
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limits. His thesis was appreciated by his mentor H. Poincaré, but partially due to
the distaste of studying economics as an application of mathematics, he was unable
to join the Paris elite, and he spent his career far off in the provincial capital of
Besançon, near Switzerland in Eastern France. (More details of this sad story are
provided in [11]).

Let us now turn to Einstein’s model. In modern terms, Einstein assumed that
Brownian motion was a stochastic process with continuous paths, independent in-
crements, and stationary Gaussian increments. He did not assume other reasonable
properties (from the standpoint of physics), such as rectifiable paths. If he had
assumed this last property, we now know his model would not have existed as a
process. However, Einstein was unable to show that the process he proposed actu-
ally did exist as a mathematical object. This is understandable, since it was 1905,
and the ideas of Borel and Lebesgue constructing measure theory were developed
only during the first decade of the twentieth century.

In 1913 Daniell’s approach to measure theory (in which integrals are defined
before measures) appeared, and it was these ideas, combined with Fourier series,
that N. Wiener used in 1923 to construct Brownian motion, justifying after the fact
Einstein’s approach. Indeed, Wiener used the ideas of measure theory to construct
a measure on the path space of continuous functions, giving the canonical path pro-
jection process the distribution of what we now know as Brownian motion. Wiener
and others proved many properties of the paths of Brownian motion, an activity
that continues to this day. Two key properties relating to stochastic integration are
that (1) the paths of Brownian motion have a non zero finite quadratic variation,
such that on an interval (s, t), the quadratic variation is (t−s) and (2) the paths of
Brownian motion have infinite variation on compact time intervals, almost surely.
The second property follows easily from the first. Note that if Einstein were to have
assumed rectifiable paths, Wiener’s construction would have essentially proved the
impossibility of such a model. In recognition of his work, his construction of Brown-
ian motion is often referred to as the Wiener process. Wiener also constructed a
multiple integral, but it was not what is known today as the “Multiple Wiener In-
tegral”: indeed, it was K. Itô, in 1951, when trying to understand Wiener’s papers
(not an easy task), who refined and greatly improved Wiener’s ideas [36].

The next step in the groundwork for stochastic integration lay with A. N. Kol-
mogorov. The beginnings of the theory of stochastic integration, from the non-
finance perspective, were motivated and intertwined with the theory of Markov
processes, in which Kolmogorov, of course, played a fundamental role. Indeed, in
1931, two years before his famous book establishing a rigorous mathematical basis
for Probability Theory using measure theory, Kolmogorov refers to and briefly ex-
plains Bachelier’s construction of Brownian motion ([41], pp. 64, 102–103). It is this
paper too in which he develops a large part of his theory of Markov processes. Most
significantly, in this paper Kolmogorov showed that continuous Markov processes
(diffusions) depend essentially on only two parameters: one for the speed of the drift
and the other for the size of the purely random part (the diffusive component). He
was then able to relate the probability distributions of the process to the solu-
tions of partial differential equations, which he solved, and which are now known
as “Kolmogorov’s equations.” Of course, Kolmogorov did not have the Itô integral
available, and thus he relied on an analysis of the semigroup and its infinitesimal
generator, and the resulting partial differential equations.3

3J. L. Doob [17] has complained that the PDE methods of Kolmogorov and Feller used to study
Markov processes have often been called “analytic”, whereas the method of stochastic differentials
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After Kolmogorov we turn to the fascinating and tragic story of Vincent Doe-
blin (born Wolfgang Döblin) the son of the author Alfred Döblin, who wrote Berlin
Alexanderplatz for example. The Döblin family fled the Nazis from Germany, first
to Switzerland, and then to Paris. Wolfgang changed his name to Vincent Doe-
blin, and became a French citizen, finishing his schooling there and being quickly
recognized as an extraordinary mathematical talent. In the late 1920’s Probability
Theory was becoming stylish among mathematicians, especially in the two centers,
Moscow and Paris. Doeblin joined the probabilists, working on Markov chains and
later Markov processes.4 Doeblin wanted to construct a stochastic process with
continuous paths that would be consistent with Kolmogorov’s analytic theory of
transition probabilities for Markov processes. He ultimately developed a framework
to study them which was prescient in regards to future developments. However Doe-
blin was drafted, and he volunteered to go to the front. Before he went he sketched
out his ideas and he put this work in the safe of the National Academy of Science of
France, to be opened only by him or else after 100 years. As the Maginot line fell,
to avoid sharing his ideas with the Nazis Doeblin first burned his notes, and then
he took his own life. The academy safe was opened only in May 2000, at the request
of his brother, Claude Doeblin. It was only then that the far reaching vision of his
work became apparent. In those notes, he utilized the new concept of martingales
proposed by J. Ville only in 1939 [84] and understood the importance of studying
sample paths, instead of relying exclusively on distributional properties. One idea
he had was to run Brownian motion by a random clock: what is known today as a
time change. The change of time was then related to the diffusion coefficient, and
in this way he was able to give a modern treatment of diffusions decades before it
was developed otherwise. 5

We turn now to Kiyosi Itô, the father of stochastic integration. We will not
attempt to reproduce the beautiful summary of his work and contributions pro-
vided in 1987 by S. R. S. Varadhan and D. W. Stroock [83], but instead give a
short synopsis of what we think were key moments.6 No doubt an attempt to es-
tablish a true stochastic differential to be used in the study of Markov processes
was one of Itô’s primary motivations for studying stochastic integrals, just as it
was Döblin’s before him, although of course Döblin’s work was secret, hidden away
in the safe of the French Academy of Science. Wiener’s integral did not permit
stochastic processes as integrands, and such integrands would of course be needed

introduced by Itô has in contrast been called “probabilistic”. Indeed, he writes, “It is considered
by some mathematicians that if one deals with analytic properties and expectations then the
subject is part of analysis, but that if one deals with sample sequences and sample functions then
the subject is probability but not analysis”. Doob then goes on to make his point convincingly
that both methods are probability. (Doob’s criticism is likely to have been partially inspired by
comments of the second author.) Nevertheless, we contend that the methods of Itô changed the
probabilistic intuition one develops when studying Markov processes.

4J. Doob references his fundamental work on Markov chains and Markov processes extensively
in his book [17], for example. Paul Lévy wrote of him in an article devoted to an appreciation of
his work after his death: “Je crois pouvoir dire, pour donner une idée du niveau où il convient de le
situer, qu’on peut compter sur les doigts d’une seule main les mathématiciens qui, depuis Abel et
Galois, sont morts si jeunes en laissant une oeuvre aussi important”. Translated: ’I can say, to give
an idea of Doeblin’s stature, that one can count on the fingers of one hand the mathematicians
who, since Abel and Galois, have died so young and left behind a body of work so important.’
See [44]

5The second author is grateful to Marc Yor for having sent to him his beautiful article, written
together with Bernard Bru [6]. This article, together with the companion (and much more detailed)
article [7], are the sources for this discussion of Doeblin. In addition, the story of Doeblin has
recently been turned into a book in biographical form [65].

6The interested reader can also consult [66].
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if one were to represent (for example) a diffusion as a solution of a stochastic differ-
ential equation. Indeed, Itô has explained this motivation himself, and we let him
express it: “In these papers7 I saw a powerful analytic method to study the transi-
tion probabilities of the process, namely Kolmogorov’s parabolic equation and its
extension by Feller. But I wanted to study the paths of Markov processes in the
same way as Lévy observed differential processes. Observing the intuitive back-
ground in which Kolmogorov derived his equation (explained in the introduction
of the paper), I noticed that a Markovian particle would perform a time homoge-
neous differential process for infinitesimal future at every instant, and arrived at
the notion of a stochastic differential equation governing the paths of a Markov
process that could be formulated in terms of the differentials of a single differential
process” [37].8

Itô’s first paper on stochastic integration was published in 1944 ([34]), the same
year that Kakutani published two brief notes connecting Brownian motion and
harmonic functions. Meanwhile throughout the 1940’s Doob, who came to proba-
bility from complex analysis, saw the connection between J. Ville’s martingales and
harmonic functions, and he worked to develop a martingale based probabilistic po-
tential theory. In addition, H. Cartan greatly advanced potential theory in the mid
1940’s, later followed by Deny’s classic work in 1950. All these ideas swirling around
were interrelated, and in the 1940s Doob, clearly explained, for the first time, what
should be the strong Markov property. A few years later (in 1948) E. Hille and
K. Yosida independently gave the structure of semigroups of strongly continuous
operators, clarifying the role of infinitesimal generators in Markov process theory.

In his efforts to model Markov processes, Itô constructed a stochastic differential
equation of the form:

dXt = σ(Xt)dWt + µ(Xt)dt,

where of course W represents a standard Wiener process. He now had two prob-
lems: one was to make sense of the stochastic differential σ(Xt)dWt which he ac-
complished in the aforementioned article [34].9 The second problem was to connect
Kolmogorov’s work on Markov processes with his interpretation. In particular, he
wanted to relate the paths of X to the transition function of the diffusion. This
amounted to showing that the distribution of X solves Kolmogorov’s forward equa-
tion. This effort resulted in his spectacular paper [35] in 1951, where he stated and
proved what is now known as Itô’s formula:

f(Xt) = f ′(Xt)dXt +
1
2
f ′′(Xt)d[X, X ]t.

Here the function f is of course assumed to be C2, and we are using modern nota-
tion.10 Itô’s formula is of course an extension of the change of variables formula for

7Here Itô is referring to the papers of Kolmogorov [41] and of Feller [26].
8Note that while Itô never mentions the work of Bachelier in his foreword, citing instead

Kolmogorov, Lévy, and Doob as his main influences, it is reasonable to think he was aware of
the work of Bachelier, since it is referenced and explained in the key paper of Kolmogorov ([41])
that he lists as his one of his main inspirations. While we have found no direct evidence that Itô
ever read Bachelier’s work, nevertheless Hans Föllmer and Robert Merton have told the authors
in private communications that Itô had indeed been influenced by the work of Bachelier. Merton
has also published this observation: see page 47 of [51].

9Here Itô cites the work of S. Bernstein [5] as well as that of Kolmogorov [41] and W. Feller
[26] as antecedents for his work.

10The book by H. P. McKean, Jr., published in 1969 [47], had a great influence in popularizing
the Itô integral, as it was the first explanation of Itô’s and others’ related work in book form.
But McKean referred to Itô’s formula as Itô’s lemma, a nomenclature that has persisted in some
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Riemann-Stieltjes integration, and it reveals the difference between the Itô stochas-
tic calculus and that of the classical path by path calculus available for continuous
stochastic processes with paths of bounded variation on compact time sets. That
formula is, of course, where A denotes such a process and f is C1:

df(At) = f ′(At)dAt.

It can be shown that if one wants to define a path by path integral of the form∫ t

0 HsdAs as the limit of sums, where H is any process with continuous sample paths,
then as a consequence of the Banach Steinhaus theorem A a fortiori has sample
paths of bounded variation on compacts. (See, for example, [67].) Since Brownian
motion has paths of unbounded variation almost surely on any finite time interval,
Itô knew that it was not possible to integrate all continuous stochastic processes.
One of his key insights was to limit his space of integrands to those that were, as
he called it, non anticipating. That is, he only allows integrands that are adapted
to the underlying filtration of σ-algebras generated by the Brownian motion. This
allowed him to make use of the independence of the increments of Brownian motion
to establish the L2 isometry

E

(( ∫ t

0

HsdWs

)2
)

= E

( ∫ t

0

H2
s ds

)
.

Once the isometry is established for continuous non-anticipating processes H , it
then extends to jointly measurable non-anticipating processes.11

J. L. Doob realized that Itô’s construction of his stochastic integral for Brown-
ian motion did not use the full strength of the independence of the increments of
Brownian motion. In his highly influential 1953 book [16] he extended Itô’s stochas-
tic integral for Brownian motion first to processes with orthogonal increments (in
the L2 sense), and then to processes with conditionally orthogonal increments, that
is, martingales. What he needed, however, was a martingale M such that M2

t −F (t)
is again a martingale, where the increasing process F is non-random. He established
the now famous Doob decomposition theorem for submartingales: If Xn is a (dis-
crete time) submartingale, then there exists a unique decomposition Xn = Mn +An

where M is a martingale, and A is a process with non-decreasing paths, A0 = 0,
and with the special measurability property that An is Fn−1 measurable. Since M2

is a submartingale when M is a martingale, he needed an analogous decomposition
theorem in continuous time in order to extend further his stochastic integral. As it
was, however, he extended Itô’s isometry relation as follows:

E

(( ∫ t

0

HsdMs

)2
)

= E

( ∫ t

0

H2
s dF (s)

)
,

where F is non-decreasing and non-random, M2−F is again a martingale, and also
the stochastic integral is also a martingale. (See Chapter IX of [16].)

circles to this day. Obviously this key theorem of Itô is much more important than the status the
lowly nomenclature “lemma” affords it, and we prefer Itô’s own description: “formula”.

11Indeed, this is how the theory is presented in the little 1969 book of McKean [47]. Unfortu-
nately it is not as simple as McKean thought at this early stage of the theory, to determine exactly
which processes are included in this procedure; the natural σ-algebra generated by the simple in-
tegrands is today known as the predictable σ-algebra, and the predictably measurable processes
are a strict subset of jointly measurable, non-anticipating processes. This point is clarified in (for
example) the book of K. L. Chung and R. Williams [9], p. 63.
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Thus it became an interesting question, if only for the purpose of extending
the stochastic integral to martingales in general, to see if one could extend Doob’s
decomposition theorem to submartingales indexed by continuous time. However
there were other reasons as well, such as the development of probabilistic potential
theory, which began to parallel the development of axiomatic potential theory,
especially with the publication of G. A. Hunt’s seminal papers in 1957 and 1958
[31, 32, 33]. It took perhaps a decade for these papers to be fully appreciated, but in
the late 1960’s and early 1970’s they led to even greater interest in Itô’s treatment
of Markov processes as solutions of stochastic differential equations, involving both
Brownian motion and what is today known as Poisson random measure.

The issue was resolved in two papers by the (then) young French mathemati-
cian P. A. Meyer in 1962. Indeed, as if to underline the importance of probabilistic
potential theory in the development of the stochastic integral, Meyer’s first pa-
per, establishing the existence of the Doob decomposition for continuous time sub-
martingales [52], is written in the language of potential theory. Meyer showed that
the theorem is false in general, but true if and only if one assumes that the sub-
martingale has a uniform integrability property when indexed by stopping times,
which he called “Class (D)”, clearly in honor of Doob. Ornstein had shown that
there were submartingales not satisfying the Class (D) property12, and G. Johnson
and L. L. Helms [40] quickly provided an example in print in 1963, using three di-
mensional Brownian motion. Also in 1963, P. A. Meyer established the uniqueness
of the Doob decomposition [53], which today is known as the Doob-Meyer decom-
position theorem. In addition, in this second paper Meyer provides an analysis of
the structure of L2 martingales, which later will prove essential to the full devel-
opment of the theory of stochastic integration. Two years later, in 1965, Itô and
S. Watanabe, while studying multiplicative functionals of Markov processes, define
local martingales [39]. This turns out to be the key object needed for Doob’s original
conjecture to hold. That is, any submartingale X , whether it is of Class (D) or not,
has a unique decomposition

Xt = Mt + At,

where M is a local martingale, and A is a non-decreasing, predictable process with
A0 = 0.

Returning however to P. A. Meyer’s original paper [52], at the end of the paper,
as an application of his decomposition theorem, he proposes an extension of Doob’s
stochastic integral, and thus a fortiori an extension of Itô’s integral. His space of
integrands is that of “well adapted” processes, meaning jointly measurable and
adapted to the underlying filtration of σ-algebras. He makes the prescient remark
at the end of his paper that “it seems hard to show (though it is certainly true) that
the full class of well adapted processes whose “norm” is finite has been attained
by this procedure.” This anticipates the oversight of McKean six years later (see
footnote 11), and it is this somewhat esoteric measurability issue that delays the
full development of stochastic integration for martingales which have jumps, as we
shall see.

Before we continue our discussion of the evolution of the theory of stochastic
integration, however, let us digress to discuss the developments in economics. It is
curious that Peter Bernstein, in his 1992 book [4], states “Despite its importance,
Bachelier’s thesis was lost until it was rediscovered quite by accident in the 1950’s by
Jimmie Savage, a mathematical statistician at Chicago.” He goes on a little later to
say “Some time around 1954, while rummaging through a university library, Savage

12See, for example, [59], p. 823



Stochastic integration and mathematical finance the early years, 1880–1970 81

chanced upon a small book by Bachelier, published in 1914, on speculation and
investment.” We know however that Kolmogorov and also Doob explicitly reference
Bachelier, and Itô certainly knew of his work too; but perhaps what was “lost” was
Bachelier’s contributions to economics.13 Bernstein relates that Savage alerted the
economist Paul Samuelson to Bachelier’s work, who found Bachelier’s thesis in the
MIT library, and later remarked “Bachelier seems to have had something of a one-
track mind. But what a track!” [73]. See also [74].

After a decade of lectures around the country on warrant pricing and how stock
prices must be random,14 Samuelson then went on to publish, in 1965, two papers
of ground breaking work. In his paper [72] he gives his economics arguments that
prices must fluctuate randomly, 65 years after Bachelier had assumed it! This paper,
along with Fama’s [24] work on the same topic, form the basis of what has come
to be known as “the efficient market hypothesis.” The efficient market hypothesis
caused a revolution in empirical finance; the debate and empirical investigation of
this hypothesis is still continuing today (see [25]). Two other profound insights can
be found in this early paper that subsequently, but only in a modified form, became
the mainstay of option pricing theory. The first idea is the belief (postulate) that
discounted futures prices follow a martingale15. From this postulate, Samuelson
proved that changes in futures prices were uncorrelated across time, a generalization
of the random walk model (see [46], and also [13] ). The second insight is that this
proposition can be extended to arbitrary functions of the spot price, and although
he did not state it explicitly herein, this forebodes an immediate application to
options.

In his companion paper [71], he combined forces with H.P. McKean Jr.16 (who
the same year published his tome together with K. Itô [38]) who wrote a math-
ematical appendix to the paper, to show essentially that a good model for stock
price movements is what is today known as geometric Brownian motion. Samuelson
explains that Bachelier’s model failed to ensure that stock prices always be posi-
tive, and that his model leads to absurd inconsistencies with economic principles,
whereas geometric Brownian motion avoids these pitfalls. This paper also derived
valuation formulas for both European and American options.17 The derivation was
almost identical to that used nearly a decade later to derive the Black-Scholes for-
mula, except that instead of invoking a no arbitrage principle to derive the valuation
formula, he again postulated the condition that the discounted options payoffs fol-
low a martingale (see [71] p. 19), from which the valuation formulae easily followed.

13It is possible that L. J. Savage read Bachelier’s work because Doob’s book had appeared only
one year earlier and had referenced it, and then he might have been surprised by the economics
content of Bachelier’s work. But this is pure speculation. Also, Samuelson wrote in [73] (p. 6) that
“this was largely lost in the literature, even though Bachelier does receive occasional citation in
standard works in probability.”

14These lectures lead to other papers being published by researchers following up on Samuelson’s
ideas, for example the renowned paper of Osborne [62].

15See the Theorem of Mean Percentage Price Drift on page 46 and the subsequent discussion.
16Samuelson combined forces with McKean, and later R. C. Merton, because he did not feel

comfortable with the newly developed stochastic calculus (see [4] p. 215). This insight was also
confirmed by private communications with R. C. Merton.

17 This is the paper that first coined the terms “European” and “American” options. According
to a private communication with R.C. Merton, prior to writing the paper, P. Samuelson went to
Wall Street to discuss options with industry professionals. His Wall Street contact explained that
there were two types of options available, one more complex - that could be exercised any time
prior to maturiy, and one more simple - that could be exercised only at the maturity date, and that
only the more sophisticated European mind (as opposed to the American mind) could understand
the former. In response, when Samuelson wrote the paper, he used these as prefixes and reversed
the ordering.
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The much later insights of Black, Scholes, and Merton, relating prices of options to
perfect hedging strategies, is of course not discussed in this article. Furthermore,
it is also noteworthy that within this paper, Samuelson and McKean determine
the price of an American option by discovering the relation of an American option
to a free boundary problem for the heat equation. This is the first time that this
connection is made. Interestingly, Samuelson and McKean do not avail themselves
of the tools of stochastic calculus, at least not explicitly. The techniques McKean
uses in his appendix are partial differential equations in the spirit of Kolmogorov,
coupled with stopping times and the potential theoretic techniques pioneered by
G. Hunt and developed by Dynkin.

The final precursor to the Black, Scholes and Merton option pricing formulaes
can be found in the paper of Samuelson and Merton [75]. Following similar math-
ematics to [71], instead of invoking the postulate that discounted option payoffs
follow a martingale, they derived this postulate as an implication of a utility maxi-
mizing investor’s optimization decision. Herein, they showed that the option’s price
could be viewed as its discounted expected value, where instead of using the actual
probabilities to compute the expectation, one uses utility or risk adjusted proba-
bilities18. These risk adjusted probabilities later became known as “risk-neutral”
or “equivalent martingale” probabilities. It is interesting to note that, contrary
to common belief, this use of “equivalent martingale probabilities” under another
guise predated the paper by Cox and Ross [12] by nearly 10 years. In fact, Mer-
ton (footnote 5 page 218, [50]) points out that Samuelson knew this fact as early
as 1953! Again, by not invoking the no arbitrage principle, this paper just missed
obtaining the famous Black Scholes formula. The first use of the no arbitrage prin-
ciple to prove a pricing relation between various financial securities can be found
in Modigliani and Miller [60] some eleven years earlier, where they showed the
equivalence between two different firms’ debt and equity prices, generating the fa-
mous M&M Theorem. Both Samuelson and Merton were aware of this principle,
Modigliani being a colleague at M.I.T., but neither thought to apply it to this
pricing problem until many years later.

Unrelated to finance, and almost as an aside in the general tide of the devel-
opment of the theory of stochastic integration, were the insights of Herman Ru-
bin. At the Third Berkeley Symposium in 1955, Rubin gave a talk on stochastic
differential equations. The following year, he presented an invited paper at the
Seattle joint meetings of the Institute of Mathematical Statistics, the American
Mathematical Society , the Biometric Society, the Mathematical Association of
America, and the Econometrics Society. In this paper he outlined what was later
to become D. L. Fisk’s Ph.D. thesis, which invented both quasimartingales and
what is now known as the Stratonovich integral. To quote his own recollections,
“I was unhappy with the Itô integral because of the lack of invariance with non-
linear change of coordinate systems, no matter how smooth, and, observing that
using the average of the right and left endpoints gave exactly the right results for
the integral of XdX for any X (even discontinuous), it seemed that this was, for
continuous X with sufficiently good properties, the appropriate candidate for the
integral...Quasimartingales seemed the natural candidate for the class of processes,
but I did not see a clear proof. I gave the problem to Fisk to work on for a Ph.D.
thesis, and he did come up with what was needed” [69].

Indeed, in D. L. Fisk’s thesis [27], written under Rubin when he was at Michigan
State University, Fisk developed what is now known as the Stratonovich integral,

18See especially expression (20) on page 26.
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and he also coined the phrase and developed the modern theory of quasimartingales,
later used by K. M. Rao [68] to give an elegant proof that a quasimartingale is the
difference of two submartingales, and also used by S. Orey [63] in a paper extending
the idea and which foreshadowed modern day semimartingales. Fisk submitted his
thesis for publication, but the editor did not believe there was much interest in
stochastic integration, again according to the recollections of Herman Rubin [69].
So Fisk dropped that part of the thesis and did not pursue it, publishing instead
only the part on quasimartingales, which appeared as [28].

Returning now to the historical development of stochastic integration, we men-
tion that P. A. Meyer’s development of the stochastic integral in [52] is skeletal at
best, and a more systematic development is next put forward by Philippe Courrège
in 1963 [10]. The motivation clearly arises from potential theory, and the paper of
Courrège is published not in a journal, but in the (at the time) widely circulated
Séminaire Brélot-Choquet-Dény (Théorie du Potentiel). Many reasonable Markov
processes, and in particular those treated by Hunt ([31, 32, 33]), have the prop-
erty that they are quasi-left continuous. That is, they have paths which are right
continuous with left limits a.s., and if there is a jump at a stopping time T , then
that time T must be totally inaccessible. Intuitively, T must come as a complete
surprise. One can formulate the condition of quasi-left continuity in terms of the
underlying filtration of σ-algebras of the Markov process as well. This seems to be
a reasonable property for the filtration of a time homogeneous Markov process to
have, and is satisfied for a vast collection of examples.

It was natural for someone working in potential theory to make the assumption
that the filtration is quasi-left continuous, and such an assumption has the fortuitous
consequence to imply that if X is a submartingale and X = M + A is its Doob-
Meyer decomposition, then A has continuous sample paths. What this means is
that in the L2 isometry

E

(( ∫ t

0

Hs dMs

)2
)

= E

( ∫ t

0

H2
s dAs

)
,

where A is the increasing process corresponding to the submartingale X = M2,
one extends the Itô-Doob technique to general L2 martingales, and the resultant
increasing random process A has continuous paths. This, it turns out, greatly sim-
plifies the theory. And it is precisely this assumption that Courrège makes. Courrège
also works with integrands which have left continuous paths, and he considers the
space of processes that are measurable with respect to the σ-algebra they generate,
on R × Ω, calling it processes which are “fortement bien adapté”. Thus Courrège
had, in effect, pioneered the predictable σ-algebra, although he did not use it as P.
A. Meyer did, as we shall see. As it turns out, if dAt is path by path absolutely
continuous with respect to dt (this is usually written dAt << dt), almost surely,
then there ends up being essentially no difference which σ-algebra one uses: the
predictable σ-algebra, or the progressive σ-algebra,19 or even jointly measurable
adapted processes. However if A is merely continuous and does not necessarily have
absolutely continuous paths a.s., then one needs at least the progressive σ-algebra.
We now know that what happens is that the difference between one such process
and its predictable projection is a process that has a stochastic integral which is

19The progressive σ-algebra is defined later in the theory, and it has the property that if a
process Hs is progressively measurable, and if τ is a finite valued stopping time, then Hτ is Fτ

measurable.
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the zero process a.s, and this is why it does not matter. (For a detailed explanation
see Liptser and Shiryaev [45], or alternatively Chung and Williams [9]).

One important thing that Courrège did not do, however, was to prove a change of
variables formula, analogous to Itô’s formula for stochastic integration with respect
to Brownian motion. This was done in 1967 in an influential paper of H. Kunita and
S. Watanabe [42]. Whereas the approach of Courrège was solidly in the tradition
of Doob and Itô, that of establishing an L2 isometry, the approach pioneered by
M. Motoo and S. Watanabe two years later in 1965 was new: they treated the
stochastic integral as an operator on martingales having specific properties, utilizing
the Hilbert space structure of L2 by using the Doob-Meyer increasing process to
inspire an inner product through the quadratic variation of martingales. (See [61]).
In the same paper Motoo and Watanabe established a martingale representation
theorem which proved to be prescient of what was to come: they showed that all L2

martingales defined on a probability space obtained via the construction of a type
of Markov process named a Hunt process (in honor of the fundamental papers of
G. Hunt mentioned earlier)were generated by a collection of additive functionals
which were also L2 martingales, and which were obtained in a way now associated
with Dynkin’s formula and “martingale problems.”

The important paper of Motoo and Watanabe, however, was quickly overshad-
owed by the subsequent and beautifully written paper of H. Kunita and S. Watan-
abe, published in 1967 [42]. Here Kunita and Watanabe developed the ideas on
orthogonality of martingales pioneered by P. A. Meyer, and Motoo and Watanabe,
and they developed a theory of stable spaces of martingales which has proved fun-
damental to the theory of martingale representation, known in Finance as “market
completeness.” They also clarified the idea of quadratic variation as a pseudo inner
product, and used it to prove a general change of variables formula, profoundly ex-
tending Itô’s formula for Brownian martingales. The formula was clean and simple
for martingales with continuous paths, but when it came to the general case (i.e.,
martingales that can have jump discontinuities in their sample paths)the authors
retreated to the rich structure available to them in the Hunt process setting, and
they expressed the jumps in terms of the Lévy system of the underlying Markov
process. (Lévy systems for Markov processes, a structure which describes the jump
behavior of a Hunt process, had only been developed a few years earlier in 1964 by
S. Watanabe [85], and extended much later by A. Benveniste and J. Jacod [3]). This
“retreat” must have seemed natural at the time, since stochastic integrals were,
as noted previously, seen as intimately intertwined with Markov processes. And
also, as an application of their change of variables formula, Kunita and Watanabe
gave simple and elegant proofs of Lévy’s theorem characterizing Brownian motion
among continuous martingales via its quadratic variation process, as well as an ex-
tension from one to N dimensions of the spectacular 1965 theorem of L. Dubins and
G. Schwarz [18] and K. E. Dambis [14] that a large class of continuous martingales
can be represented as time changes of Brownian motion.

This remarkable paper of Kunita and Watanabe was quickly appreciated by
P.A. Meyer, now in Strasbourg. He helped to start, with the aid of Springer-
Verlag, the Séminaire de Probabilités, which is one of the longest running seminars
to be published in Springer’s famed Lecture Notes in Mathematics series. In the
first issue, which is only Volume 39 in the Lecture Notes series, he published four
key papers inspired by the article of Kunita and Watanabe [54, 55, 56, 57].20 In

20A large number of the historically important works on stochastic integration were published
in the Séminaire de Probabilités series, and these papers have been recently reprinted in a new
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these papers he made two important innovations: he went beyond the “inner prod-
uct” of Kunita and Watanabe (which is and was denoted < X, Y >, and which
is tied to the Doob-Meyer decomposition), and expanding on an idea of Austin
for discrete parameter martingales he created the “square bracket” (le crochet
droit) pseudo inner product, denoted [X, Y ]. Unlike the bracket process < X, Y >,
which exists for all locally square integrable martingales (and therefore all con-
tinuous ones), the square bracket process exists for all martingales, and even all
local martingales. This turned out to be important in later developments, such
as the invention of semimartingales, and of course is key to the extension of the
stochastic integral to all local martingales, and not only locally square integrable
ones.

The second major insight of Meyer in these papers is his realization of the
importance of the predictable σ-algebra. Going far beyond Courrège he realized that
when a martingale also had paths of finite variation (of necessity a martingale with
jumps), the stochastic integral should agree with a path by path construction using
Lebesgue-Stieltjes integration. He showed that this holds if and only if the integrand
is a predictable process. Moreover, he was able to analyze the jumps of the stochastic
integral, observing that the stochastic integral has the same jump behavior as does
the Lebesgue-Stieltjes integral if the integrand is predictably measurable. This laid
the groundwork for the semimartingale theory that was to come a few years later.

We should further note at this point that Meyer was able to discard the Markov
process framework used by Kunita and Watanabe in the first two of the four papers,
and he established the general change of variables formula used today without us-
ing Lévy systems. Meyer then applied his more general results to Markov processes
in the latter two of his four papers. Again, this was natural, since one of Meyer’s
primary interests was to resolve the many open questions raised by Hunt’s seminal
papers. It was research in Markov processes that was driving the interest in sto-
chastic integration, from Itô on, up to this point. Nevertheless, Doob had begun
to isolate the martingale character of processes independent of Markov processes,
and Meyer’s approach in his classic papers of 1962 and 1963 (already discussed [52]
and [53]) was to use the techniques developed in Markov process potential theory
to prove purely martingale theory results.

The development of stochastic integration as recounted so far seems to be pri-
marily centered in Japan and France. But important parallel developments were
occurring in the Soviet Union. The books of Dynkin on Markov processes appeared
early, in 1960 [19] and in English as Springer Verlag books in 1965 [20]. The famed
Moscow seminar (reconstituted at least once on October 18 and 19, 1996 in East
Lansing, Michigan, with Dynkin, Skorohod, Wentzell, Freidlin, Krylov, etc.), and
Girsanov’s work on transformations of Brownian motion date to 1960 and ear-
lier [29].21 Stratonovich developed a version of the Itô integral which obeys the
usual Riemann-Steiltjes change of variables formula, but sacrifices the martingale
property as well as much of the generality of the Itô integral.22 [80] While popular

volume of the Séminaire, with a small amount of commentary as well [23].
21Girsanov’s work extends the much earlier work first of Cameron and Martin [8], who in 1949

transformed Brownian paths for both deterministic translations and also some random transla-
tions, keeping the old and new distributions of the processes equivalent (in the sense of hav-
ing the same sets of probability zero); these ideas were extended to Markov processes first by
Maruyama [48] in 1954, and then by Girsanov in 1960. It was not until 1974 that Van Schuppen
and Wong [82] extended these ideas to martingales, followed in 1976 by P. A. Meyer [58] and in
1977 Lenglart [43] for the current modern versions. See also (for example) pages 132–136 of [67]
for an exposition of the modern results.

22Indeed, the Stratonovich integral was not met with much excitement. In a book review of the
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in some engineering circles, the Stratonovich integral seemed to be primarily a cu-
riosity, until much later when it was shown that if one approximates the paths of
Brownian motion with differentiable curves, the resultant integrals converge to the
Stratonovich integral; this led to it being an intrinsic object in stochastic differential
geometry (see, e.g., [22]).

The primary works of interest in the Soviet Union were the series of articles of
Skorohod. Again mainly inspired by the developing theory of Markov processes, Sko-
rohod generalized the Itô integral in ways startlingly parallel to those of Courrège
and Kunita and Watanabe. In 1963 Skorohod, squarely in the framework of Markov
processes and clearly inspired by the work of Dynkin, developed a stochastic in-
tegral for martingales which is analogous to what Courrège had done in France,
although he used changes of time [76]. In 1966, while studying additive functionals
of continuous Markov processes, he developed the idea of quadratic variation of
martingales, as well as what is now known as the Kunita-Watanabe inequality, and
the same change of variables formula that Kunita and Watanabe established [77].
He extended his results and his change of variables formula to martingales with
jumps (always only those defined on Markov processes) in 1967 [79]. The jump
terms in the change of variables formula are expressed with the aid of a kernel
reminiscent of the Lévy systems of S. Watanabe.23

We close this short history with a return to France. After the paper of Kunita
and Watanabe, and after P. A. Meyer’s four papers extending their results, there
was a hiatus of three years before the paper of C. Doléans-Dade and P. A. Meyer
appeared [15]. Prior to this paper the development of stochastic integration had
been tied rather intimately to Markov processes, and was perhaps seen as a tool
with which one could more effectively address certain topics in Markov process
theory. A key assumption made by the prior work of H. Kunita and S. Watanabe,
and also of P. A. Meyer, was that the underlying filtration of σ algebras was quasi
left continuous, alternatively stated as saying that the filtration had no fixed times
of discontinuity. Doléans-Dade and Meyer were able to remove this hypothesis,
thus making the theory a purely martingale theory, and casting aside its relation
to Markov processes. This can now be seen as a key step that led to the explosive
growth of the theory in the 1970’s and also in finance to the fundamental papers of
Harrison-Kreps and Harrison-Pliska, towards the end of the next decade. Last, in
this same paper Doléans-Dade and Meyer coined the modern term semimartingale,
to signify the most general process for which one knew (at that time) there existed
a stochastic integral.24

time Skorohod wrote “The proposed integral, when it exists, may be expressed rather simply using
the Itô integral. However the class of functions for which this integral exists is extremely narrow and
artificial. Although some of the formulas are made more simple by using the symmetrized integral
(while most of them are made more complicated which will be made clear from what follows),
its use is extremely restricted by its domain of definition. Thus this innovation is completely
unjustified.”[78] The Stratonovich integral was developed simultaneously by D. Fisk in the United
States, as part of his PhD thesis. However it was rejected for publication as being too trivial. In
the second half of his thesis he invents quasimartingales, and that half was indeed published [28].

23P. A. Meyer’s work ([54, 55, 56, 57]), which proved to be highly influential in the West, refer-
ences Courrège, Motoo and Watanabe, Watanabe, and Kunita and Watanabe, but not Skorohod,
of whose work Meyer was doubtless unaware. Unfortunately this effectively left Skorohod’s work
relatively unknown in the West for quite some time.

24As we will see in a sequel to this paper, the description of semimartingales of Doléans-Dade
and Meyer of 1970 turned out to be prescient. In the late 1970’s C. Dellacherie and K. Bichteler
simultaneously proved a characterization of semimartingales: they showed that given a right con-
tinuous process X with left limits, if one defined a stochastic integral in the obvious way on simple
predictable processes, and if one insisted on having an extremely weak version of a bounded con-
vergence theorem, then X was a fortiori a semimartingale.
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[5] Bernstein, S. (1938). Equations différentielles stochastiques, Actualités Sci.
Ind., 738, 5–31.

[6] Bru, B. and Yor, M. (2001). La vie de W. Doeblin et le Pli cacheté 11 668, La
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