
M5MF6, EXERCICE SET: CHANGES OF MEASURES AND OPTION PRICING

We shall here consider a given filtered probability space (Ω,F ,P), supporting a standard Brownian mo-

tion (Wt)t≥0, with natural filtration (Ft)t≥0. Whenever needed, T > 0 will denote a fixed time horizon.

Exercise 1

Let (φt)t ∈ [0, T ] be an adapted bounded process, and define the process (Zt)t∈[0,T ] as the unique solution

to dZt = −φtZtdWt, starting from Z0 = 1. For any t ≥ 0, define (the restriction to Ft) Q as

dQ|Ft := ZtdP|Ft .

Prove that

EP (ZT log(ZT )) = EQ

(
1

2

∫ T

0

φ2
sds

)
.

Solution to Exercise 1

It is clear that Z is a strictly positive P-martingale, so that Q defines a genuine probability measure, and

therefore

EP (ZT log(ZT )) = EQ (log(ZT )) .

Now, applying Itô’s formula, we can write

ZT = exp

(
−1

2

∫ T

0

φ2
sds−

∫ T

0

φsdWs

)
,

From Girsanov’s theorem, the process W̃ defined pathwise as W̃t := Wt +
∫ t

0
φsds is a standard Brownian

motion under Q, and

−
∫ t

0

φsdWs −
1

2

∫ t

0

φ2
sds = −

∫ t

0

φsdW̃s +
1

2

∫ t

0

φ2
sds,

from which the result follows.

Exercise 2

Let (Xt)t≥0 be the unique solution to the following stochastic differential equation, under P:

dXt = Xt (µtdt+ σtdWt) , X0 = 1,

where µ and σ are bounded and adapted processes, and σ > 0 almost surely.

(i) Show that Xt exp
(
−
∫ t

0
µsds

)
is a local martingale.

(ii) Find a probability Q, equivalent to P, under which X is a local martingale.

(iii) Find a probability P̃, equivalent to P, under which the inverse process X−1 is a local martingale.
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Solution to Exercise 2

From Itô’s formula, we can write, for any t ≥ 0,

Xt = exp

{∫ t

0

(
µs −

1

2
σ2
s

)
ds+

∫ t

0

σsdWs

}
,

so that (i) follows immediately. One can apply Girsanov theorem to introduce the probability measure Q via

dQ = ZtdP with dZt = Ztµtσ
−1
t dWt, such that Bt := Wt + µtσ

−1
t dt is a standard Brownian motion under Q.

Finally, applying Itô’s formula yields

dX−1
t = −X−1

t σt

(
dWt −

σ2
t − µt

σt
dt

)
,

and (iii) follows again by a direct application of Girsanov’s theorem.

Exercise 3 Ornstein-Uhlenbeck

Fix some λ ∈ R, and let X be an Ornstein-Uhlenbeck process, e.g. the solution to

(0.1) dXt = −λXtdt+ dWt, X0 = 0 ∈ R,

and introduce the process Z as

Zt := exp

{
λ

∫ t

0

XsdWs −
λ2

2

∫ t

0

X2
sds

}
.

(i) Show that Z is a local martingale, and we shall from now on accept that it is a true martingale.

(ii) Define the new probability measure Q as dQ := ZtdP. Write the stochastic differential equation solved by

the process X under Q.

(iii) Show that

Zt := exp

{
λ

∫ t

0

XsdXs +
λ2

2

∫ t

0

X2
sds

}
,

and compute, for any u ∈ R, the expectation

EP
(
exp

{
−u2

2

∫ t

0

X2
sds

})
.

You might need to show first that an application of Itô’s formula yields∫ t

0

WsdWs =
W 2

t − t

2
.

Solution to Exercise 3

This is a straightforward application of Girsanov’s theorem: Under Q the processWt−λ
∫ t

0
Xsds is a standard

Brownian motion. Combining this with the SDE (0.1), we obtain that

Xt = x− λ

∫ t

0

Xsds+Wt
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is a standard Brownian motion under Q. Finally,

EP
(
exp

{
−u2

2

∫ t

0

X2
sds

})
= EQ

(
Z−1
t exp

{
−u2

2

∫ t

0

X2
sds

})
= EQ

(
exp

{
−u2 + λ2

2

∫ t

0

X2
sds− λ

∫ t

0

XsdXs

})
= EQ

(
exp

{
−u2 + λ2

2

∫ t

0

X2
sds−

λ

2

(
X2

t − t
)})

= eλt/2N
(
λ

2
,
√
λ2 + u2

)
,

where N denote the Gaussian cumulative distribution function.

Exercise 4 Application of Girsanov to Put-Call symmetry

Let S be a martingale satisfying the stochastic differential equation dSt = σStdWt, starting from S0 = 1,

where σ is a strictly positive constant.

(i) Check that St is strictly positive almost surely for all t ≥ 0.

(ii) Compute explicitly Xt := S−1
t .

(iii) Let Q be a new probability measure defined via dQ := StdP. What is the law of Xt under Q?

(iv) Show finally the Put-Call symmetry (different from the Put-Call parity!!!!):

EP(ST −K)+ = KEQ
[(
K−1 −XT

)
+

]
, for all K > 0.

Solution to Exercise 4

(i) Itô’s lemma implies that St = exp
(
− 1

2σ
2t+ σWt

)
for any t ≥ 0. Since the Brownian motion does not

explode to infinity over any finite time horizon, the result follows.

(ii) Using the previous representation, we immediately have

Xt = S−1
t = exp

(
1

2
σ2t− σWt

)
.

It further satisfies the stochastic differential equation (by Itô’s lemma):

dXt = −dSt

S2
t

+
d⟨St⟩
S3
t

= −σXtdWt + σ2Xtdt.

(iii) Since (St)t≥0 is a true strictly positive martingale, Q is a well-defined probability measure, equivalent to P.
Therefore the process (Bt)t≥0 defined by Bt := Wt − σt is a standard Brownian motion under Q, and so

is WQ := −B, and hence

dXt = −σXt (dWt − σdt) = σXtdW
Q
t .

Under Q, the process X is therefore a geometric Brownian motion.

(iv) Using the change of measure introduced previously, we can write, for all K > 0,

EP(ST −K)+ = EP

[
ST

(
1− K

ST

)
+

]
= KEQ

[(
1

K
− 1

ST

)
+

]
= KEQ

[(
K−1 −XT

)
+

]
.
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Exercise 5 Asian option

Consider the process (St)t≥0 given by

St = S0 exp (2µt+ 2Wt) .

Show that S is a submartingale whenever µ ≥ −1, and a supermartingale otherwise. Show then that the price

of an Asian option, with payoff ( 1
T

∫ T

0
Sudu − K)+ is greater than the corresponding Call price with payoff

(ST −K)+, for small enough K ≥ 0.

Hint: You may want to show first that the representation St = S0 + martingale + 2(1 + µ)
∫ t

0
Sudu holds

almost surely for all t ≥ 0, and then the trivial inequality (which follows from the convexity of the exponential

function) ex ≤ 1 + xex for any x ∈ R.

Exercise 6 CEV Case

For any β ∈ R, consider the process (St)t≥0 defined as the solution to the stochastic differential equation

dSt = σSβ
t dWt, S0 = 1.

(1) What is this process when β = 0 and β = 1?

(2) Take σ = 0.1 and β = 2. Using the closed-form representation given in the lecture notes (Exercise

2.1.15), compute, on the same plot, the functions K 7→ E(ST −K)+, for T ∈ {0, 0.1, 1, 5}, and discuss

the plots.

Exercise 7 Barrier option

Consider an up-and-out Barrier Call option, as in Section 1.4.2 in the notes. Using Proposition 1.4.14, and

assuming the Black-Scholes model with volatility σ = 20% and constant interest rate r = 4%,

(1) Implement the price of the barrier option;

(2) Discuss (with graphs) the influence of the barrier, in particular with respect to the corresponding

standard Call option (no barrier);

(3) Compute the price of an ‘up-and-in’ Call option (you may use some smart symmetry with the ‘up-and-

out’ case).
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