M5MF6, EXERCICE SET: STOCHASTIC ANALYSIS AND BROWNIAN MOTION

We shall here consider a given filtered probability space (£2, F,P), supporting a standard Brownian mo-

tion (W});>0, with natural filtration (F3)¢>o.
Exercise 1

Prove Proposition 1.1.3, Theorem 1.2.9, and the examples/exercises in the lecture notes in Sections 1.1-1.2.

Solution to Exercise 1

See the lecture notes.

Exercise 2 An optional time which is not a stopping time

Consider the filtration (G;):> and the random time 7 defined by

0,9}, ift<1, 1, ifwe B,
Gy = and T =
28 if t > 1. 2, ifwé¢ B,

where B is some non-trivial subset of 2. Show that 7 is a G-optional time, but not a G-stopping time.

Exercise 3 Gaussian moments

Let (By)¢>0 denote a one-dimensional standard Brownian motion on the real line, and, for any n € N, define
Bn(t) := E(B}). Show, using Ito’s formula, that the identity

Bn(t) = %n(n - 1)/0 Brn—2(s)ds

holds for all £ > 0 and n > 2, and deduce that, for all £ > 0,

0, if n is odd,
Q M, if n is even with n = 2m.
2mm]
Exercise 4 Gaussian integral

Define the process (X;)¢>0 pathwise by X; := fot psdWs, where ¢ is a deterministic function (path). Prove
that X is a Gaussian process with mean zero and covariance structure E(X X;) = OSM ©2ds.
Solution to Exercise 4
We first prove that, for any ¢t > 0, X; is a Gaussian random variable with mean zero and variance fot ©ids.
Ito’s lemma yields

t
01 Be) =14 i [ 28 () ds
0
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for any real number u. For any such u, define ¢, :=E (e"Xt), so that differentiating both sides of (I0) implies

1
oy = U Pt I/Jm

which is easily solved as 1y = exp (%uQ fot apgds). This proves the claim. The proof of the covariance structure

follows the same steps.

Exercise 5 Complex Brownian motion

Given a two-dimensional Brownian motion (Blgl)7 Bt(2))t20, define the complex Brownian motion
B, := B +1iB®,

where i? = —1. Let f : C — C be a function of the form f(z) = fr(z) + ifc(z), for any z € C, with
fr, fc : € — R. If f is analytic, i.e. satisfies the Cauchy-Riemann equations

ofe _0fc 4 Ofr__0fc
Ox Oy Oy Oz’

where z = z 4 iy, show that the identity
df(By) = f/(Bt)dBt

holds almost surely for all ¢ > 0, where f’ denotes the complex derivative of f. As an example, solve explicitly

the complex stochastic differential equation
dZ; = aZ;dBy, Zy=z¢€C.
Solution to Exercise 5
Let Z. := f(B.). By linearity of the derivative operator, we can write
dZ; = dfe(By) + idfe(By) = dfe(B", B?) + idfe(B", B®)
=V fr(B:)dB; + %AfR(Bt)dt + iV fe(B,)dB; + %AfC(Bt)dt
= (Vfr+1iV fc)(B:)dBy

(afR ap™ 4 & 4pee >+1(8f(c aB® 4 % 2)>

ox dy ox dy

Ofr 1y _ Ofc Ofc )y | Ofr

(5 dB; o dB I —dB;" + Dy dB

3f1R 1 , Ofr dfc M, 5f<c @\ _ o
(3x a + 5 4B SEaBY +152dB® | = £/(B,)dB.

Using the complex Ito formula above, we immediately obtain de®®t = ae®BtdBy, so that the process defined by
Zy = Zy + 2Bt for all t > 0, solves the complex SDE.

Exercise 6 Pinned Brownian motion

Find a Borel function ¢ such that E(W|W;) = ¢(Ws), for any 0 < s < ¢.

Solution to Exercise 6
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Fix 0 < s < t. We are looking here for a Borel function ¢ such that E(W;|W;) = ¢(W;); we can write this
equivalently, for any Borel subset B C R, as

[ wdbiao) = [ plo)pian) = [ plap(0.0)

B
where P; is the law of the Brownian motion at time ¢, and p; the Gaussian density at time ¢; furthermore,

/BWS]P’t(dx) 2/8(/Rxp5(0,x)pts(x,y)dx> dy
=/B(p(t;0,y)/Rxps<t_s)/t (%x) dx) dy

sy
= / T;Dt(O, y)dy.
B

Taking the function ¢(y) = sy/t concludes the proof.

Exercise 7 Supremum of Brownian motion and Quadratic variation

Let M be a continuous local martingale starting at the origin. Then, for all x,u > 0,
2
P (sup M > 2, (M)oo < u) < exp (—) i
t>0 2u
Hint: Fix some x > 0, and let 7 := inf{¢t > 0: M; > z} be the first hitting time of the level z. For any « € R,
introduce the process (Z;);>o defined pathwise by
1
Zy i=exp (aMtT - 2042<M>Z> .
Use then the optional sampling theorem: a martingale stopped at a stopping time remains a martingale.
Solution to Exercise 7

Fix some z > 0, and let 7 := inf{¢t > 0 : M; > x} be the first hitting time of the level x. For any a € R,

introduce the process (Z;);>o defined pathwise by
1
Zy i=exp (aMtT - 2042<M>Z> .
Clearly, Z is a continuous local martingale (by Itd’s formula), and satisfies the inequality | Z;| < exp(ax) almost
surely for all ¢ > 0. When o = 1, Z is usually called the stochastic exponential of M, and is denoted by E(M).
It is therefore square integrable, and the optional sampling theorem implies E(Z,,) = E(Z;) = 1. Markov’s
inequality further yields, for any u > 0,
1 1
P <sup My > x,(M)s < u> <P <ZOO > exp (az - 2042u)> < exp <—ax + 2a2u> .
>0

Since « is taken randomly, one can optimise over it, and the maximum on the right-hand side is clearly attained

at a = x/u, from which the result follows.

Exercise 8 Martingale Representation Theorem

Write down the explicit form of the martingale representation theorem for the process (M;);>o defined as
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(i) My = fy Wids;
(il) My = Wt2;
(iii) M, = [, W2ds;
(iv) M; = sin(W,);

(v) My =exp(Wy)

Solution to Exercise 8

(i)
(i)
(iii) Ito’s formula yields M; = ¢ + 2f0t W,dW, = E(M,) + QfOt WedWy;
) It&’s formula applied to the function f : (W,t) — tW? yields

Clearly, M; = [ dW;
Integration by parts immediately gives M; = fot (t — s)dWs;
(iv
t
= / (W2ds + 2sW.dW, + sds)
0
so that

t t t
M, :/ W2ds = tW? — 2/ sWedWy —/ sd(W, W)
0 0 0

t t
=t (t + 2/ ngWg> - 2/ sWedWy — Etz
0 0 2

1 t t
= 5152+2/ (t — s)W,dW, :E(Mt)+2/ (t — s)WodW,
0 0

(v) Ito’s formula yields
sin(W;) ex LA /t cos(W,,) ex (E) dW,, + l/t sin(W,,) ex (E) du — 1/t sin(W,,) ex (ﬁ) (W, W)
t p 92 - 0 u p 9 u ) 0 u p 92 ) 0 u p 9 ’ u

= /Ot cos(W,) exp (%) dW,.

Since E(M;) is clearly null, the representation follows.

(vi) Hint: apply It6’s formula to the function (¢, W;) + et f(¢), for some smooth function f : [0, 00) — R.

Exercise 9 Martingale Representation Theorem 2

Define the process M by M, := E(W23|F;), for any ¢ € [0,7]. Prove that
¢
M, :3/ (T — s+ W2)dw,.
0

Solution to Exercise 9

M, = Ey(W3) = E[(Wr—W+W,)3] = By [(Wr—W,) 3|+ WEH3WLE, (W — W, ) 2| 4+3W2E [(Wr—W,)] = W24+3(T—t)W,

Applying It6’s lemma then yields
dM, =3 (W7 + T —t) dW,,

which concludes the proof.
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t

Exercise 10
Prove that the process Y := ( fg Wudu> N is Gaussian, and compute its expectation and variance.
t>

Solution to Exercise 10

The integration is defined pathwise as a Riemann integral since the integrand is continuous. Since W is
Gaussian, for any ¢t > 0, the random variable Y; is clearly Gaussian as limit of Riemann sums, and so is the
process Y. Clearly E(Y;) = 0, and, for any 0 < s < ¢,

E(Y,Y;) = (/Wdu/de) //u/\vdudv— (3t —s).

Exercise 11

Consider the process Y defined, for all ¢ > 0, by

t
W.
Ytzzwt—/f
0

Prove that Y is Gaussian, and compute its expectation and variance. Show that it is not an (F;)-martingale.

Solution to Exercise 11

The process Y is the sum of two Gaussian, but these are not independent. However, the integral is a Gaussian

process by definition of (sums in L? of) Riemannn integrals. Clearly e(Y;) = 0 and, for any s,t > 0,

sy = (- [ Sran) (.- [ )}
sy s ([ ) (i, [ e e ([ o) ([ a))

StAv tsAu t S uAw
:s/\t—/ du—/ du+// dudv = s A t,
o Y o U o Jo Uuv

which proves that the Gaussian process Z is a Brownian motion. However, for any s < t,

E(Z - Z|F)) =E (Wt/ ‘]-'W> /—du

which is clearly non zero almost surely.

Exercise 12 Clark-Ocone Formula
Let f be a bounded C! function on R. Prove that there exists a function g : [0,1] x R — R such that
E(f(W1)|]:t) = g(ta Wt)7 for any le [01]7

and write down an It6 formula for g. Prove finally that the following equality holds for all ¢ € [0, 1]:

ot Wy) = E(f(Wh)) + / E (f/ (W1 |F,) dW,
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Solution to Exercise 12

It is easy to see that

E (F(W1)|F0) = E(f(Wy = Wy + Wo)|F) =E[ £ (Waoe + W)

]'—t] = g(t, W),

where the function g is defined as g(¢t,2) =E (f(x + Wl,tﬂ}}). Note that the process (g(t, Wi))ieo,1] is clearly

a martingale, and hence

o(0.113) =BGV + [ ogls WaW, =BGV + [ B[OV + Wioi7] aw,,

and the result follows.
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