M5MF6, EXERCICE SET: CHANGES OF MEASURES AND OPTION PRICING

We shall here consider a given filtered probability space (€2, F,P), supporting a standard Brownian mo-

tion (Wy)>0, with natural filtration (F3)¢>0. Whenever needed, T' > 0 will denote a fixed time horizon.

Exercise 1

Let (¢¢)t € [0,T] be an adapted bounded process, and define the process (Z;)c[o,r] as the unique solution
to dZ; = —p Z,dWy, starting from Zy = 1. For any ¢ > 0, define (the restriction to F;) Q as

d@|}'t = thp‘]:t.

Prove that

1,
Ep (Zr log(Zr)) = E© (2/0 @Sds> .

Solution to Exercise 1

It is clear that Z is a strictly positive P-martingale, so that Q defines a genuine probability measure, and

therefore
Ep (Zrlog(Zr)) = Eq (log(Z71)) .

Now, applying [t6’s formula, we can write

1 [T T
ZT = exp —5/ gpgds—/ psdWs |,
0 0

From Girsanov’s theorem, the process W defined pathwise as Wt = Wi + fg psds is a standard Brownian

t 1 [t t 1t
—/ psdWy — 7/ @fds = —/ s dWs + 7/ cpids,
0 2 Jo 0 2 Jo

from which the result follows.

motion under QQ, and

Exercise 2
Let (X¢)t>0 be the unique solution to the following stochastic differential equation, under P:
dXt = Xt (Mtdt + O'tth) 5 XO = ].7

where p and o are bounded and adapted processes, and o > 0 almost surely.

(i) Show that X;exp (— fot usds) is a local martingale.
(ii) Find a probability Q, equivalent to P, under which X is a local martingale.

(iii) Find a probability ]f”, equivalent to P, under which the inverse process X ! is a local martingale.
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Solution to Exercise 2

From It&’s formula, we can write, for any ¢ > 0,

t 1 t
X =exp {/ <u5 — 202) ds +/ ades} ,
0 0

so that (i) follows immediately. One can apply Girsanov theorem to introduce the probability measure Q via
dQ = Z;dP with dZ; = Ztutat_lth, such that B; := W, + ,utat_ldt is a standard Brownian motion under Q.
Finally, applying [t0’s formula yields

Ot

2
ax; = —X; lo, <th S g dt) :

and (iii) follows again by a direct application of Girsanov’s theorem.

Exercise 3 Ornstein-Uhlenbeck
Fix some A € R, and let X be an Ornstein-Uhlenbeck process, e.g. the solution to
(01) dX; = —AX,dt + th, Xo=0€R,

and introduce the process Z as

t AQ t
Zy = exp {)\/ X, dW, — —/ des} .
0 2 Jo

(i) Show that Z is a local martingale, and we shall from now on accept that it is a true martingale.
(ii) Define the new probability measure Q as dQ := Z;dP. Write the stochastic differential equation solved by
the process X under Q.
(iii) Show that

t )\2 t
Z, = exp{)\/ X, dX, + 3/ des},
0 0

and compute, for any v € R, the expectation

P U
E" (exps —— X:dsp |.
2 Jo

You might need to show first that an application of It6’s formula yields

t 2 _
/ Wdes = Wt t-
O 2

Solution to Exercise 3

This is a straightforward application of Girsanov’s theorem: Under Q the process W, — A fot X,ds is a standard
Brownian motion. Combining this with the SDE (O), we obtain that

t
Xt:ZE—/\/ Xst+Wt
0
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is a standard Brownian motion under Q. Finally,

P u [ 2 Q[ -1 u? [t 2
E" (exps —— [ Xidsp | =E*(Z, "expq—— | X:ds
2 Jo 2 Jo
2 2 gt t
— EQ <exp{—u 42” /des—)\/ Xsts})
0 0

u? + 22 [t A
=E? (exp{— 5 /0 des—Q(Xf—t)}>
= ekt/2N <;\7 V )\2 +U2> )

where A denote the Gaussian cumulative distribution function.

Exercise 4 Application of Girsanov to Put-Call symmetry

Let S be a martingale satisfying the stochastic differential equation dS; = 0S;dW;, starting from Sy = 1,
where ¢ is a strictly positive constant.
(i) Check that S; is strictly positive almost surely for all ¢ > 0.
) Compute explicitly X; := S; '
(iii) Let Q be a new probability measure defined via dQ := S;dP. What is the law of X; under Q7
) Show finally the Put-Call symmetry (different from the Put-Call parity!!!!):

E*(Sy — K), = KEQ [(K*l - XT)J . forall K > 0.

Solution to Exercise 4

(i) Ito’s lemma implies that S; = exp (—302t + oW,;) for any ¢ > 0. Since the Brownian motion does not
explode to infinity over any finite time horizon, the result follows.

(ii) Using the previous representation, we immediately have
-1 L,
Xy =S5, =exp iathWt .

It further satisfies the stochastic differential equation (by It6’s lemma):

_dSi, d(S)

dX; = ——=
s s

= —o X, dW; + o2 X,dt.

(iii) Since (St)¢>o is a true strictly positive martingale, Q is a well-defined probability measure, equivalent to P.
Therefore the process (By)i>o defined by B; := W — ot is a standard Brownian motion under Q, and so
is W2 := —B, and hence

dX; = —0 X, (AW, — odt) = 0 X;dW 2.

Under Q, the process X is therefore a geometric Brownian motion.
(iv) Using the change of measure introduced previously, we can write, for all K > 0,

e ) |3 8) ] wmloo )

St
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Exercise 5 Asian option
Consider the process (Si):>0 given by
Sy = Soexp (2ut + 2W5) .

Show that S is a submartingale whenever p > —1, and a supermartingale otherwise. Show then that the price
of an Asian option, with payoff (% fOT Sydu — K)4 is greater than the corresponding Call price with payoff
(St — K)4, for small enough K > 0.

Hint: You may want to show first that the representation S; = Sy + martingale + 2(1 + p) fg Sudu holds
almost surely for all ¢ > 0, and then the trivial inequality (which follows from the convexity of the exponential

function) e® < 1+ xe® for any = € R.

Exercise 6 CEV Case

For any § € R, consider the process (S;):>o defined as the solution to the stochastic differential equation
dS; = oSPdW,,  Sp=1.

(1) What is this process when 8 =0 and 8 =17

(2) Take 0 = 0.1 and 8 = 2. Using the closed-form representation given in the lecture notes (Exercise
2.1.15), compute, on the same plot, the functions K — E(St — K), for T € {0,0.1,1,5}, and discuss
the plots.

Exercise 7 Barrier option

Consider an up-and-out Barrier Call option, as in Section 1.4.2 in the notes. Using Proposition 1.4.14, and
assuming the Black-Scholes model with volatility ¢ = 20% and constant interest rate r = 4%,
(1) Implement the price of the barrier option;
(2) Discuss (with graphs) the influence of the barrier, in particular with respect to the corresponding
standard Call option (no barrier);
(3) Compute the price of an ‘up-and-in’ Call option (you may use some smart symmetry with the ‘up-and-

out’ case).
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