
M5MF6, EXERCICE SET: STOCHASTIC ANALYSIS AND BROWNIAN MOTION

We shall here consider a given filtered probability space (Ω,F ,P), supporting a standard Brownian mo-

tion (Wt)t≥0, with natural filtration (Ft)t≥0.

Exercise 1

Prove Proposition 1.1.3, Theorem 1.2.9, and the examples/exercises in the lecture notes in Sections 1.1-1.2.

Solution to Exercise 1

See the lecture notes.

Exercise 2 An optional time which is not a stopping time

Consider the filtration (Gt)t≥ and the random time τ defined by

Gt :=

{
{∅,Ω}, if t ≤ 1,

2Ω, if t > 1.
and τ :=

{
1, if ω ∈ B,

2, if ω /∈ B,

where B is some non-trivial subset of Ω. Show that τ is a G-optional time, but not a G-stopping time.

Exercise 3 Gaussian moments

Let (Bt)t≥0 denote a one-dimensional standard Brownian motion on the real line, and, for any n ∈ N, define
βn(t) := E(Bn

t ). Show, using Ito’s formula, that the identity

βn(t) =
1

2
n(n− 1)

∫ t

0

βn−2(s)ds

holds for all t ≥ 0 and n ≥ 2, and deduce that, for all t ≥ 0,

βn(t) =

 0, if n is odd,
(2m)!tm

2mm!
, if n is even with n = 2m.

Exercise 4 Gaussian integral

Define the process (Xt)t≥0 pathwise by Xt :=
∫ t

0
φsdWs, where φ is a deterministic function (path). Prove

that X is a Gaussian process with mean zero and covariance structure E(XsXt) =
∫ s∧t

0
φ2
sds.

Solution to Exercise 4

We first prove that, for any t ≥ 0, Xt is a Gaussian random variable with mean zero and variance
∫ t

0
φ2
sds.

Itô’s lemma yields

(0.1) E
(
euXt

)
= 1 +

1

2
u2

∫ t

0

φ2
sE

(
euXs

)
ds,
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for any real number u. For any such u, define ψt := E
(
euXt

)
, so that differentiating both sides of (0.1) implies

∂tψt =
1

2
u2φ2

tψt,

which is easily solved as ψt = exp
(

1
2u

2
∫ t

0
φ2
sds

)
. This proves the claim. The proof of the covariance structure

follows the same steps.

Exercise 5 Complex Brownian motion

Given a two-dimensional Brownian motion (B
(1)
t , B

(2)
t )t≥0, define the complex Brownian motion

Bt := B
(1)
t + iB

(2)
t ,

where i2 = −1. Let f : C → C be a function of the form f(z) = fR(z) + ifC(z), for any z ∈ C, with

fR, fC : C → R. If f is analytic, i.e. satisfies the Cauchy-Riemann equations

∂fR
∂x

=
∂fC
∂y

and
∂fR
∂y

= −∂fC
∂x

,

where z = x+ iy, show that the identity

df(Bt) = f ′(Bt)dBt

holds almost surely for all t ≥ 0, where f ′ denotes the complex derivative of f . As an example, solve explicitly

the complex stochastic differential equation

dZt = αZtdBt, Z0 = z ∈ C.

Solution to Exercise 5

Let Z· := f(B·). By linearity of the derivative operator, we can write

dZt = dfR(Bt) + idfC(Bt) = dfR(B
(1)
t , B

(2)
t ) + idfC(B

(1)
t , B

(2)
t )

= ∇fR(Bt)dBt +
1

2
∆fR(Bt)dt+ i∇fC(Bt)dBt +

i

2
∆fC(Bt)dt

= (∇fR + i∇fC)(Bt)dBt

=

(
∂fR
∂x

dB
(1)
t +

∂fR
∂y

dB
(2)
t

)
+ i

(
∂fC
∂x

dB
(1)
t +

∂fC
∂y

dB
(2)
t

)
=

(
∂fR
∂x

dB
(1)
t − ∂fC

∂x
dB

(2)
t

)
+ i

(
∂fC
∂x

dB
(1)
t +

∂fR
∂y

dB
(2)
t

)
=

(
∂fR
∂x

dB
(1)
t +

∂fR
∂y

dB
(2)
t

)
+ i

(
∂fC
∂x

dB
(1)
t + i

∂fC
∂x

dB
(2)
t

)
= f ′(Bt)dBt.

Using the complex Ito formula above, we immediately obtain deαBt = αeαBtdBt, so that the process defined by

Zt = Z0 + eαBt for all t ≥ 0, solves the complex SDE.

Exercise 6 Pinned Brownian motion

Find a Borel function ϕ such that E(Ws|Wt) = ϕ(Wt), for any 0 ≤ s ≤ t.

Solution to Exercise 6



M5MF6, EXERCICE SET: STOCHASTIC ANALYSIS AND BROWNIAN MOTION 3

Fix 0 ≤ s < t. We are looking here for a Borel function ϕ such that E(Ws|Wt) = ϕ(Wt); we can write this

equivalently, for any Borel subset B ⊂ R, as∫
B
WsdPt(dx) =

∫
B
φ(x)Pt(dx) =

∫
B
φ(x)pt(0, x)dx,

where Pt is the law of the Brownian motion at time t, and pt the Gaussian density at time t; furthermore,∫
B
WsPt(dx) =

∫
B

(∫
R
xps(0, x)pt−s(x, y)dx

)
dy

=

∫
B

(
p(t; 0, y)

∫
R
xps(t−s)/t

(sy
t
, x

)
dx

)
dy

=

∫
B

sy

t
pt(0, y)dy.

Taking the function φ(y) ≡ sy/t concludes the proof.

Exercise 7 Supremum of Brownian motion and Quadratic variation

Let M be a continuous local martingale starting at the origin. Then, for all x, u > 0,

P
(
sup
t≥0

Mt > x, ⟨M⟩∞ ≤ u

)
≤ exp

(
−x

2

2u

)
.

Hint: Fix some x > 0, and let τ := inf{t ≥ 0 :Mt ≥ x} be the first hitting time of the level x. For any α ∈ R,
introduce the process (Zt)t≥0 defined pathwise by

Zt := exp

(
αMτ

t − 1

2
α2⟨M⟩τt

)
.

Use then the optional sampling theorem: a martingale stopped at a stopping time remains a martingale.

Solution to Exercise 7

Fix some x > 0, and let τ := inf{t ≥ 0 : Mt ≥ x} be the first hitting time of the level x. For any α ∈ R,
introduce the process (Zt)t≥0 defined pathwise by

Zt := exp

(
αMτ

t − 1

2
α2⟨M⟩τt

)
.

Clearly, Z is a continuous local martingale (by Itô’s formula), and satisfies the inequality |Zt| ≤ exp(αx) almost

surely for all t ≥ 0. When α = 1, Z is usually called the stochastic exponential of M , and is denoted by E(M).

It is therefore square integrable, and the optional sampling theorem implies E(Z∞) = E(Z0) = 1. Markov’s

inequality further yields, for any u > 0,

P
(
sup
t≥0

Mt > x, ⟨M⟩∞ ≤ u

)
≤ P

(
Z∞ ≥ exp

(
αx− 1

2
α2u

))
≤ exp

(
−αx+

1

2
α2u

)
.

Since α is taken randomly, one can optimise over it, and the maximum on the right-hand side is clearly attained

at α = x/u, from which the result follows.

Exercise 8 Martingale Representation Theorem

Write down the explicit form of the martingale representation theorem for the process (Mt)t≥0 defined as
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(i) Mt =
∫ t

0
Wsds;

(ii) Mt =W 2
t ;

(iii) Mt =
∫ t

0
W 2

s ds;

(iv) Mt = sin(Wt);

(v) Mt = exp(Wt).

Solution to Exercise 8

(i) Clearly, Mt =
∫ t

0
dWs;

(ii) Integration by parts immediately gives Mt =
∫ t

0
(t− s)dWs;

(iii) Itô’s formula yields Mt = t+ 2
∫ t

0
WsdWs = E(Mt) + 2

∫ t

0
WsdWs;

(iv) Itô’s formula applied to the function f : (W, t) 7→ tW 2 yields

tW 2
t =

∫ t

0

(
W 2

s ds+ 2sWsdWs + sds
)

so that

Mt =

∫ t

0

W 2
s ds = tW 2

t − 2

∫ t

0

sWsdWs −
∫ t

0

sd⟨W,W ⟩s

= t

(
t+ 2

∫ t

0

WsdWs

)
− 2

∫ t

0

sWsdWs −
1

2
t2

=
1

2
t2 + 2

∫ t

0

(t− s)WsdWs = E(Mt) + 2

∫ t

0

(t− s)WsdWs

(v) Itô’s formula yields

sin(Wt) exp

(
t

2

)
=

∫ t

0

cos(Wu) exp
(u
2

)
dWu +

1

2

∫ t

0

sin(Wu) exp
(u
2

)
du− 1

2

∫ t

0

sin(Wu) exp
(u
2

)
d⟨W,W ⟩u

=

∫ t

0

cos(Wu) exp
(u
2

)
dWu.

Since E(Mt) is clearly null, the representation follows.

(vi) Hint: apply Itô’s formula to the function (t,Wt) 7→ eWtf(t), for some smooth function f : [0,∞) → R.

Exercise 9 Martingale Representation Theorem 2

Define the process M by Mt := E(W 3
T |Ft), for any t ∈ [0, T ]. Prove that

Mt = 3

∫ t

0

(
T − s+W 2

s

)
dWs.

Solution to Exercise 9

Mt = Et(W
3
T ) = Et[(WT−Wt+Wt)

3] = Et[(WT−Wt)
3]+W 3

t +3WtEt[(WT−Wt)
2]+3W 2

t Et[(WT−Wt)] =W 3
t +3(T−t)Wt

Applying Itô’s lemma then yields

dMt = 3
(
W 2

t + T − t
)
dWt,

which concludes the proof.
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Exercise 10

Prove that the process Y :=
(∫ t

0
Wudu

)
t≥0

is Gaussian, and compute its expectation and variance.

Solution to Exercise 10

The integration is defined pathwise as a Riemann integral since the integrand is continuous. Since W is

Gaussian, for any t ≥ 0, the random variable Yt is clearly Gaussian as limit of Riemann sums, and so is the

process Y . Clearly E(Yt) = 0, and, for any 0 ≤ s ≤ t,

E (YsYt) = E
(∫ s

0

Wudu

∫ t

0

Wvdv

)
=

∫ s

0

∫ t

0

(u ∧ v)dudv =
s2

6
(3t− s).

Exercise 11

Consider the process Y defined, for all t ≥ 0, by

Yt :=Wt −
∫ t

0

Wu

u
du.

Prove that Y is Gaussian, and compute its expectation and variance. Show that it is not an (Ft)-martingale.

Solution to Exercise 11

The process Y is the sum of two Gaussian, but these are not independent. However, the integral is a Gaussian

process by definition of (sums in L2 of) Riemannn integrals. Clearly e(Yt) = 0 and, for any s, t ≥ 0,

E(YsYt) = E
{(

Wt −
∫ t

0

Wu

u
du

)(
Ws −

∫ s

0

Wv

v
dv

)}
= E(WtWs)− E

(
Wt

∫ s

0

Wv

v
dv

)
− E

(
Ws

∫ t

0

Wu

u
du

)
+ E

{(∫ t

0

Wu

u
du

)(∫ s

0

Wv

v
dv

)}
= s ∧ t−

∫ s

0

E (WtWv)

v
dv −

∫ t

0

E (WsWu)

u
du+

∫ t

0

∫ s

0

E(WuWv)

uv
dudv

= s ∧ t−
∫ s

0

t ∧ v
v

dv −
∫ t

0

s ∧ u
u

du+

∫ t

0

∫ s

0

u ∧ v
uv

dudv = s ∧ t,

which proves that the Gaussian process Z is a Brownian motion. However, for any s < t,

E
(
Zt − Zs|FW

s

)
= E

(
Wt −

∫ t

0

Wu

u
du−Ws −

∫ s

0

Wu

u
du

∣∣∣∣FW
s

)
=

∫ t

s

Wu

u
du,

which is clearly non zero almost surely.

Exercise 12 Clark-Ocone Formula

Let f be a bounded C1 function on R. Prove that there exists a function g : [0, 1]× R → R such that

E (f(W1)|Ft) = g(t,Wt), for any t ∈ [0.1],

and write down an Itô formula for g. Prove finally that the following equality holds for all t ∈ [0, 1]:

g(t,Wt) = E(f(W1)) +

∫ t

0

E (f ′(W1|Fs) dWs.
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Solution to Exercise 12

It is easy to see that

E (f(W1)|Ft) = E (f(W1 −Wt +Wt)|Ft) = E
[
f
(
Ŵ1−t +Wt

)∣∣∣Ft

]
= g(t,Wt),

where the function g is defined as g(t, x) ≡ E
(
f(x+ Ŵ1−t)|Ft

)
. Note that the process (g(t,Wt))t∈[0,1] is clearly

a martingale, and hence

g(t,Wt) = E(f(W1)) +

∫ t

0

∂xg(s,Ws)dWs = E(f(W1)) +

∫ t

0

E
[
f ′(Ws + Ŵ1−s)|Fs

]
dWs,

and the result follows.
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