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Answer all questions.

The total number of points is 100, and the precise grading is indicated in the text.

The rigour and clarity of your answers will be taken into account in the final grade.

Each problem is independent of the others.
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1 [15 points] Warm-up: Preliminary questions

(i) [2 points] State the definition of an (Ft)t≥0-stopping time.

(ii) [2 points] State the definition of a (Ft)t≥0-adapted strict local martingale.

(iii) [2 points] Let ξ : [0,∞) → (0,∞) be a smooth bounded function, and let S be the unique

strong solution to the stochastic differential equation dSt = ξ(t)StdWt starting from S0 = 1,

where W is a standard Brownian motion. Assuming that the market has zero interest rates

and that dividends are null, compute the implied volatility in this model, for each maturity

T ≥ 0 and strike K ≥ 0.

(iv) [3 points] Define and explain in no more than five lines what the local volatility is.

(v) [6 points] Let S denote a strictly positive strict local martingale, and assume no interest rate

nor dividend. Fix T > 0 and consider the two functions f, g : [0,∞) → R defined by:

f :K 7→ E (ST −K)+ ,

g :K 7→ E (K − ST )+ + S0 −K.

Explain any arbitrage issues using either (or both) function as a definition of a European Call

option at inception. What are the consequences on the implied volatility?
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2 [25 points] Tail asymptotics of the implied volatility

We shall investigate here the small- and large-strike behaviours of the implied volatility for a

Compound Poisson process, using Roger Lee’s Moment formula. Let S be a true non-negative

martingale on (Ω,F ,P). We let x := log(K/S0), for K > 0, denote the log-moneyness and we

assume interest rates are null. Furthermore, for any (x, t) ∈ R × (0,∞), σt(x) shall represent the

implied volatility corresponding to European option prices with maturity t and log-moneyness x.

Define the function ψ : R+ → R by

ψ(z) ≡ 2− 4
(√

z(1 + z)− z
)
. (1)

Theorem 2.1 (Roger Lee’s Moment Formula).

• [Right Wing] Let p∗ := sup{p ≥ 0 : E(S1+p
t ) <∞} and βR := lim sup

x↑+∞

σ2
t (x)t

x
. Then

p∗ =
1

2βR
+
βR
8

− 1

2
, or equivalently βR = ψ(p∗).

• [Left Wing] let q∗ := sup{q ≥ 0 : E(S−q
t ) <∞} and βL := lim sup

x↓−∞

σ2
t (x)t

|x|
. Then

q∗ =
1

2βL
+
βL
8

− 1

2
, or equivalently βL = ψ(q∗).

(i) [3 points] Let (un)n∈N be a sequence in R. State the definition of lim supn↑+∞ un and

lim infn↑+∞ un, and give an example of a sequence for which the two limits do not coincide.

(ii) [3 points] Study the smoothness of the function ψ in (1), and compute its limits at zero and

infinity.

(iii) [4 points] Consider the Black-Scholes model, in which the stock price process is the unique

strong solution to dSt = ξStdWt, with S0 = 1, ξ > 0, and where W is a standard Brownian

motion. Compute p∗, βR, q
∗ and βL from Theorem 2.1. What can you conclude?

(iv) We now consider a more sophisticated model for the stock price:

St = exp

(
γt+ σWt +

Nt∑
n=1

Yn

)
, for t ≥ 0,

where W is a Brownian motion, σ > 0, γ ∈ R; here (Nt)≥0 is a Poisson process with rate

λ > 0, and the (Yn)n forms a family of independent random variables with common distribution

P(Y1 ∈ dx) = pλ+ exp
(
− λ+x

)
11{x>0}dx+ (1− p)λ− exp

(
− λ−|x|

)
11{x<0}dx,



with p ∈ [0, 1] and λ−, λ+ > 0, so that is S experiences both positive and negative jumps. We

assume that both N and the family (Yn) are independent of the driving Brownian motion W .

(a) Prove that

E
(
euY1

)
= p

λ+
λ+ − u

+ (1− p)
λ−

λ− + u
, for all u ∈ DY ,

where the effective domain DY should be made explicit.

(b) [6 points] For any t ≥ 0, compute E (Su
t ), for any u in some domain to determine.

(c) [2 points] Determine the value of γ ensuring that the process (St)t≥0 is a true martingale.

(d) [2 points] Deduce p∗ and q∗ as given in Roger Lee’s Moment Formula (Theorem 2.1).

(e) [2 points] How do the wings of the implied volatility evolve with maturity? Quote a model

(without proof) in which this behaviour is different, as well as another model (or class

thereof) with similar properties.

(f) [3 points] Study the influence of the parameter λ+ and λ− on the left wing of the smile,

and provide some intuition about this result.
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3 [30 points] The Ornstein-Uhlenbeck process

For a given standard Brownian motion W on some filtered probability space (Ω,F ,P), consider the
Ornstein-Uhlenbeck process, defined as

Xt = xeµt + σ

∫ t

0

eµ(t−s)dWs,

for some µ, x ∈ R and σ > 0. This process is widely used in the finance, to model, for example,

the dynamics of the short rate or the evolution of the instantaneous volatility on Equity markets.

(i) We first consider the properties of the process (Xt)t≥0.

(a) [3 points] Prove that the process (Xt)t≥0 satisfies the stochastic differential equation

dXt = µXtdt+ σdWt, X0 = x. (2)

Show that, for any t ≥ 0, Xt is a Gaussian random variable with

E(Xt) = xeµt and V(Xt) =
σ2

2µ

(
e2µt − 1

)
.

(b) [2 points] Show that the SDE (2) admits a unique strong solution.

(c) [4 points] What is the distribution of the random variable
∫ T

0
Xtdt?

(ii) Introduce now the function u : [0, T ]× R → R as the solution to the heat equation(
∂t +

1

2
∂xx

)
u(t, x) = 0, for all (t, x) ∈ [0, T )× R, (3)

with boundary condition u(T, x) ≡ f(x) on R, where f is a continuous function satisfying

some growth conditions ensuring that all the integrals below are well defined.

(a) [4 points] Show that the process u(t,Wt)t∈[0,T ] is a local martingale.

(b) [4 points] Assuming that u(·) is bounded, prove that the general solution to the PDE (3)

reads

u(t, x) =

∫
R

f(x+ y
√
T − t)√

2π
exp

(
−y

2

2

)
dy.

(c) [5 points] Using this and Part (1), determine explicitly the unique bounded solution to

the PDE (
∂t + x∂x +

1

2
∂xx

)
u(t, x) = 0, for (t, x) ∈ [0, T )× R,

with boundary condition u(T, x) ≡ x on R.



(iii) We now wish to compute the characteristic function Φ of XT :

ΦT (ξ) := E
(
eiξXT |X0 = x

)
, for all ξ ∈ R.

(a) [3 points] Fixing ξ ∈ R, show that the function v : [0, T ] × R → R defined as

v(t, x) := E
(
eiξXT |Xt = x

)
, satisfies the partial differential equation(

∂t + µx∂x +
1

2
σ2∂xx

)
v(t, x) = 0, for all (t, x) ∈ [0, T )× R, (4)

with boundary conditions to determine.

(b) [5 points] Using the ansatz v(t, x) = exp
(
β(t) + iξα(t)x

)
, for some functions α(·)

and β(·), prove the identity

ΦT (ξ) = exp

(
iξxeµT − σ2ξ2

4µ

(
e2µT − 1

))
, for all ξ ∈ R,

and compare it with the result obtained in (i)(a).
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4 [30 points] Pricing with strict local martingales

We consider a financial market where interest rates are null, and where a given stock price satisfies

the following stochastic differential equation:

dSt = S2
t dWt, S0 = 1, (5)

where (Wt)t≥0 is a standard Brownian motion. We wish to investigate some of the mathematical

properties of this process and to study the financial implications. We shall denote by N the Gaussian

cumulative distribution function, and fix a time horizon T > 0.

(i) A trader is interested in the financial claim with payoff ϕT := ST .

(a) [3 points] Show that there exists a replicating trading strategy, with wealth ϕt = u(t, St),

where

u(t, s) = s

(
2N

(
1

s
√
T − t

)
− 1

)
.

(b) [3 points] Consider the portfolio Π consisting of buying S0 claims and selling ϕ0 shares:

Πt = S0ϕt − ϕ0St, for any t ∈ [0, T ].

Show that Π0 = 0 and ΠT > 0. Prove by contradiction that this arbitrage is not

admissible.

(ii) Let Z = (Z1, Z2, Z3) denote a standard Brownian motion in R3, and fix z = (1, 0, 0) ∈ R3.

(a) [4 points] Define the process (Xt)t≥0 pathwise by Xt := ∥Zt − z∥−1, where, for

x = (x1, x2, x3), ∥x∥ := (x21 + x22 + x23)
1/2 denotes the Euclidean norm in R3. Prove

that there exists a one-dimensional Brownian motion B such that dXt = X2
t dBt, with

X0 = 1, and deduce that (Xt)t≥0 is a positive local martingale.

(b) [3 points] Let (x, y, z) ∈ R3 be a system of Cartesian coordinates. Recall that the

corresponding spherical coordinates are defined as

(r, θ, ϕ) =
(√

x2 + y2 + z2, atan
(y
x

)
, acos

(z
r

))
,

with r ≥ 0, θ ∈ [0, 2π) and ϕ ∈ [0, π]. Show that the inverse mapping is given by

(x, y, z) = (r cos(θ) sin(ϕ), r sin(θ) sin(ϕ), r cos(ϕ)) .

(c) [7 points] Deduce from this and the definition of X that E(Xt) = 2N
(
1/
√
t
)
− 1; what

does that imply for the process X? How does the Put-Call parity look like at strike zero?



(iii) We finally propose an alternative proof to the result in the previous item.

(a) [3 points] Let Y be a positive martingale starting from one, and define the measure Q by

dQ/dP := YT . Show that the process (Xt)t∈[0,T ] := (Y −1
t )t∈[0,T ] is a positive martingale

under Q.

(b) [3 points] If Y satisfies dYt = σtYtdWt, for some Brownian motion W and some adapted

process σ, prove that X satisfies dXt = σtXtdW
Q
t for some Q-Brownian motion WQ.

(c) [4 points] Letting σ· = Y·, prove that the solution to (5) satisfies

P(St > 0) = 1 and Q(St > 0) = N (1/
√
t),

for all t ∈ [0, T ], and deduce from this that S is a strict local martingale.
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